高中数学:直接证明与间接证明练习

高中数学:直接证明与间接证明练习
高中数学:直接证明与间接证明练习

高中数学:直接证明与间接证明练习

(时间:30分钟)

1.设a=-,b=-,c=-,则a,b,c的大小顺序是( A )

(A)a>b>c (B)b>c>a

(C)c>a>b (D)a>c>b

解析:因为a=-=,

b=-=,

c=-=,且+>+>+>0,所以a>b>c.故选A.

2.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设( B )

(A)三个内角都不大于60°

(B)三个内角都大于60°

(C)三个内角至多有一个大于60°

(D)三个内角至多有两个大于60°

3.已知a>b>0,证明-<可选择的方法,以下最合理的是( B )

(A)综合法 (B)分析法 (C)类比法 (D)归纳法

解析:首先,排除C,D.然后,比较综合法、分析法.

我们选择分析法,欲证-<,只需证<+,即证a

4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证

(A)a-b>0 (B)a-c>0

(C)(a-b)(a-c)>0 (D)(a-b)(a-c)<0

解析:由题意知

?(a+c)2-ac<3a2

?a2+2ac+c2-ac-3a2<0

?-2a2+ac+c2<0

?2a2-ac-c2>0

?(a-c)(2a+c)>0?(a-c)(a-b)>0.

5.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求

的绝对值大证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x

1

|≥1.以下正确的是( D )

于或等于1,即假设|x

1

(A)①与②的假设都错误

(B)①与②的假设都正确

(C)①的假设正确;②的假设错误

(D)①的假设错误;②的假设正确

解析:反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①不正确;对于②,其假设正确.

6.(山东青岛模拟)设a,b,c均为正实数,则三个数a+,b+,c+( D )

(A)都大于2 (B)都小于2

(C)至少有一个不大于2 (D)至少有一个不小于2

解析:因为a>0,b>0,c>0,

所以(a+)+(b+)+(c+)=(a+)+(b+)+(c+)≥6,当且仅当a=b=c=1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.选D.

7.用反证法证明命题“a,b∈R,ab可以被5整除,那么a,b中至少有一个能被5整除”,那么假设的内容是 .

答案:a,b都不能被5整除

8.+与2+的大小关系为.

解析:要比较+与2+的大小,

只需比较(+)2与(2+)2的大小,

只需比较6+7+2与8+5+4的大小,

只需比较与2的大小,

只需比较42与40的大小,

因为42>40,所以+>2+.

答案:+>2+

能力提升(时间:15分钟)

9.设a,b是两个实数,给出下列条件:

①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.

其中能推出:“a,b中至少有一个大于1”的条件是( C )

(A)②③(B)①②③

(C)③ (D)③④⑤

解析:若a=,b=,则a+b>1,

但a<1,b<1,故①推不出;

若a=b=1,则a+b=2,故②推不出;

若a=-2,b=-3,则a2+b2>2,故④推不出;

若a=-2,b=-3,则ab>1,故⑤推不出;

对于③,即a+b>2,

则a,b中至少有一个大于1,

反证法:假设a≤1且b≤1,

则a+b≤2与a+b>2矛盾,

因此假设不成立,a,b中至少有一个大于1.选C.

10.已知函数f(x)=()x,a,b是正实数,A=f(),B=f(),C=f(),则A,B,C的大小关系为( A )

(A)A≤B≤C (B)A≤C≤B

(C)B≤C≤A (D)C≤B≤A

解析:因为≥≥,

又f(x)=()x在R上是减函数,

所以f()≤f()≤f().

所以A≤B≤C.

11.如果a+b>a+b,则a,b应满足的条件是.

解析:因为a+b-(a+b)

=(a-b)+(b-a)

=(-)(a-b)

=(-)2(+).

所以当a≥0,b≥0且a≠b时,

(-)2(+)>0.

所以a+b>a+b成立的条件是a≥0,b≥0且a≠b.

答案:a≥0,b≥0且a≠b

12.已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c. 求证:+=.

证明:要证+=,

即证+=3也就是+=1,

只需证c(b+c)+a(a+b)=(a+b)(b+c),

需证c2+a2=ac+b2,

又△ABC三个内角A,B,C成等差数列,

故B=60°,

由余弦定理,得

b2=c2+a2-2accos 60°,

即b2=c2+a2-ac,

故c2+a2=ac+b2成立.

于是原等式成立.

13.设数列{a

n }是公比为q的等比数列,S

n

是它的前n项和.

(1)求证:数列{S

n

}不是等比数列;

(2)数列{S

n

}是等差数列吗?为什么?

(1)证明:假设数列{S

n }是等比数列,则=S

1

S

3

,

即(1+q)2=a

1·a

1

·(1+q+q2),

因为a

1

≠0,

所以(1+q)2=1+q+q2,

即q=0,这与公比q≠0矛盾,

所以数列{S

n

}不是等比数列.

(2)解:当q=1时,S

n =na

1

,故{S

n

}是等差数列;

当q≠1时,{S

n

}不是等差数列,

否则2S

2=S

1

+S

3

,

即2a

1(1+q)=a

1

+a

1

(1+q+q2),

得q=0,这与公比q≠0矛盾.

综上,当q=1时,数列{S

n

}是等差数列;

当q≠1时,数列{S

n

}不是等差数列.

高中数学推理与证明.doc

高中数学推理与证明 高中数学推理知识点 1、归纳推理:顾名思义,一个归纳的过程。比如,一个篮子里有苹果梨葡萄草莓等等,那么你发现苹果是水果、梨是水果、葡萄是水果、草莓是水果,然后你猜想:篮子里装的是水果。这个推理是由特殊推到一般的过程,可能正确也可能不正确,如果篮子里确实都是水果,那么你就猜对了;如果篮子里有一根胡萝卜,那你就猜错了。所以才会有证明。 2、类比推理:同样顾名思义,一个类比的过程。例如,你知道苹果水分多又甜、梨水分多又甜、葡萄水分多又甜,所以你推理出同样作为水果,香蕉水分多又甜,那这个结论显然是不对的,香蕉并没有什么水分。但如果你推导出荔枝水分多又甜,这就是正确的。(这个例子中指的都是正常水果)显然,这个推理方式是一个由特殊推特殊的过程,也不一定正确。 3、演绎推理:一般推特殊,一定对。例如,f(x)=1,那么f(1)=1 高中数学证明知识点 1、综合法:即我们正常的证明过程,由条件一直往下推。 例如,1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量,证明:2菠萝重量=160葡萄重量。 证明:因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量 ____________所以1菠萝的重量=4*20葡萄重量=80葡萄重量 ____________所以2菠萝重量=160葡萄重量。 2、分析法:由结论推出等价结论,去证明这个等价结论成立。

同样上面的例子的证明:要证明2菠萝重量=160葡萄重量,即证明2*1菠萝重量=2*80葡萄重量,即证明1菠萝重量=80葡萄重量。 因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量 所以1菠萝的重量=4*20葡萄重量=80葡萄重量,原式即证。 3、反证法:先假设结论相反,然后根据已知推导,最后发现和已知不符,收!这是一个战胜自己的过程! 4、数学归纳法: 解题过程: A.命题在n=1(或n0)时成立,这是递推的基础; B.假设在n=k时命题成立; C.证明n=k+1时命题也成立 高中数学推理与证明 一、公理、定理、推论、逆定理: 1.公认的真命题叫做公理。 2.其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。 3.由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。 4.如果一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理。 二、类比推理: 一道数学题是由已知条件、解决办法、欲证结论三个要素组成,这此要求可以看作是数学试题的属性。如果两道数学题是在一系列属性上相似,或一道是由另一道题来的,这时,就可以运用类比推理的方法,推测其中一道题的属性在另一道题中也存在相同或相似的属性。

高中数学专题讲义-直接证明与间接证明

题型一:综合法 【例1】若 11 0a b <<,则下列结论不正确的是 ( ) A.22a b < B.2ab b < C.2b a a b +> D.a b a b -=- 【例2】如果数列{}n a 是等差数列,则( )。 (A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a = 【例3】在△ABC 中若2sin b a B =,则A 等于( ) (A)003060或 (B)004560或 (C)0060120或 (D)0030150或 【例4】下列四个命题:①若1 02 a << ,则()()cos 1cos 1a a +<-;②若01a <<,则11a -1a >+>2a ;③若x 、y ∈R ,满足2y x =,则()2log 22x y +的最小值是7 8;④ 若a 、b ∈R ,则221a b ab a b +++>+。其中正确的是( )。 (A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④ 【例5】下面的四个不等式:①ca bc ab c b a ++≥++222;②()4 1 1≤ -a a ;③2≥+a b b a ;④()()()2 2222bd ac d c b a +≥+?+.其中不成立的有 (A )1个 (B )2个 (C )3个 (D )4个 【例6】已知,a b R ∈且,0a b ≠,则在① ab b a ≥+222;②2≥+b a a b ; 典例分析 板块二.直接证明与 间接证明

③2 )2 (b a ab +≤;④2)2(222b a b a +≤+这四个式子中,恒成立的个数是 ( ) A 1个 B 2个 C 3个 D 4个 【例7】已知c b a ,,均大于1,且4log log =?c b c a ,则下列各式中,一定正确的是 ( ) A b ac ≥ B c ab ≥ C a bc ≥ D c ab ≤ 【例8】已知不等式1()()9,a x y x y ++≥对任意正实数x ,y 恒成立,则正实数a 的最小值是 ( ) A .2 B .4 C .6 D .8 【例9】α、β为锐角()sin a αβ=+,sin sin b αβ=+,则a 、b 之间关系为 ( ) A .a b > B .b a > C .a b = D .不确定 【例10】设M 是ABC ?内一点,且AB AC ?=u u u r u u u r 30BAC ∠=?,定义()(,,)f M m n p =, 其中m 、n 、p 分别是MBC ?,MCA ?,MAB ?的面积,若1 ()(,,)2 f P x y =,则14x y + 的最小值是 ( ) A .8 B .9 C .16 D .18 【例11】若函数32)1(2++-=mx x m y 是偶函数,则)4 3(-f ,)1(2+-a a f (a ∈R ) 的大小关系是)4 3(-f )1(2+-a a f . 【例12】设≥++=++>>>c b a c b a c b a 111 ,1,0,0,0则若 【例13】函数()y f x =在(0,2)上是增函数,函数()2y f x =+是偶函数,则 ()1f ,()2.5f ,()3.5f 的大小关系是 . 【例14】已知 5,2==b a ρρ,向量b a ρρ与的 夹角为0 120,则a b a ρρρ.)2(-=

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

高中数学-微积分基本定理

高中数学-微积分基本定理 A 级 基础巩固 一、选择题 1.(2018·四平模拟)定积分??0 1x 2-x d x 的值为( A ) A .π4 B .π2 C .π D .2π [解析] ∵y =x 2-x , ∴(x -1)2 +y 2 =1表示以(1,0)为圆心,以1为半径的圆, ∴定积分??01x 2-x d x 所围成的面积就是该圆的面积的四分之一, ∴定积分??0 1x 2-x d x =π 4 , 故选A . 2.(2018·铁东区校级二模)由曲线xy =1与直线y =x ,y =3所围成的封闭图形面积为( D ) A .2-ln3 B .ln3 C .2 D .4-ln3 [解析] 方法一:由xy =1,y =3可得交点坐标为(1 3,3),由xy =1,y =x 可得交点坐 标为(1,1), 由y =x ,y =3可得交点坐标为(3,3), ∴由曲线xy =1,直线y =x ,y =3所围成的平面图形的面积为

???1 3 1 (3-1x )d x +? ?1 3(3-x )d x =(3x -ln x )|1 13+(3x -12x 2)|3 1, =(3-1-ln3)+(9-92-3+1 2)=4-ln3 故选D . 方法二:由xy =1,y =3可得交点坐标为(1 3,3), 由xy =1,y =x 可得交点坐标为(1,1), 由y =x ,y =3可得交点坐标为(3,3), 对y 积分,则S =? ?0 3(y -1y )dy =(12y 2-lny )|3 1=92-ln3-(12-0)=4-ln3, 故选D . 3.(2018·安庆高二检测)已知函数f (x )=x n +mx 的导函数f ′(x )=2x +2,则??1 3f (- x )d x =( D ) A .0 B .3 C .-2 3 D .23 [解析] ∵f (x )=x n +mx 的导函数f ′(x )=2x +2, ∴nx n -1 +m =2x +2, 解得n =2,m =2, ∴f (x )=x 2 +2x , ∴f (-x )=x 2-2x , ∴??1 3f (-x )d x =? ?1 3(x 2-2x )d x =(13x 3-x 2)|3 1=9-9-13+1=23,故选D . 4.函数F (x )=??0 x cos t d t 的导数是( A ) A .f ′(x )=cos x B .f ′(x )=sin x C .f ′(x )=-cos x D .f ′(x )=-sin x [解析] F (x )=??0 x cos t d t =sin t | x 0=sin x -sin0=sin x . 所以f ′(x )=cos x ,故应选A . 5.(2018·昆明高二检测)若直线l 1:x +ay -1=0与l 2:4x -2y +3=0垂直,则积分??-a a (x 3 +sin x -5)d x 的值为( D ) A .6+2sin 2 B .-6-2cos 2

高中数学证明方法高中数学证明

高中数学证明方法高中数学证明 一、 现在正在学数学选修4-1《几何证明选讲》,做几何大题的时候,总是想不出来该怎么画辅助线,所以总是不会写,我数学不算差,可是面对这种证明题就老是蒙。求练习方法,要怎么办 首先你要熟知的几何中的所有定理!在做几何题的时候你就会熟练地运用!对于怎么画辅助线,当你看到一个几何题目的时候,自己要把题目中的已知摆出来!这样有助于你利用定理解决问题!的那个你确定用哪个定理时,你就判断还需要什么,这个时候画辅助线就变得简单啦!比如题目中有告诉你中点,你就会联想到中位线,30°所对直角边是斜边的一半,想到梯形,等等! 总之做这种几何题目时,要善于将已知信息联系定理,在看定理缺什么,然后就画辅助线使定理能使用!!! 直角三角形ABC中,∠ACB=45°,∠BAC=90°,AB=AC,D是AB中点,AF⊥CD于H,交BC于F,BE∥AC,交AF延长线于E,求证BC垂直平分DE。 ∵BE∥AC,∠BAC=90° ∴∠ABE=∠BAC=90° 由AF⊥CD易证 ∠ACD=∠BAE 由题AB=AC 得三角形ABE,CAD全等 易证BD=BE ∵∠ABE=90° ∴BDE为等腰Rt 易证BC为∠ABE角平分线 等腰三角形三线合一 ∴BC垂直平分DE 二、

遇到较难的,应该怎么入手哦, 我证明的不太好,有什么办法可以提高点吗? 或者提供几道证明题,最好附答案, 谢谢啦! 答案:可以利用反证法数学证明题的常用做法 定义:证明定理的一种方法,先提出和定理中的结论相反的假定,然后从这个假定 中得出和已知条件相矛盾的结果来,这样就否定了原来的假定而肯定了定理。也叫归谬法。事实上,反证法就是去证明一个命题的逆否命题是正确的,这与直接证明是等价的,但是 可能其逆否命题比较容易证明。上述的得出了矛盾,事实上就是得出了“假设与题设不相融”这个结论,所以我们不能接受这个假设,所以这个假设的反面就是正确的,从而命题 得证。适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而否定则比较浅显。证明:素数有无穷多个。这个古老的命题最初是由古希腊数学家欧几里德Euclid of Alexandria,生活在亚历山大城,约前330~约前275,是古希腊最享有盛名的数 学家在他的不朽著作《几何原本》里给出的一个反证法:假设命题不真,则只有有限多个 素数,设所有的素数是2=a1aii=1,2……n.无论是哪种情况,都将和假设矛盾。这个矛盾 就完成了我们的证明,所以确实有无穷多个素数。 感谢您的阅读,祝您生活愉快。

高中数学选修2-2推理与证明 直接证明与间接证明

2.2.1综合法和分析法 [学习目标] 1.了解直接证明的两种基本方法:分析法与综合法.2.了解分析法和综合法的思维过程和特点.3.会用分析法、综合法证明实际问题. 知识点一综合法 1.定义 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. 2.基本模式 综合法的证明过程如下: 已知条件?…?…?结论 即用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,则综合法用框图可表示为: P?Q1→Q1?Q2→Q2?Q3→…→Q n?Q 3.综合法的证明格式 因为…,所以…,所以…,…,所以…成立. 思考综合法的推理过程是合情推理还是演绎推理? 答案演绎推理. 知识点二分析法 1.分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. 2.基本模式

用Q 表示要证明的结论,P 表示条件,则分析法可用框图表示为: Q ?P 1→P 1?P 2→P 2?P 3→…→得到一个明显成立的条件 3.分析法的证明格式 要证…,只需证…,只需证…,…,因为…成立,所以…成立. 思考 分析法与综合法有哪些异同点? 答案 相同点:两者都是直接利用原命题的条件(或结论),逐步推得命题成立的证明方法——直接证明法.不同点:证法1,由因导果,使用综合法;证法2,执果索因,使用分析法. 题型一 综合法的应用 例1 已知a ,b 是正数,且a +b =1,求证:1a +1 b ≥4. 证明 方法一 ∵a ,b 是正数,且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1 ab ≥4. 方法二 ∵a ,b 是正数,∴a +b ≥2ab >0, 1a +1 b ≥2 1 ab >0, ∴(a +b )???? 1a +1b ≥4. 又a +b =1,∴1a +1b ≥4. 方法三 1a +1b =a +b a +a +b b =1+b a +a b +1≥2+2 b a ·a b =4.当且仅当a =b 时,取“=”号. 反思与感悟 利用综合法证明问题的步骤: (1)分析条件选择方向:仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法. (2)转化条件组织过程:把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化,组织过程时要有严密的逻辑,简洁的语言,清晰的思路. (3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结优化解法. 跟踪训练1 已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2. 证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 又∵a ,b ,c 互不相等. ∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

(推荐)高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

高一数学直接证明与间接证明练习题

推理与证明综合测试题 一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 答案:A 2.结论为:n n x y +能被x y +整除,令1234n =, ,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 答案:C 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 答案:C 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述

性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 答案:B 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 答案:D 6.观察式子:213122+ <,221151233++<,2221117 12344 +++<,,则可归纳 出式子为( ) A.22211 111(2)2321n n n ++++<-≥ B.22 211111(2)2321 n n n + +++ <+≥

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

新课标高中数学《推理与证明》知识归纳总结

《推理与证明》知识归纳总结 第一部分 合情推理 学习目标: 了解合情推理的含义(易混点) 理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点) 了解合情推理在数学发展中的作用(难点) 一、知识归纳: 合情推理可分为归纳推理和类比推理两类: 归纳推理: 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理. 2.归纳推理的一般步骤: 第一步,通过观察个别情况发现某些相同的性质; 第二步,从已知的相同性质中推出一个明确表述的一般命题(猜想). 思考探究: 1.归纳推理的结论一定正确吗? 2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? 题型1 用归纳推理发现规律 1、观察 < < ;….对于任意正实数,a b , ≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a

2、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图 有7个蜂巢,第三个图有19个蜂巢,按此规律,以 ()f n 表示第n 幅图的蜂巢总数.则(4)f =_____;()f n =___________. 【解题思路】找出)1()(--n f n f 的关系式 [解析],1261)3(,61)2(,1)1(++=+==f f f 37181261)4(=+++=∴f 133)1(6181261)(2+-=-+++++=∴n n n n f 总结:处理“递推型”问题的方法之一是寻找相邻两组数据的关系 类比推理 1.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理. 2.类比推理的一般步骤: 第一步:找出两类对象之间可以确切表述的相似特征; 第二步:用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想. 思考探究: 1.类比推理的结论能作为定理应用吗? 2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体? (2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论? 题型2 用类比推理猜想新的命题 [例]已知正三角形内切圆的半径是高的 13,把这个结论推广到空间正四面体,类似的结论是______. 【解题思路】从方法的类比入手 [解析]原问题的解法为等面积法,即h r ar ah S 3121321=??== ,类比问题的解法应为等体积法, h r Sr Sh V 4131431=??==即正四面体的内切球的半径是高4 1 总结:(1)不仅要注意形式的类比,还要注意方法的类比 (2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等

高中数学四大推理方法巧解证明题.doc

高中数学四大推理方法巧解证明题- 高中数学是数学各种基础知识的总结和归纳,同时也是以前所学到的数学知识的深化和检验。针对高中数学的这一特性,可以通过四大推理方法来进行证明题的解答,不但可以掌握数学知识脉络,也可以把所学到的知识上升到思维层面,使自己可以综合运用数学知识,达到学以致用的目的。 一、合情推理法 在高中数学证明题的解答过程中使用合情推理,有着比较重要的作用以及影响。比较常用的合情推理法就是类比推理法,这是一种从特殊转向特殊的推理方法,两种类似对象间的推理,一个对象有着某个性质,而另一个对象同时也有类似性质。进行类比时,对已知对象性质推理的过程进行充分的考虑,之后类比推导出类比对象性质。高中数学知识的结构很复杂,难度也比其他学科大,而通过合情推理法,并结合多种的思维方法,使学生可以进行思考和分析,也培养了学生对于数学学习的兴趣,提高了学生数学的学习能力。所以,合情推理法是一种很好的解答高中数学证明题的方法。 二、演绎推理法 对于演绎推理法来说,这是一种从一般转向特殊的推理方法,高中数学证明题的证明过程大都是通过演绎推理来证明的,保证演绎推理的前提以及形式正确,就能保证结论是正确的,同时要注意推理的过程具有正确性以及完备性。 三、间接和直接证明法 (一)直接证明法 直接证明法比较常见的就是综合法以及分析法。其中,综

合法就是利用已知的条件以及数学定理和公理等,进行推理论证,之后推导出结论成立。综合法也被称作为顺推证法或者由因导果法。而分析法是从结论出发,对结论充分成立的条件进行逐步的寻求,把结论归纳总结成明显成立的一个条件。 (二)间接证明法 间接证明法比较常用的就是反证法,其证明步骤为首先反设,之后归谬,最后存真。首先假设结论不成立,就是把结论反面假设为真,之后的归谬就是在己知条件和反设背景下推理,得出同假设命题相矛盾的结论,最后的存真就是由归谬得出的结果进行反设命题不真的断定,来说明原先结论是成立的。 四、归纳推理法 同上述的推理方法相比较来说,归纳推理法注重对高中数学知识总体的规划,总结和归纳所学到知识。我们都知道,高中数学的知识点比较多,每个知识点之间都有着一定的关系,一道证明题中,可能存在几个知识点,如果同学们不能归纳知识的话,短时间内就不能看出题目中知识点之间的联系,就会严重影响题目的解答。 在高中数学的证明题目中,虽然有限的研究对象比较常见,但是,更为常见的是研究对象众多,一些特定的情况下研究对象可能是无穷的,同学们很难找到突破口。如果同学们把研究对象根据形成的情况进行分类,之后根据分类在进行证明,假如每种情况都可以得到证明,那么所得到的结论就必然是正确的,这种分类证明、归纳方法,可以使同学们找到突破口,从而使证明题得到解答。 结束语: 在数学证明题的实际解答过程中,要根据题目的具体情景

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

高中数学:直接证明与间接证明练习

高中数学:直接证明与间接证明练习 1.(天津一中月考)用反证法证明命题:“a ,b ∈N ,若ab 可被5整除,那么a ,b 中至少有一个能被5整除.”时,假设的内容应该是( B ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除 C .a ,b 不都能被5整除 D .a 能被5整除 解析:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立从而进行推证.命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 中至少有一个能被5整除.”的否定是“a ,b ∈N ,如果ab 可被5整除,那么a ,b 都不能被5整除”,故选B. 2.(河北邢台模拟)用反证法证明命题“三角形的三个内角中至多有一个钝角”,假设正确的是( C ) A .假设三角形的三个内角都是锐角 B .假设三角形的三个内角都是钝角 C .假设三角形的三个内角中至少有两个钝角 D .假设三角形的三个内角中至少有两个锐角 解析:“至多有一个”的否定是“至少有两个”.故选C. 3.若a ,b ,c 是不全相等的正数,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数是( C ) A .0 B .1 C .2 D .3 解析:由于a ,b ,c 不全相等,则a -b ,b -c ,c -a 中至少有一个不为0,故①正确;②显然正确;令a =2,b =3,c =5,满足a ≠c ,b ≠c ,a ≠b ,故③错误. 4.已知函数f (x )=? ????12x ,a ,b 为正实数,A =f ? ????a +b 2,B =f (ab ),C =f ? ????2ab a +b ,则A ,B ,C 的大小关系

人教版高中数学直接证明与间接证明3(理)

§2.2.2反证法 【学情分析】: 前面我们学习了两种直接证明问题的方法——综合法和分析法。在以前的学习中,学生已经接触过用反证法证明数学命题,本节课进一步熟悉运用反证法证明某些直接证明较难解决的数学问题。 【教学目标】: (1)知识与技能:结合已学过的数学实例,了解间接证明的方法——反证法;了解反证法的思考过程、特点 (2)过程与方法:能够运用反证法证明数学问题 (3)情感态度与价值观:通过本节课的学习,感受逻辑证明在数学以及日常生活中的作用,养成言之有理,论证有据的习惯 【教学重点】: 了解反证法的思考过程、特点;运用反证法证明数学问题。 【教学难点】: 运用反证法证明数学问题。 【教学过程设计】: 教学环节教学活动 设计意图 一、提出问题 问题1、任找370个人,他们中生日有没有相同的呢? 问题2、将9个球分别染成红色或白色,无论怎样染,至 少有5个球是同色的,你能证明这个结论吗? 思考:通过以上几个练习,大家已经初步体会到反证法 的作用,你能不能总结一下应用反证法的概念及其步骤? 从实际生活的例子出发,使学生对 反证法的基本方法和步骤有一个更 深刻的认识。 二、反证法定义 1:反证法的概念: 假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法. 2:反证法的基本步骤:1):假设命题结论不成立,即假设结论的反面成立;2):从这个假设出发,经过推理论证,得出矛盾;3):从矛盾判定假设不正确,从而肯定命题的结论正确. 3:应用反证法的情形:1):直接证明困难;2):需分成很多类进行讨论;3):结论为“至少”、“至多”、“有无穷多个”类命题;4):结论为“唯一”类命题; 三、应用 例1、已知直线,a b和平面α,如果, a b αα ??,且 || a b,求证|| aα。 解析:让学生理解反证 法的严密性和合理性; 证明:因为|| a b, 所以经过直线a , b 确定一个 平面β。 因为aα ?,而aβ ?, 所以α与β是两个不同的平面. 因为bα ?,且bβ ?, 所以b αβ= I. 下面用反证法证明直线a与平面α没有公共点.假设直 线a 与平面α有公共点P,则P b αβ ∈= I,即点P是直 直观了解反证法的证明过程。否定 结论,推出矛盾。提醒学生:使用 反证法进行证明的关键是在正确的 推理下得出矛盾。这个矛盾可以是 与已知条件矛盾,或与假设矛盾, 或与定义、公理、定理、事实矛盾 等。 进上步熟悉反证法的证题思路及步 骤。 引导学生结合思考题和例题归纳 出反证法所适用的题型特点和一般 步骤。培养学生的归纳能力。

高中数学基本定理证明

1三角函数的定义证明. 已知锐角△ABC中,AB=c,AC=b,BC=a,利用三角函数的定义证明:c=acosB+bcosA解:作CD⊥AB于点D 在Rt△BCD中,由cosB=BD/BC,得BD=acosB,在Rt△ACD中,由cosA=AD/AC,得AD=bcosA,所以c=AB=BD+AD=acosB+bcosA 逐步提示: 1、根据待证明的条件中存在三角函数,而题目本身图形为锐角三角形,所以要在原图形中通过添加辅助线来构造直角三角形。 2、根据求【c的表达式,既是求AB的三角函数表达式】,因此添加辅助线时考虑【将AB 线段变为直角三角形的边】,可以作【CD⊥AB 于点D,】接下来考虑如何在在直角三角形中利用直角三角形三角函数来求解边角关系。 3、接下来分别在Rt△ACD和Rt△BCD中利用三角函数来表示AD的长度向待证靠近 2点P为△ABC内任意一点,求证点P到△ABC距离和为定值点P为△ABC外时,上述结论是否成立,若成立,请证明。若不成立h1,h2,h3与上述定值间有何关系【设点p 到AB,BC,CA三边距离为h1,h2,h3】 证明:连接PA、PB、PC,过C作AB上的高AD,交AB于G。 过P作AB、BC、CA的重线交AB、BC、CA于D、E、F 三角形ABC面积=AB*CG/2 三角形ABC面积=三角形ABP+BCP+CAP面积 =AB*PD/2+BC*PE/2+CA*PF/2 =AB(PD+PE+PF)/2 故:AB*CG/2=AB*(PD+PE+PF)/2 CG=PD+PE+PF 即:点P到△ABC距离和为三角形的高,是定值。 (2) 若P在三角形外,不妨设h1>h3,h2>h3,则有: h1+h2-h3=三角形边上的高 3棱长为的正四面体内任意一点到各面距离之和为定值,则这个定值等于多少? 简证如下: 设M为正四面体P-ABC内任一点, M到面ABC,面PAB,面PAC,面PBC的距离分别为h1,h2,h3,h4. 由于四个面面积相等, 则VP-ABC=VM-ABC+VM-PAB+VM-PAC+VM-PBC

高中数学竞赛平面几何定理证明大全

Gerrald 加油坚持住 Gerrald 加油坚持住 Gerrald 加油坚持住 莫利定理:将任意三角形的各角三等分,则每两个角的相邻三等分线的交点构成 一个正三角形。 設△ABC中的∠B,∠C的两条三等分角线分別交于P, D两个点(图1),按照莫利定理,D是莫莱三角形的一個頂点,当然D就是△BPC的內心,因為BD, CD正好是∠CBP, ∠BCP的角平分线。 莫利三角形的另两个頂点E, F应该分別落在CP和BP上,因此我们产生了一个念头,如果能夠在CP, BP上找到E, F这两个点,使△DEF是个正三角形,再证AE、AF正好是∠BAC的三等分线就行了 为此,先把DP连起來,在CP, BP上分別取两点E, F使∠EDP=∠FDP=30°,于是就得到一个三角形△DEF。为什么它是一个正三角形呢?因为D是△BPC的內心,所以DP是∠BPC的角平分线,即∠DPE=∠DPF,由作图知∠EDP=∠FDP =30°,在△DPE和△DPF中,DP是公共边,而夹此边的两角又是对应相等的,所以△DPE≌△DPF。于是DE=DF,即△DEF是个等腰三角形,它的腰是DE和DF,而它的頂角又是60°,所以它当然是个正三角形。 接下來,我们的目标就是希望能证明△DEF真的是莫利三角形,亦即AE, AF 的确会三等分∠BAC。

如图2所示,在AB, AC上各取一点G,H,使得BG=BD, CH=CD,把G、F、E、H各点依次连起來,根据△BFD≌△BFG,△CED≌△CEH,我们就得到GF =FD=FE=ED=EH。 下面,如果能夠证明G,F,E,H,A五点共圆,則定理的证明就完成了,因为∠GAF,∠FAE,∠EAH这三个圆周角所对的弦GF, FE, EH都等長,因而这三个圆周角也就都相等了。 为了证明G,H,E,F,A共圓,必须证明∠FGE=∠FHE=∠A/3。 看图2,首先我们注意到△GFE是个等腰三角形,∠GFE是它的顶角,如果这个角能求出來,其底角∠FGE也就能求出来了。 △PFE也是一个等腰三角形,这是因为△PDF≌△PDE,(PD是公用边,∠DPF=∠DPE,∠PDF=∠PDE=30°),所以PF=PE。等腰三角形△PFE的顶角大小为: ∠FPE=π-2/3(∠ABC+∠ACB)=π-2/3(π-∠BAC)=π/3+2/3∠BAC (1) ∠BFD=∠PDF+∠DPF=π/6+1/2∠FPE=π/6+π/6+1/3∠BAC=π/3+1/3∠BAC (2) ∠GFE=2π-∠EFD-2∠BFD=2π-π/3-2π/3-2∠BAC/3=π-2/3∠BAC (3) 最后得到:∠FGE=∠FEG=1/2(π-∠GFE)=1/3∠BAC...(4)同理可证:∠FHE=∠HFE=1/3∠BAC (5) 至此可知G,H,E,F,A五点共圓。 因GF=FE=EH,所以∠GAF=∠FAE=∠EAH=1/3∠BAC (6) 即AE和AF恰好是∠BAC的三等分线,所以△DEF是莫利三角形。 AB是圆的一条弦,中点记为S,圆心为O,过S作任意两条弦CD、EF,分别交圆于C、D、E、F,连接CF,ED分别交AB于点M、N,求证:MS=NS。

相关文档
最新文档