图像缩放的双线性内插值算法的原理解析

图像缩放的双线性内插值算法的原理解析
图像缩放的双线性内插值算法的原理解析

图像缩放的双线性内插值算法的原理解析

图像的缩放很好理解,就是图像的放大和缩小。传统的绘画工具中,有一种叫做“放大尺”的绘画工具,画家常用它来放大图画。当然,在计算机上,我们不再需要用放大尺去放大或缩小图像了,把这个工作交给程序来完成就可以了。下面就来讲讲计算机怎么来放大缩小图象;在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。

越是简单的模型越适合用来举例子,我们就举个简单的图像:3X3 的256级灰度图,也就是高为3个象素,宽也是3个象素的图像,每个象素的取值可以是0-255,代表该像素的亮度,255代表最亮,也就是白色,0代表最暗,即黑色。假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source):

234 38 22

67 44 12

89 65 63

这个矩阵中,元素坐标(x,y)是这样确定的,x从左到右,从0开始,y从上到下,也是从零开始,这是图象处理中最常用的坐标系,就是这样一个坐标:

---------------------->X

|

|

|

|

|

∨Y

如果想把这副图放大为4X4大小的图像,那么该怎么做呢?那么第一步肯定想到的是先把4X4的矩阵先画出来再说,好了矩阵画出来了,如下所示,当然,矩阵的每个像素都是未知数,等待着我们去填充(这个将要被填充的图的叫做目标图,Destination):

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

然后要往这个空的矩阵里面填值了,要填的值从哪里来来呢?是从源图中来,好,先填写目标图最左上角的象素,坐标为(0,0),那么该坐标对应源图中的坐标可以由如下公式得出:

srcX=dstX* (srcWidth/dstWidth) , srcY = dstY * (srcHeight/dstHeight)

好了,套用公式,就可以找到对应的原图的坐标了

(0*(3/4),0*(3/4))=>(0*0.75,0*0.75)=>(0,0)

,找到了源图的对应坐标,就可以把源图中坐标为(0,0)处的234象素值填进去目标图的(0,0)这个位置了。

接下来,如法炮制,寻找目标图中坐标为(1,0)的象素对应源图中的坐标,套用公式: (1*0.75,0*0.75)=>(0.75,0)

结果发现,得到的坐标里面竟然有小数,这可怎么办?计算机里的图像可是数字图像,象素就是最小单位了,象素的坐标都是整数,从来没有小数坐标。这时候采用的一种策略就是采用四舍五入的方法(也可以采用直接舍掉小数位的方法),把非整数坐标转换成整数,好,那么按照四舍五入的方法就得到坐标(1,0),完整的运算过程就是这样的:

(1*0.75,0*0.75)=>(0.75,0)=>(1,0)

那么就可以再填一个象素到目标矩阵中了,同样是把源图中坐标为(1,0)处的像素值38填入目标图中的坐标。

依次填完每个象素,一幅放大后的图像就诞生了,像素矩阵如下所示:

234 38 22 22

67 44 12 12

89 65 63 63

89 65 63 63

这种放大图像的方法叫做最临近插值算法,这是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真,比如,当由目标图的坐标反推得到的源图的的坐标是一个浮点数的时候,采用了四舍五入的方法,直接采用了和这个浮点数最接近的象素的值,这种方法是很不科学的,当推得坐标值为0.75的时候,不应该就简单的取为1,既然是0.75,比1要小0.25 ,比0要大0.75 ,那么目标象素值其实应该根据这个源图中虚拟的点四周的四个真实的点来按照一定的规律计算出来的,这样才能达到更好的缩放效果。双线型内插值算法就是一种比较好的图像缩放算法,它充分的利用了源图中虚拟点四周的四个真实存在的像素值来共同决定目标图中的一个像素值,因此缩放效果比简单的最邻近插值要好很多。

双线性内插值算法描述如下:

对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v) (其中i、j均为浮点坐标的整数部分,u、v为浮点坐标的小数部分,是取值[0,1)区间的浮点数),则这个像素得值f(i+u,j+v) 可由原图像中坐标为(i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:

f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) +

uvf(i+1,j+1) 公式1

其中f(i,j)表示源图像(i,j)处的的像素值,以此类推。

比如,象刚才的例子,现在假如目标图的象素坐标为(1,1),那么反推得到的对应于源图的坐标是(0.75 , 0.75), 这其实只是一个概念上的虚拟象素,实际在源图中并不存在这样一个象素,那么目标图的象素(1,1)的取值不能够由这个虚拟象素来决定,而只能由源图的这四个象素共同决定:(0,0)(0,1)(1,0)(1,1),而由于(0.75,0.75)离(1,1)要更近一些,那么(1,1)所起的决定作用更大一些,这从公式1中的系数uv=0.75×0.75就可以体现出来,而(0.75,0.75)离(0,0)最远,所以(0,0)所起的决定作用就要小一些,公式中系数为(1-u)(1-v)=0.25×0.25也体现出了这一特点;

最邻近插值和双向性内插值缩放图片的效果对比:

原始图片

最邻近插值放大图片

双线型内插值放大图片

插值算法对于缩放比例较小的情况是完全可以接受的,令人信服的。一般的,缩小0.5倍以上或放大3.0倍以下,对任何图像都是可以接受的。

最邻近插值(近邻取样法):

最临近插值的的思想很简单。对于通过反向变换得到的的一个浮点坐标,对其进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目的像素的像素值,也就是说,取浮点坐标最邻近的左上角点(对于DIB是右上角,因为它的扫描行是逆序存储的)对应的像素值。可见,最邻近插值简单且直观,但得到的图像质量不高

双线性内插值:

对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v),其中i、j均为非负整数,u、v为[0,1)区间的浮点数,则这个像素得值f(i+u,j+v) 可由原图像中坐标为(i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:

f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)

其中f(i,j)表示源图像(i,j)处的的像素值,以此类推

这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使图像轮廓在一定程度上变得模糊

三次卷积法能够克服以上两种算法的不足,计算精度高,但计算亮大,他考虑一个浮点坐标(i+u,j+v)周围的16个邻点,目的像素值f(i+u,j+v)可由如下插值公式得到:

f(i+u,j+v) = [A] * [B] * [C]

[A]=[ S(u + 1)S(u + 0)S(u - 1)S(u - 2) ]

┏f(i-1, j-1)f(i-1, j+0)f(i-1, j+1)f(i-1, j+2) ┓

[B]=┃f(i+0, j-1)f(i+0, j+0)f(i+0, j+1)f(i+0, j+2) ┃

┃f(i+1, j-1)f(i+1, j+0)f(i+1, j+1)f(i+1, j+2) ┃

┗f(i+2, j-1)f(i+2, j+0)f(i+2, j+1)f(i+2, j+2) ┛

┏S(v + 1) ┓

[C]=┃S(v + 0) ┃

┃S(v - 1) ┃

┗S(v - 2) ┛

┏1-2*Abs(x)^2+Abs(x)^3, 0<=Abs(x)<1

S(x)={4-8*Abs(x)+5*Abs(x)^2-Abs(x)^3, 1<=Abs(x)<2

┗0, Abs(x)>=2

S(x)是对Sin(x*Pi)/x 的逼近(Pi是圆周率——π)

最邻近插值(近邻取样法)、双线性内插值、三次卷积法等插值算法对于旋转变换、错切变换、一般线性变换和非线性变换都适用。

数字图像处理算法汇总

形态学运算:基本思想是具用一定结构形状的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的。 腐蚀运算:将结构元素中心遍历整个图像,当图像完全包含结构元素时的中心点的轨迹即为腐蚀后的图像,图像变细。腐蚀运算可用于滤波,选择适当大小和形状的结构元素,可以滤除掉所有不能完全包含结构元素的噪声点。当然利用腐蚀滤除噪声有一个缺点,即在去除噪声的同时,对图像中前景物体形状也会有影响,但当我们只关心物体的位置或者个数时,则影响不大。 膨胀运算:将结构元素中心遍历整个图像边缘,中心点的轨迹即为腐蚀后的图像,图像整体变粗。通常用于将图像原本断裂开来的同一物体桥接起来,对图像进行二值化之后,很容易是一个连通的物体断裂为两个部分,而这会给后续的图像分析造成干扰,此时就可借助膨胀桥接断裂的缝隙。 开运算:先腐蚀后膨胀,可以使图像的轮廓变得光滑,还能使狭窄的连接断开和消除细毛刺;但与腐蚀运算不同的是,图像大的轮廓并没有发生整体的收缩,物体位置也没有发生任何变化。可以去除比结构元素更小的明亮细节,同时保持所有灰度级和较大亮区特性相对不变,可用于补偿不均匀的背景亮度。与腐蚀运算相比,开运算在过滤噪声的同时,并没有对物体的形状轮廓造成明显的影响,但是如果我们只关心物体的位置或者个数时,物体形状的改变不会给我们带来困扰,此时腐蚀滤波具有处理速度上的优势。 闭运算:先膨胀后腐蚀,可以去除比结构元素更小的暗色细节。开闭运算经常组合起来平滑图像并去除噪声。可使轮廓变的平滑,它通常能弥合狭窄的间断,填补小的孔洞。腐蚀运算刚好和开运算相反,膨胀运算刚好和闭运算相反,开闭运算也是对偶的,然而与腐蚀、膨胀不同的是,对于某图像多次应用开或闭运算的效果相同。 击中击不中运算:先由结构元素腐蚀原图像,再将结构元素取反去腐蚀原图像的取反图,最后将两幅处理后的图像取交。主要用于图像中某些特定形状的精确定位。 顶帽变换:原图像减去开运算以后的图像。当图像的背景颜色不均匀时,使用阈值二值化会造成目标轮廓的边缘缺失,此时可用开运算(结构元素小于目标轮廓)对整个图像背景进行合理估计,再用原图像减去开运算以后的图像就会是整个图像的灰度均匀,二值化后的图像不会有缺失。 Sobel算子: Prewitt算子: LOG算子: Canny算子:力图在抗噪声干扰和精确定位之间尊求折中方案,主要步骤如下所示: 1、用高斯滤波器平滑图像; 2、用一阶偏导的有限差分来计算梯度的幅值和方向; 3、对梯度幅值进行非极大值抑制; 4、用双阈值算法检测和连接边缘。 Hough变换: 边缘检测:

实验5 双线性插值

实验五图像的空间变换 一、实验目的 1、学习图像空间变换,并通过实验体会空间变换的效果,对其作出分析。 2、掌握利用最邻近插值和双线性插值算法(灰度插值)实现图像的缩放。 3、掌握MATLAB编程环境中基本的图像处理函数。 二、实验要求 1.读入图像,对其利用最邻近插值和双线性插值法进行缩放变换,要求先使用IPT函数进行变换,然后自己编写函数实现; 2.对比上述得到的结果。 三、实验原理 图像的空间变换,也称几何变换或几何运算,包括图像的平移、旋转、镜像变换、转置、缩放等。几何运算可改变图像中各物体之间的空间关系,这种运算可以看成是将各物体在图像内移动。 空间变换可如下表示:设(u,v)为源图像上的点,(x,y)为目标图像上的点,则空间变换就是将源图像上(u,v)处的像素值与目标图像上(x,y)处的像素值对应起来,并具有以下关系: x=X(u,v),y=Y(u,v) (即由(u,v)计算对应(x,y))(1.1) 或u=U(x,y),v=V(x,y) (即由(x,y)计算对应(u,v))(1.2) 其中X(u,v)、Y(u,v)、U(x,y)、V(x,y)均为变换。由(1.1)对应的变换称作向前映射法也叫像素移交法,而由(1.2)对应的变换称作向后映射法也叫像素填充法,向后映射法是向前映射法的逆。 最简单的插值算法是最邻近插值,也称为零阶插值。最邻近插值算法简单,在许多情况

下都能得到令人满意的结果,但是当图像中包含像素之间灰度级有变化的细微结构时,最邻近算法会在图像中产生人为加工的痕迹。双线性插值算法计算量比零阶插值大,但缩放后图像质量高,不会出现像素值不连续的的情况,这样就可以获得一个令人满意的结果。最邻近点插值取插值点的4个邻点中距离最近的邻点灰度值作为该点的灰度值。设插值点(i,j)到周边4个邻点fk(i,j)(k =1,2,3,4)的距离为dk(k =1,2,3,4),则:g(i,j)=fk(i,j),dl =min{d1,d2,d3,d4},l=1,2,3,4 。 双线性插值是利用了需要处理的原始图像像素点周围的四个像素点的相关性,通过双线插值算法计算得出的。对于一个目的坐标,通过后映射法得到其在原始图像的对应的浮点坐标(i+u,j+v),其中i,j均为非负整数,u,v为[0,l]区间的浮点数,则这个像素的值f(i+u,j+v)可由原图像中坐标为(i,j)、(i+l,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:f(i+u,j+v)=(1-u)×(1-v)×f(i,j)+(1-u)×v×f(i,j+1)+u×(1-v)×f(i+l,j)+u×v×f(i+l,j+1),其中f(i,j)表示源图像(i,j)处的的像素值,以此类推,这就是双线性内插值法。 如下图所示,已知(0,0)、(0,1)、(1,0)、(1,1)四点的的灰度,可以由相邻像素的灰度值f(0,0)和f(1,0)在X方向上线性插值求出(x,0)的灰度f(x,0),由另外两个相邻像素f(0,1)和f(1,1)在X方向上线性插值可求出(x,1)的灰度f(x,1),最后由f(x,0),f(x,1)在Y 方向上进行线性插值就可以得到(x,y)的灰度f(x,y)。 四、实验代码

matlab旋转+双线性插值

自己写的Matlab旋转+双线性插值图像函数效果图: 源码: clear all; I = imread('original.jpg');

[Height,Width,RGB] = size(I); II = I;%当角度为0时直接输出 %本程序是以左上角为坐标原点 %angle_j是旋转角度,正值是按顺时针旋转,负值时按逆时针旋转 angle_j = 181; %angle是弧度 angle = 2*pi*angle_j/360; %将angle转成正值 while(angle < 0) angle = 2 * pi + angle; end %约束在0-2π内 while(angle > 2 * pi) angle = angle - 2 * pi; end %tag是判断下面的while循环有没有执行过 tag = 0; while(angle > 0) %超过90度的旋转,都先旋转90度,直到角度在0°-90°之间 %原理是旋转90度整数倍时,信息是不丢失的 if angle >= pi/2 a = pi/2; angle = angle - pi/2; elseif0 < angle < pi/2 a = angle; angle = 0; end if tag == 0 tag = 1; else I = II; [Height,Width,RGB] = size(I);%在旋转后的图像上继续旋转,从而实现大于90° 的旋转 end %正向变换用 sina = sin(a); cosa = cos(a); %逆向变换用_m == _minus sina_m = sin(-a); cosa_m = cos(-a); %旋转后图像的长度和宽度 II_height = round(sina * Width + cosa * Height); II_width = round(sina * Height + cosa * Width); II = ones(II_height,II_width,3); %先转成unit8。或者下面赋值0-1规划一下。否则imshow全是白色。 II = im2uint8(II); %%%%%%%%%%%%%%%%%%%%正向映射%%%%%%%%%%%%%%%%%%%%%%%%

视觉检测原理介绍

技术细节 本项目应用了嵌入式中央控制及工业级图像高速传输控制技术,基于CCD/CMOS与DSP/FPGA的图像识别与处理技术,成功建立了光电检测系统。应用模糊控制的精选参数自整定技术,使系统具有对精确检测的自适应调整,实现产品的自动分选功能。 图1 控制系统流程图 光电检测系统主要通过检测被检物的一些特征参数(灰度分布,RGB分值等),从而将缺陷信息从物体中准确地识别出来,通过后续的系统进行下一步操作,主要分为以下几部分 CCD/CMOS图像采集部分 系统图像数据采集处理板中光信号检测元件CCD/CMOS采用进口的适合于高精度检测的动态分析单路输出型、保证实际数据输出速率为320MB/s的面阵CCD/CMOS。像素分别为4000*3000和1600*1200,帧率达到10FPS。使用CCD/CMOS 作为输入图像传感器,从而实现了图像信息从空间域到时间域的变换。为了保证所需的检测精度,需要确定合理的分辨率。根据被检测产品的大小,初步确定系统设计分辨率为像素为0.2mm。将CCD/CMOS接收的光强信号转换成电压幅值,再经过A/D转换后由DSP/ FPGA芯片进行信号采集,即视频信号的量化处理过程,图像采集处理过程如图所示:

图2 图像采集处理过程 数据处理部分 在自动检测中,是利用基于分割的图像匹配算法来进行图像的配对为基础的。图像分割的任务是将图像分解成互不相交的一些区域,每一个区域都满足特定区域的一致性,且是连通的,不同的区域有某种显著的差异性。分割后根据每个区域的特征来进行图像匹配,基于特征的匹配方法一般分为四个步骤:特征检测、建立特征描述、特征匹配、利用匹配的“特征对”求取图像配准模型参数。 算法基本步骤如下: 1)利用图像的色彩、灰度、边缘、纹理等信息对异源图像分别进行分割,提取区域特征; 2)进行搜索匹配,在每一匹配位置将实时图与基准图的分割结果进行融合,得到综合分割结果; 3)利用分割相似度描述或最小新增边缘准则找出正确匹配位置。 设实时图像分割为m个区域,用符号{A1,A2,… Am}表示,其异源基准图像分割为n个区域,用符号{B1,B2,…Bn}表示。分割结果融合方法如下: 在每一个匹配位置,即假设的图像点对应关系成立时,图像点既位于实时图中,又位于其异源基准图像中,则融合后区域点的标识记为:(A1B1,A1B2,…,A2B1,A2B2,…)。标识AiBj表示该点在实时图中位于区域i,在基准图中位于区域j。算法匹配过程如下图所示:

双线性内插值(精)

三种插值算法 最近邻插值法的 双线性内插值: 对于图像中一个目的像素,设置坐标通过反向变换得到的浮点坐标为 (i+u,j+v,其中i、j均为非负整数,u、v为[0,1区间的浮点数,则这个像素得值 f(i+u,j+v可由原图像中坐标为(i,j、(i+1,j、(i,j+1、(i+1,j+1所对应的周围四个像素的值决定,即: f(i+u,j+v = (1-u(1-vf(i,j + (1-uvf(i,j+1 + u(1-vf(i+1,j + uvf(i+1,j+1 其中f(i,j表示源图像(i,j处的的像素值,以此类推 这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会 出现像素值不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使图像轮廓在一定程度上变得模糊 插值的计算方法有很多,比较常用的有最近像素插值算法、双线性插值算法、双三次插值算法和分形算法的四种。其中,最近像素插值算法是最简单的一种插值 算法,这种方法是当图片放大时,缺少的像素通过直接使用与之最接近的原有像素的颜色生成,也就是说照搬旁边的像素。如图1所示,当图片扩大时,要增加X点处的像素,由于X点与A、B这两个有效像素中的B点最接近,因此X点会直接照搬B点的像素,从而使到X点生成的效果与B点一样。虽然这种算法简单,因此处理的速度很快,但结果通常会产生明显可见的锯齿,效果往往不佳。 双线性插值算法,是指输出的图像的每个像素都是原图中四个像素运算的结果 , 由于它是从原图四个像素中运算的,因此这种算法很大程度上消除了锯齿现象,而且效果也比较好。双三次插值算法是双线性插值算法的改进算法,它输出图像的每个像素都

双线性插值

双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。例如已知的红色数据点与待插值得到的绿色点如图1所示: 图1 假如我们想得到未知函数在点的值,假设我们已知函数 在, , , 及四个点的值。首先在 x 方向进行线性插值,得到 然后在 y 方向进行线性插值,得到 这样就得到所要的结果, 如果选择一个坐标系统使得的四个已知点坐标分别为(0, 0)、(0, 1)、(1, 0) 和(1, 1),那么插值公式就可以化简为

或者用矩阵运算表示为 这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值 不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使 图像轮廓在一定程度上变得模糊。 双线性插值法的MATLAB源代码为: I=imread('lena.jpg'); %读入原图像 [nrows,ncols,z]=size(I); %读取图像矩阵大小,方便后面操作 K = str2double(inputdlg('please input scale factor (must between 0.2 - 5.0)', 'INPUT scale factor', 1, {'0.5'})); width = K * nrows; height = K * ncols; J = uint8(zeros(width,height,z)); widthScale = nrows/width; heightScale = ncols/height; for x = 5:width - 5 % 5是为了防止矩阵超出边界溢出 for y = 5:height - 5 for z=1:3 xx = x * widthScale; % xx, yy为原坐标,x,y为新坐标 yy = y * heightScale; if((xx/double(uint16(xx))==1.0)&&(yy/double(uint16(yy))==1.0)) J(x,y,z) = I(int16(xx),int16(yy),z); %若xx,yy为整数,直接赋值 else a = double(uint16(xx)); b = double(uint16(yy)); x11 = double(I(a,b,z)); % x11 <- I(a,b) x12 = double(I(a,b+1,z)); % x12 <- I(a,b+1) x21 = double(I(a+1,b,z)); % x21 <- I(a+1,b) x22 = double(I(a+1,b+1,z));% x22 <- I(a+1,b+1) J(x,y,z) = uint8((b+1-yy)*((xx-a)*x21+(a+1-xx)*x11)+(yy-b)* ((xx-a)*x22+(a+1-xx)*x12)); %用双线性插值计算公式计算 end end end end

数字图像处理计算题复习精华版

30452 计算题复习
一、 直方图均衡化(P68)
对已知图像进行直方图均衡化修正。
例:表 1 为已知一幅总像素为 n=64×64 的 8bit 数字图像(即灰度级数为 8),各灰度级(出现的频率)分布
列于表中。要求将此幅图像进行均衡化修正(变换),并画出修正(变换)前后的直方图。
表1
原图像灰
度级 rk
r0=0 r1=1 r2=2 r3=3 r4=4 r5=5 r6=6 r7=7
原各灰度级 原分布概率
像素个数 nk pr(rk)
790
0.19
1023
0.25
850
0.21
656
0.16
329
0.08
245
0.06
122
0.03
81
0.02
解:对已知图像均衡化过程见下表:
原图像灰
度级 rk
原各灰度级 原分布概率 累积分布函
像素个数 nk
pr(rk)
数 sk 计
取整扩展
sk 并
r0=0
790
0.19
0.19
1
r1=1
1023
0.25
0.44
3
r2=2
850
0.21
0.65
5
r3=3
656
0.16
0.81
6
r4=4
329
0.08
0.89
6
r5=5
245
0.06
0.95
7
r6=6
122
0.03
0.98
7
r7=7
81
0.02
1.00
7
画出直方图如下:
确定映射 对应关系
rk→sk
0→1 1→3 2→5 3→6 4→6 5→7 6→7 7→7
新图像灰
度级 sk
1 3 5
新图像各灰 度级像素个
数 nsk
790 1023 850
新图像分 布概率
ps(sk)
0.19 0.25 0.21
6
985
0.24
7
448
0.11
1

人脸识别主要算法原理

人脸识别主要算法原理 主流的技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA)

最邻近插值和双线性插值算法的比较

最邻近插值和双线性插值算法的比较 摘要:图像缩放是数字图像处理的一个基本内容,为了更好地对数字图像细节进行描述,本文简单介绍了图像处理中的空间变换、最邻近插值算法,重点分析了双线性插值算法,并通过MATLAB仿真进行图像的缩放,比较实验结果,从而验证双线性插值算法效果较好。 关键词:图像缩放;空间变换;最邻近插值;双线性插值; 0引言 数字图像处理的对象因其涉及到社会的各个领域,倍受到越来越多的关注,而图像缩放作为数字图像处理中的基本操作尤为重要,在社会的很多领域都需要对图像进行放大和缩小。本文主要比较了空间变换、最邻近插值算法和双线性插值算法。 1图像处理中的空间变换 图像的空间变换[1],也称几何变换或几何运算,包括图像的平移、旋转、镜像变换、转置、缩放等。几何运算可改变图像中各物体之间的空间关系,这种运算可以跛看成是将各物体在图像内移动。 空间变换可如下表示:设(u,v)为源图像上的点,(x,y)为目标图像上的点,则空间变换就是将源图像上(u,v)处的颜色值与目标图像上(X,y)处的颜色对应起来 (u,v) (x,y) 并具有以下关系: x=X(u,v),y=Y(u,v) (即由(u,v)计算对应(x,y))(1) 或 u=U(x,y),v=V(x,y) (即由(x,y)计算对应(u,v))(2) 其中X(u,v)、Y(u,v)、U(x,y)、V(x,y)均为变换。由(1.1)对应的变换称作向前映射法也叫像素移交法,而由(1.2)对应的变换称作向后映射法也叫像素填充法,向后映射法是向前映射法的逆[1,4]。 对于向前映射法来说,由于许多输入像素可能映射到输出图像的边界之外,故向前映射法有些浪费,而且每个输出像素的灰度值可能要由许多输入像素的灰

人脸识别主要算法原理

人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧 面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是: 设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的 基础。 3. 特征脸方法(Eigenface或PCA)

图像处理之三种常见双立方插值算法

图像处理之三种常见双立方插值算法 图像处理之三种常见双立方插值算法双立方插值计算 涉及到16个像素点,其中(i’, j’)表示待计算像素点在源图像 中的包含小数部分的像素坐标,dx表示X方向的小数坐标,dy表示Y方向的小数坐标。具体可以看下图: 根据上述图示与双立方插值的数学表达式可以看出,双立方插值本质上图像16个像素点权重卷积之和作为新的像素值。其中R(x)表示插值表达式,可以根据需要选择的表达式不同。常见有基于三角取值、Bell分布表达、B样条曲线表达式。1. 基于三角形采样数学公式为 最简单的线性分布,代码实现如下:[java] view plain copy private double triangleInterpolation( double f ) { f = f / 2.0; if( f < 0.0 ) { return ( f + 1.0 ); } else { return ( 1.0 - f ); } } 2.基于Bell分布采样的数学公式如下: Bell分布采样数学公式基于三次卷积计算实现。代码实现如下:[java] view plain copy private double bellInterpolation( double x ) { double f = ( x / 2.0 ) * 1.5; if( f > -1.5 && f < -0.5 ) { return( 0.5 * Math.pow(f + 1.5, 2.0)); } else if( f > -0.5 && f < 0.5 )

基本图像处理算法的优化分析

基本图像处理算法的优化分析 摘要数字视频图像处理技术已经被广泛地应用到各个领域内,并取得了良好效果。但是就现状来看,以往所应用的基于通用CPU的图像处理系统已经无法完全满足现在所需,还需要在原有基础上来对基本图像处理算法进行优化,以求更好地提高数字图像处理速度。 关键词图像处理;算法优化;GPU 基于处理图像幅度的不断加大,以及像元密集度的逐渐增加,图像处理算法所需要面对的情况更为复杂,传统基于CPU的数字图像处理算法已经无法满足实时性要求。将GPU作为基础,基于其可编程性特点,加强对其的研究,通过其来实现对图像处理算法的优化设计,提高图像处理综合效果。 1 图像处理技术分析 图像为传递信息的重要媒介,同时也是获取信息的重要方式,因此图像处理技术在持续研究以及不断更新,实现对模拟图像处理以及数字图像处理。模拟图像处理即图像明暗程度与空间坐标处于连续状态时,无法通过计算机来对其进行处理,必须要通过光学或者电子手段处理。数字图像处理则是对图像进行简单的采样与量化处理后,通过计算机以及其他实时硬件来处理图像信息。相比来看,模拟图像处理技术具有更强灵活性,但是处理精度较低。相反数字图像处理精度高且具有较强变通能力,逐渐发展成现在主要图像处理技术。基于计算机技术、数字成像技术以及人工智能技术等,现在数字图像处理技术在不断完善,应用也越来与广泛。对于图像处理技术进行分析,可确定其包括图像分割、图像增强、图像压缩、图像复原、运动图像检测以及图像理解等[1]。传统基于CPU的图像处理技术已经无法满足实际应用需求,想要进一步提高图像处理速度以及质量,还需要在原有技术上来进行优化,争取通过高效的图像处理算法来达到最佳效果。 2 基于GPU图像处理算法优化设计 2.1 GPU结构特点 GPU即图形处理器,主要用于图形渲染的设备。相比于CPU倾向程序执行效率,GPU更倾向于大量并行数据计算,将数字图像算法特点与GPU通用计算特点进行有效结合,基于GPU来处理数字图像,可以实现图像处理算法的优化,提高图像处理速度。近年来GPU发展迅速,除了速度与质量方面的优化外,也为更多图像处理技术的发展提供了基础。现今GPU已经兼具流处理、高密集型并行运算等特点,且为GPU处理性能的拓展提高打好了基础。 2.2 GPU数字图像处理算法

双线性插值-matlab实现

双线性插值算法 张俊飞一、算法简介 假设c[a]到c[a+1]之间是线性变化的,那么对于浮点数 x( a <= x < a+1) c(x) = c[a+1]*( x - a) + c[a]*( 1 + a - x); c(x) = c[a] + [ (c[a+1]-c[a])/(b-a)]*( x - a); b = a+1; c(x) = c[a] + [ c[a+1] - c[a]]*( x - a); 把这种插值方式扩展到二维情况:对于一个二维数组c, 我们假设对于任意一个浮点数i,c(a,i)到c(a+1,i)之间是线性变化的,c(i,b)到c(i,b+1)之间也是线性变化的(a,b都是整数) , 那么对于浮点数的坐标(x,y)满足(a <= x < a+1, b <= y < b+1),可以先分别求出c(x,b)和c(x,b+1): c(x,b) = c[a+1][b]*( x - a) + c[a][b]*( 1 + a - x); c(x,b+1) = c[a+1][b+1]*( x - a) + c[a][b+1]*( 1 + a - x); 现在已经知道c(x,b)和c(x,b+1)了,而根据假设c(x,b)到c(x,b+1)也是线性变化的,所以: c(x,y) = c(x,b+1)*( y - b) + c(x,b)*( 1 + b - y) 二、matlab实现 在command窗口输入chahzi('cameraman.tif',2),这里cameraman.tif为灰度图片,得到结果如下: origin image

result image 在command窗口输入chahzi('a.jpg',0.5),这里a.jpg为彩色图片,得到结果为: origin image

(完整word版)人工智能算法在图像处理中的应用

人工智能算法在图像处理中的应用 人工智能算法在图像处理中的应用人工智能算法包括遗传算法、蚁群算法、模拟退火算法和粒子群算法等,在图像边缘检测、图像分割、图像识别、图像匹配、图像分类等领域有广泛应用。本文首先介绍常用人工智能算法的的原理和特点,然后将其在图像处理方面的应用进行综述,最后对应用前景做出展望。【关键词】人工智能算法图像处理人工智能算法是人类受自然界各种事物规律(如人脑神经元、蚂蚁觅食等)的启发,模仿其工作原理求解某些问题的算法。随着计算机技术的发展,人工智能算法在图像处理方面得到广泛应用。当前流行的人工智能算法包括人工神经网络、遗传算法、蚁群算法、模拟退火算法、粒子群算法等。 1 人工神经网络人工神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法数学模型,通过调整内部大量节点之间相互连接的关系,达到处理信息的目的,具有自组织、自学习、自推理和自适应等优点。神经网络可用于图像压缩,将图像输入层和输出层设置较多节点,中间传输层设置较少节点,学习后的网络可以较少的节点表示图像,用于存储和传输环节,节约了存储空间,提高的传输效率,最后在输出层将图像还原。学者Blanz和Gish 提出一个三层的前馈神经网络图像分割模型,Babaguchi提

出多层BP网络获取图像的分割阈值,Ghosh使用神经网络对大噪声的图像进行分割。J.Cao使用PCA神经网络提取图像特征来对图像进行分类,B.Lerner用神经网络对人类染色体图像进行分类。神经网络还可与小波变换相结合(MCNN)对手写体数字进行多分辨率识别。 2 遗传算法遗传算法(Genetic Algorithm,GA)是模拟生物进化论的自然选择和遗传学进化过程的计算模型,是一种通过模拟自然进化过程随机搜索最优解的方法,体现了适者生存、优胜劣汰的进化原则,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定,具有并行性和较强的全局寻优能力。遗传算法把问题的解表示成染色体,求解步骤如下: (1)编码:定义问题的解空间到染色体编码空间的映射,一个候选解(个体)用一串符号表示。(2)初始化种群:在一定的限制条件下初始化种群,该种群是解空间的一个子空间。(3)设计适应度函数:将种群中的每个染色体解码成适于适应度函数的形式,计算其数值。(4)选择:根据适应度大小选择优秀个体繁殖下一代,适应度越高,选择概率越大。(5)交叉:随机选择两个用于繁殖下一代的个体的相同位置,在选中的位置实行交换。(6)变异:对某个串中的基因按突变概率进行翻转。(7)从步骤4开始重复进行,直到满足某一性能指标或规定的遗传代数。GA在图像分割领域应用最为成熟,只要有两种应用,一是在多种分割结果中搜索最佳分

人脸识别几种解决方案的对比_人脸识别技术原理介绍

人脸识别几种解决方案的对比_人脸识别技术原理介绍 人脸识别概要人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别特点非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有强制性; 非接触性:用户不需要和设备直接接触就能获取人脸图像; 并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别; 除此之外,还符合视觉特性:以貌识人的特性,以及操作简单、结果直观、隐蔽性好等特点。 人脸识别技术原理分析人脸识别主要分为人脸检测(face detecTIon)、特征提取(feature extracTIon)和人脸识别(face recogniTIon)三个过程。 人脸检测:人脸检测是指从输入图像中检测并提取人脸图像,通常采用haar特征和Adaboost算法训练级联分类器对图像中的每一块进行分类。如果某一矩形区域通过了级联分类器,则被判别为人脸图像。 特征提取:特征提取是指通过一些数字来表征人脸信息,这些数字就是我们要提取的特征。常见的人脸特征分为两类,一类是几何特征,另一类是表征特征。几何特征是指眼睛、鼻子和嘴等面部特征之间的几何关系,如距离、面积和角度等。由于算法利用了一些直观的特征,计算量小。 不过,由于其所需的特征点不能精确选择,限制了它的应用范围。另外,当光照变化、人脸有外物遮挡、面部表情变化时,特征变化较大。所以说,这类算法只适合于人脸图像的粗略识别,无法在实际中应用。 表征特征利用人脸图像的灰度信息,通过一些算法提取全局或局部特征。其中比较常用的特征提取算法是LBP算法。LBP方法首先将图像分成若干区域,在每个区域的像素640x960邻域中用中心值作阈值化,将结果看成是二进制数。

图像缩放的双线性内插值算法的原理解析

图像缩放的双线性内插值算法的原理解析 图像的缩放很好理解,就是图像的放大和缩小。传统的绘画工具中,有一种叫做“放大尺”的绘画工具,画家常用它来放大图画。当然,在计算机上,我们不再需要用放大尺去放大或缩小图像了,把这个工作交给程序来完成就可以了。下面就来讲讲计算机怎么来放大缩小图象;在本文中,我们所说的图像都是指点阵图,也就是用一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列。 越是简单的模型越适合用来举例子,我们就举个简单的图像:3X3 的256级灰度图,也就是高为3个象素,宽也是3个象素的图像,每个象素的取值可以是0-255,代表该像素的亮度,255代表最亮,也就是白色,0代表最暗,即黑色。假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source): 234 38 22 67 44 12 89 65 63 这个矩阵中,元素坐标(x,y)是这样确定的,x从左到右,从0开始,y从上到下,也是从零开始,这是图象处理中最常用的坐标系,就是这样一个坐标: ---------------------->X | | | | | ∨Y 如果想把这副图放大为4X4大小的图像,那么该怎么做呢?那么第一步肯定想到的是先把4X4的矩阵先画出来再说,好了矩阵画出来了,如下所示,当然,矩阵的每个像素都是未知数,等待着我们去填充(这个将要被填充的图的叫做目标图,Destination): ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 然后要往这个空的矩阵里面填值了,要填的值从哪里来来呢?是从源图中来,好,先填写目标图最左上角的象素,坐标为(0,0),那么该坐标对应源图中的坐标可以由如下公式得出:

基本数字(精选)图像处理算法的matlab实现

基本数字图像处理算法的matlab实现 1.数字图像处理的简单介绍 所谓数字图像就是把传统图像的画面分割成为像素的小的离散点,各像素的灰度值也是用离散值来表示的。 数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 2.图像的显示与运算 2.1图像的显示 Matlab显示语句 imshow(I,[lowhigh])%图像正常显示 I为要显示的图像矩阵。,[lowhigh]为指定显示灰度图像的灰度范围。高于high的像素被显示成白色;低于low的像素被显示成黑色;介于high和low之间的像素被按比例拉伸后显示为各种等级的灰色。 subplot(m,n,p) 打开一个有m行n列图像位置的窗口,并将焦点位于第p个位置上。 2.2图像的运算 灰度化将彩色图像转化成为灰度图像的过程成为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。图像的灰度化处理可用两种方法来实现。

第一种方法使求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。 第二种方法是根据YUV的颜色空间中,Y的分量的物理意义是点的亮度,由该值反映亮度等级,根据RGB和YUV颜色空间的变化关系可建立亮度Y与R、G、B三个颜色分量的对应:Y=0.3R+0.59G+0.11B,以这个亮度值表达图像的灰度值。 灰度是灰度级的函数,它表示图象中具有每种灰度级的象素的个数,反映图象中每种灰度出现的频率。 图像增强的目标是改进图片的质量,例如增加对比度,去掉模糊和噪声,修正几何畸变等;图像复原是在假定已知模糊或噪声的模型时,试图估计原图像的一种技术。 Matlab图像格式转换语句 rgb2gray(I) %从RGB图创建灰度图 imhist(I) %画灰度直方图 图像的线性变换 D B=f(D A)=f A*D A+f B Matlab源代码: I1=imread('F:\图片2.jpg'); subplot(2,2,1);imshow(I1);title('原图'); I2=rgb2gray(I1); %灰度化图像 subplot(2,2,2);imshow(I2);title('灰度化后图'); [M,N]=size(I2); subplot(2,2,3) [counts,x]=imhist(I2,60); %画灰度直方图 counts=counts/M/N; stem(x,counts);title('灰度直方图'); g=zeros(M,N);%图像增强

SIFT算法实现原理步骤

SIFT 算法实现步骤 :1 关键点检测、2 关键点描述、3 关键点匹配、4 消除错配点 1关键点检测 1.1 建立尺度空间 根据文献《Scale-space theory: A basic tool for analysing structures at different scales 》我们可知,高斯核是唯一可以产生多尺度空间的核,一个图像的尺度空间,L (x,y,σ) ,定义为原始图像I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ) 卷积运算。 高斯函数 高斯金字塔 高斯金子塔的构建过程可分为两步: (1)对图像做高斯平滑; (2)对图像做降采样。 为了让尺度体现其连续性,在简单 下采样的基础上加上了高斯滤波。 一幅图像可以产生几组(octave ) 图像,一组图像包括几层 (interval )图像。 高斯图像金字塔共o 组、s 层, 则有: σ——尺度空间坐标;s ——sub-level 层坐标;σ0——初始尺度;S ——每组层数(一般为3~5)。 当图像通过相机拍摄时,相机的镜头已经对图像进行了一次初始的模糊,所以根据高斯模糊的性质: -第0层尺度 --被相机镜头模糊后的尺度 高斯金字塔的组数: M 、N 分别为图像的行数和列数 高斯金字塔的组内尺度与组间尺度: 组内尺度是指同一组(octave )内的尺度关系,组内相邻层尺度化简为: 组间尺度是指不同组直接的尺度关系,相邻组的尺度可化为: 最后可将组内和组间尺度归为: ()22221 ()(),,exp 22i i i i x x y y G x y σπσσ??-+-=- ? ??()()(),,,,*,L x y G x y I x y σσ=Octave 1 Octave 2 Octave 3 Octave 4 Octave 5σ2σ 4σ8 σ 0()2s S s σσ= g 0σ=init σpre σ()() 2log min ,3O M N ??=-?? 1 12S s s σσ+=g 1()2s S S o o s σσ++=g 222s S s S S o o σσ+=g g 121 2(,,,) i n k k k σσσσ--L 1 2 S k =

常用算法简介

机器视觉中常用图像处理算法 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。机器视觉是使用计算机(也许是可移动式的)来模拟人的视觉,因此模拟才是计算机视觉领域的最终目标,而真正意义上的图像处理侧重在“处理”图像:如增强,还原,去噪,分割,等等,如常见的Photoshop就是功能强大的图像处理软件。大部分的机器视觉,都包含了图像处理的过程,只有图像处理过后,才能找到图像中需要的特征,从而更进一步的执行其它的指令动作。在我们实际工程应用中研究的一些图像算法,实际上是属于机器视觉,而不是纯粹的图像处理。总的来说,图像处理技术包括图像压缩,增强和复原,匹配、描述和识别3个部分,在实际工程中,这几块不是独立的,往往是环环相扣、相互辅助来达到实际效果。接下来简单介绍一下机器视觉中常用的图像处理算法。 一、滤波 滤波一般在图像预处理阶段中使用,改善图像信息,便于后续处理,当然,这不是绝对的,在图像算法过程中如果有需要,随时可以进行滤波操作。比较常用的滤波方法有以下三种: 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(,) x y,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(,) g x y,即 x y,作为处理后图像在该点上的灰度值(,) 波方法可以平滑图像,速度快,算法简单。但是无法去掉噪声,只能减弱噪声。 2、中值滤波

相关文档
最新文档