锂离子电池的使用寿命

锂离子电池的使用寿命
锂离子电池的使用寿命

锂离子电池的使用

这部分是本文的重点,我们分三点来谈。

1、如何为新电池充电

在使用锂电池中应注意的是,电池放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。但锂电池很容易激活,只要经过3—5次正常的充放

电循环就可激活电池,恢复正常容量。由于锂电池本身的特性,决定了它几乎没有记忆效应。因此用户手机中的新锂电池在激活过程中,是不需要特别的方法和设备的。不仅理论上是如此,从我自己的实践来看,从一开始就采用标准方法充电这种“自然激活”方式是最好的。

对于锂电池的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便激活电池。这种“前三次充电要充12小时以上”的说法,明显是从镍电池(如镍镉和镍氢)延续下来的说法。所以这种说法,可以说一开始就是误传。锂电池和镍电池的充放电特性有非常大的区别,而且可以非常明确的告诉大家,我所查阅过的所有严肃的正式技术资料都强调过充和过放电会对锂电池、特别是液体锂离子电池造成巨大的伤害。因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。

此外,锂电池的手机或充电器在电池充满后都会自动停充,并不存在镍电充电器所谓的持续10几小时的“涓流”充电。也就是说,如果你的锂电池在充满后,放在充电器上也是白充。而我们谁都无法保证电池的充放电保护电路的特性永不变化和质量的万无一失,所以你的电池将长期处在危险的边缘徘徊。这也是我们反对长充电的另一个理由。

此外在对某些手机上,充电超过一定的时间后,如果不去取下充电器,这时系统不仅不停止充电,还将开始放电-充电循环。也许这种做法的厂商自有其目的,但显然对电池和手机/充电器的寿命而言是不利的。同时,长充电需要很长的时间,往往需要在夜间进行,而以我国电网的情况看,

许多地方夜间的电压都比较高,而且波动较大。前面已经说过,锂电池是很娇贵的,它比镍电在充放电方面耐波动的能力差得多,于是这又带来附加的危险。

此外,不可忽视的另外一个方面就是锂电池同样也不适合过放电,过放电对锂电池同样也很不利。这就引出下面的问题。

2、正常使用中应该何时开始充电

在我们的论坛上,经常可以见到这种说法,因为充放电的次数是有限的,所以应该将手机电池的电尽可能用光再充电。但是我找到一个关于锂离子电池充放电循环的实验表,关于循环寿命的数据列出如下:

循环寿命(10%DOD): >1000次

循环寿命(100%DOD): >200次

其中DOD是放电深度的英文缩写。从表中可见,可充电次数和放电深度有关,10%DOD时的循环寿命要比100%DOD的要长很多。当然如果折合到实际充电的相对总容量:10%*1000=100,

100%*200=200,后者的完全充放电还是要比较好一些,但前面网友的那个说法要做一些修正:在正常情况下,你应该有保留地按照电池剩余电量用完再充的原则充电,但假如你的电池在你预计第2天不可能坚持整个白天的时候,就应该及时开始充电,当然你如果愿意背着充电器到办公室又当别论。

而你需要充电以应付预计即将到来的会导致通讯繁忙的重要事件的时候,即使在电池尚有很多余电时,那么你也只管提前充电,因为你并没有真正损失“1”次充电循环寿命,也就是“0.x”次而已,而且往往这个x会很小。

电池剩余电量用完再充的原则并不是要你走向极端。和长充电一样流传甚广的一个说法,就是“尽量把手机电池的电量用完,最好用到自动关机”。这种做法其实只是镍电池上的做法,目的是避免记忆效应发生,不幸的是它也在锂电池上流传之今。曾经有人因为手机电池电量过低的警告出

现后,仍然不充电继续使用一直用到自动关机的例子。结果这个例子中的手机在后来的充电及开机中均无反应,不得不送客服检修。这其实就是由于电池因过度放电而导致电压过低,以至于不具备正常的充电和开机条件造成的。

3、对锂电池手机的正确做法

归结起来,我对锂电池手机在使用中的充放电问题最重要的提示是:

1、按照标准的时间和程序充电,即使是前三次也要如此进行;

2、当出现手机电量过低提示时,应该尽量及时开始充电;

3、锂电池的激活并不需要特别的方法,在手机正常使用中锂电池会自然激活。如果你执意要用流传的“前三次12小时长充电激活”方法,实际上也不会有效果。

因此,所有追求12小时超长充电和把锂电池手机用到自动关机的做法,都是错误的。如果你以前是按照错误的说法做的,请你及时改正,也许为时还不晚。

当然,在手机及充电器自身保护和控制电路质量良好的情况下,对锂电池的保护还是有相当保证的。所以对充电规则的理解才是重点,在某些情况下也是可以做出某种让步的。比如你发现手机在你夜晚睡觉前必须充电的话,你也可以在睡前开始充电。问题的关键在于,你应该知道正确的做法是什么,并且不要刻意按照错误的说法去做。

为了便于阅读,小标题列举如下:

1.认识记忆效应

2.电池需要激活吗

3.前三次要充12小时吗

4.充电电池有最佳状态吗

5.真的是充电电流越大,充电越快吗

〓〓〓〓〓〓〓〓〓〓〓

1.认识记忆效应

电池记忆效应是指电池的可逆失效,即电池失效后可重新回复的性能.记忆效应是指电池长时间经受特定的工作循环后,自动保持这一特定的倾向.这个最早定义在镍镉电池,镍镉的袋式电池不存在记忆效应,烧结式电池有记忆效应.而现在的镍金属氢(俗称镍氢)电池不受这个记忆效应定义的约束.

因为现代镍镉电池工艺的改进,上述的记忆效应已经大幅度的降低,而另外一种现象替换了这个定义,就是镍基电池的"晶格化",通常情况,镍镉电池受这两种效应的综合影响,而镍氢电池则只受"晶格化"记忆效应的影响,而且影响较镍镉电池的为小.

在实际应用中,消除记忆效应的方法有严格的规范和一个操作流程.操作不当会适得其反.

对于镍镉电池,正常的维护是定期深放电:平均每使用一个月(或30次循环)进行一次深放电(放电到1.0V/每节,老外称之为exercise),平常使用是尽量用光电池或用到关机等手段可以缓解记忆效应的形成,但这个不是exercise,因为仪器(如手机)是不会用到1.0V/每节才关机的,必须要专门的设备或线路来完成这项工作,幸好许多镍氢电池的充电器都带有这个功能.

对于长期没有进行exercise的镍镉电池,会因为记忆效应的累计,无法用exercise进行容量回复,这时则需要更深的放电(老外称recondition),这是一种用很小的电流长时间对电池放电到0.4V每节的一个过程,需要专业的设备进行.

对于镍氢电池,exercise进行的频率大概每三个月一次即可有效的缓解记忆效应.因为镍氢电池的循环寿命远远低于镍镉电池,几乎用不到recondition这个方法.

▲建议1:每次充电以前对电池放电是没有必要,而且是有害的,因为电池的使用寿命无谓的减短了.

▲建议2:用一个电阻接电池的正负极进行放电是不可取的,电流没法控制,容易过放到0V,甚至导

致串联电池组的电池极性反转.

〓〓〓〓〓〓〓〓〓〓〓

2.电池需要激活吗

回答是电池需要激活,但这不是用户的要做的事.我参观过锂离子电池的生产厂,锂离子电池在出厂以前要经过如下过程:

锂离子电池壳灌输电解液---封口----化成,就是恒压充电,然后放电,如此进行几个循环,使电极充分浸润电解液,充分活化,以容量达到要求为止,这个就是激活过程---分容,就是测试电池的容量选取不同性能(容量)的电池进行归类,划分电池的等级,进行容量匹配等.这样出来的锂离子电池到用户手上已经是激活过的了.我们大家常用的镍镉电池和镍氢电池也是如此化成激活以后才出厂的.其中有些电池的激活过程需要电池处于开口状态,激活以后再封口,这个工序也只可能有电芯生产厂家来完成了.

这里存在一个问题,就是电池厂出厂的电池到用户手上,这个时间有时会很长,短则1个月,长则半年,这个时候,因为电池电极材料会钝化,所以厂家建议初次使用的电池最好进行3~5次完全充放过程,以便消除电极材料的钝化,达到最大容量.

在2001年颁布的三个关于镍氢.镍镉和锂离子电池的国标中,其初始容量的检测均有明确规定,对电池可以进行5次深充深放,当有一次符合规定时,试验即可停止.这很好的解释了我说的这个现象.

★那么称之为"第二次激活"也是可以的,用户初次使用的"新"电池尽量进行几次深充放循环.

●然而据我的测试(针对锂离子电池),存储期在1~3个月之内的锂离子电池, 对它进行深充深放的循环处理,其容量提高现象几乎不存在.(我在专题讨论区有关于电池激活的测试报告)

〓〓〓〓〓〓〓〓〓〓〓

3.前三次要充12小时吗

这个问题是紧扣上面的电池激活问题的,姑且设出厂的电池到用户手上有电极钝化现象,为了激活电池进行深充深放电循环3次.其实这个问题转化为深充是不是就是要充12个小时的问题.那么我的另一片文章"论手机电池的充电时间"已经回答了这个问题.

★★★答案是不需要充12小时.

早期的手机镍氢电池因为需要补充和涓流充电过程,要达到最完美的充饱状态,可能需要5个小时左右,但是也是不需要12个小时的.而锂离子电池的恒流恒压充电特性更是决定了它的深充电时间无需12个小时.

对于锂离子电池有人会问,既然恒压阶段锂离子电池的电流逐渐减小,是不是当电流小到无穷小的时候才是真正的深充.我曾经画出恒压阶段电流减小对时间的曲线,对它进行多次曲线拟合,发现这个曲线可以用1/x的函数方式接近与零电流,实际测试时因为锂离子电池本身存在的自放电现象,这个零电流是永远不可能到达的.

以600mAh的电池为例,设置截至电流为0.01C(即6mA),它的1C充电时间不超过150分钟,那么设置截至电流为0.001C(即0.6mA),它的充电时间可能为10小时---这个因为仪器精度的问题,已经无法精确获得,但是从0.01C到0.001C获的容量经计算仅为1.7mAh,以多用的7个多小时来换取这仅仅的千分之三不到的容量是没有任何实际意义的.

何况,还有其它的充电方式,比如脉冲充电方式使锂离子电池来达到4.2V的限制电压,它根本没有截止最小电流判断阶段,一般150分钟后它就是100%充饱了.许多手机都是用脉冲充电方式的.

有人曾经用手机显示充饱后,再用座充进行充电来确认手机的充饱程度,这个测试方法欠严谨.

首先座充显示绿灯不是检测真正充饱与否的一个依据.

★★检测锂离子电池充饱与否的唯一最终的方法就是测试在不充电(也不放电)状态时的锂离子电池的电压.

所谓恒压阶段电流减小其真正的目的就是逐渐减小在电池内阻上因充电电流而产生的附加电压,

当电流小到0.01C,比如6mA,这个电流乘与电池内阻(一般在200毫欧之内)仅为1mV,可以认为这时的电压就是无电流状态的电池电压.

其次,手机的基准电压不一定等于座充的基准电压,手机认为充饱的电池到了座充上,座充却不认为已经充饱,却继续进行充电.

〓〓〓〓〓〓〓〓〓〓〓

4.充电电池有最佳状态吗

有一种说法就是,充电电池使用得当,会在某一段循环范围出现最佳的状态,就是容量最大.这个要分情况,密封的镍氢电池和镍镉电池,如果使用得当(比如定期的维护,防止记忆效应的产生和累计),一般会在100~200个循环处达到其容量的最大值,比如出厂容量为1000mAh的镍氢电池用了120次循环后,其容量有可能达到1100mAh.几乎所有的日本镍氢电池生产商的技术规格书中描述镍基电池的循环特性的图上我都能看到这样的描述.

★镍基电池有最佳状态,一般在100~200循环次数之间达到其最大容量

对于液态锂离子电池,却根本不存在这样一个循环容量的驼峰现象,从锂离子电池出厂到最终电池报废为止,其容量的表现就是用一次少一次.我在对锂离子电池做循环性能的时候也从来没有看到过有容量回升的迹象.

★锂离子电池没有最佳状态.

值得一提的是,锂离子电池更容易受环境温度的变化而表现不同的性能,在25~40度的环境温度会表现其最好性能,而低温或高温状态,他的性能就大打折扣了.要使你的锂离子电池充分展现它的容量,一定要细心的注意使用环境,防止高低温现象,比如手机放在汽车的前台上,中午的太阳直射很容易就可以使其超过60度,北方的用户的电池待机时间,同等网络情况下,就没有南方的用户长了.

〓〓〓〓〓〓〓〓〓〓〓

5.真的是充电电流越大,充电越快吗

对于恒流充电的镍基电池,可以这么说,而对应锂离子电池,这个是不完全正确的。

★★对于锂离子电池的充电,在一定电流范围内(1.5C~0.5C),提高恒流恒压充电方式的恒流电流值,并不能缩短充饱锂离子电池的时间.

安装MPT_v4.03,升级到MPT_v4.04,传送了通讯录

下面是转来的电池的保养:

我们知道电池是手机电能的来源,也就是手机的动力,没有电池的供电,手机也就是一块废铁,一块高容量高性能的电池,不仅可以给手机长时间的续航能力,而且也可以保护手机的电路,使得手机能够长时间高效率的工作,反之则很有可能会使手机出现意想不到的损坏。而对我们玩家来说,电池的性能在出厂的时候,就已经被定性,其电量的大小,性能的好坏,都是由电池本身来决定了,在这一方面我们无法人为的改变,不过这并不是说,我们在拿到电池后,就对它一点不能做了。手机使用的都是锂离子的充电电池,使用内存储电量的用完,需要再次充电方可补充电源。你不要小看充电这一环节,一个好的充电器和正确充电方法,可以保持电池长时间的待机时间,更可以延长电池的使用寿命。更远一步说,还可以对手机起到保护作用。关于如何充电的方法,经常在论坛里会有玩家问到,经过一段时间来的自己实际使用和参考,我总结出下面的几点:

1. 一般锂电池出厂前,厂家进行激活处理,并进行预充电,因此电池均有余电,新买的手机电池是锂离子,那么前3~5次充电称为调整期,应充14小时以上,保证充分激活锂离子的活性。锂离子电池没有记忆效应,但有很强的隋性,应给予充分激活后,才能保证以后的使用能达到最佳效能。关于第一次充电这个问题,我也咨询了三星的技术人员,给我的回答是,三星的原厂电池,在出厂前就已经做了充分的激活处理,不用再用长时间充电的方法来激活锂离子的活性,第一次充电只要把电池里的余电用完后充满即可。我想三星技术人员的说法应该是可以信服的。

2.有些自动化的智能型快速充电器当指示信号灯转变时,实际上只表示充满了90%。充电器会自动改变用慢速充电将电池充满。不要当即就把充电器的电源切断,最好还要给电池一段补电的时间,将电池充满后再使用,否则会缩短使用时间。

3.充电前,锂电池不需要放电,也不可以放电,当前生产的锂电池的充电器都是没有放电功能的,如果可以调节充电的速度的话,建议大家充电时尽量以慢充充电,减少快充方式;无论慢充还是快充的时间都不要超过24小时。否则电池很可能会因为长时间的供电产生巨大的电子流而烧坏电芯。

4.有很多用户在充电时还把手机开着,在充电的过程中,电池一面因为手机的使用而向外放电,又因电池的充电而向内供电,很可能使电压紊乱导致手机的电路板会发热,如果有来电时,会产生瞬间回流电流,对手机内部的零件造成损坏。

5.电池的寿命决定于反复充放电次数,锂电池大约可以连续充放电500次左右,之后电池的性能会大大减弱,应尽量避免把电池内余电全部放完再充电,否则随着充电次数的增加,电池性能会慢慢减弱,电池的待机时间也就很难不下降了。

6.不要将电池暴露在高温或严寒下,像三伏天时,不应把手机放在太阳底下,经受烈日的曝晒;或拿到空调房中,放在冷气直吹的地方。当充电时,电流产品回流,电池有一点发热是正常的。7.如果手机电池放置太长时间而未用,最好到手机维修部门申请给电池作一个激活处理,也可以自己用一个直流恒压器,调整电压为5~6V,电流500~600mA反向连接电池。注意,一触即放开,最多重复三次即可,经过这样处理后,再用原装充电器进行“调整期”充电。

8.充电的不是时间越长越好,对没有保护电路的电池充满后即应停止充电,否则会因发热或过热影响性能。计算电池的理论充电时间的方法如下:电池的电量除以充电器的输出电流就可以,例如:以一块电量为800MAH的电池为例,充电器的输出电流为500MA 那么充电时间就等于

800MAH/500MA=1.6小时,当然这只是理论的充满电的时间计算,当充电器显示充电完成后,最好还要给电池大约半个小时左右的补电时间。锂离子电池必须选用专用充电器,否则可能会达不到饱和状态,影响其性能发挥。

首先要明白其中的原理。

原理简介:

手机锂离子电池的充放电是因电池离子流正反流动而产生的。它正如人的血管一样,随着年纪的增长,废物沉积,血流渐渐不畅。由于不断地充放电而产生废渣,它阻碍离子的流动,使充电容量减少,其结果导致通话时间变短。

手机电池能量贴含有从天然矿石里提炼出的特殊成分,能发出3~40微米的电子振动波,这个范围的波与锂电池内部的锂离子的振动频率波长相同。这些离子与手机电池能量贴中发射出的电子波产生波动效应,显著延缓了电池的氧化反应过程,使电流的通过性加强,从而达到提高充放电效率、延长待机和通话时间的效果。同时利用其不间断地放射出来的空洞放射能,使电池内的电子整齐地排列起来,并将废渣分解,使离子畅通无阻地流动,这样一来,就大大地提高了充电容量。

1.找个电池恢复设备激活一下即可

2.把电池用报纸包起来再放进塑胶袋裹好,放入冰箱冷冻库3天(报纸可吸收多余水份);

3天后取出常温下放2天;2天后将电池充电,充满后开机测试(预估可救回80~90%的电池能量)

本讯息由知名电池厂商工程师透露, 反正冰箱人人有, 各位就试试看吧!

目前经常有人使用了那种万能充电器(由于是两个支点,所以可充几乎所有电池)后出现各种问题。其实这可能就是那种4元一个的充电器的充电电压是固定的4.5V-5V,与电池实际需要的充电

电压相差比较大而导致电池电压出现异常(当然只是一个猜测),偏离了正常使用范围,导致本来有电,但电压太低而使手机无法使用。现在有一个办法可以修复这种问题了。具体原理不得而知道,猜想可能是恢复了电压。将电池电量用光,然后在冰箱冷藏室4度环境下24小时。完成后电池恢复正常。(注:好像和方法2一样的)

原来我也面对日渐衰老的电池一筹莫展,任由电池经常处于饥饿状态,只能在它寿终正寝后,好好的收藏起来,以防污染环境。但是现在我有了解决的办法,经人介绍给我一样东西——电池魔力卡,一块2/3块口香糖大小,比纸还要薄的一张小卡片。说是贴在手机电池上就能延长手机的使用寿命,延长手机待机时间。起初我看到它的说明书就像看到天书一样,上面都是一些听起来很专业的词。"电池魔力卡是将稀有金属与经过特殊处理的金属箔片有机结合而成。它用离子穿透力(能量波)改变电池内部的化学结构,加速聚集在电池内部的碳积物(由于电池频繁充放电而在电池内部产生的杂质,积累到一定数量后,电池就会报废)分解,从而激活和促进电池内部的离子流动,使电池恢复正常机能,延长使用时间。"虽然我对原理不动,但是使用过后我真是相信了它的功效,不愧叫"魔力卡",就是这么一个小东西真的延长我的手机的待机时间,寿命我还不知(因为我现在的电池还能用)。

假如你有锂电的机器放太久没用,发现无法开机也无法充电,千万别急着换电池,尤其是PDA电池一块都超过一千元,只要注意几项重点要就回电池并不困难。我有一台IPAQ 3870,也是新机器但一直都没使用,也是无法开机也无法充电,用车充可以开机,但插头一拔掉,也就跟着关机。于是找来工具,终于挥复正常。

步骤及过程如下:

先找工具,一拆卸起子,一个充饱的旧锂电池,相信大家都有不用的手机锂电,都可以用,线材与电阻。要先说明的是充电原理与对应方式及注意事项,如果明白这些,那你就成功一半了。锂电没电是因为装在机器内,虽然机器没开,有可能机器还是会耗电,作一些资料维池,避免流失,

还有锂电池还是是自我放电的特性,虽然已比镍氢充电电池小很多,但放上几个月不用,还是有机会没电的。

每个锂电池都有一个保线路,这个线路会控制电流,及电池在异常状态下不会进行充电的动作,以免造成危险,一个锂电充到爆炸,他损害面积大约是一张书桌的范围,所以要小心。

作业前先说明一下锂电充电一些基本概念

除了锂电池包本身有串联作成7.2/8.4V外,其余都是3.6/4.2V,也就是说,充饱时是4.2V,电池没电是3.6V,(串连的电池包数据自己乘以二),电池保护装置会在电池电压低于2.5V~3V(每个厂家设定可能不一样),停止供电及充电,也就是断路,当作电池本身不存在。

那么救电池主要动作就是将电池电压,使它高于保护线路认定的电压,整个工作就算完成。

以我的电池为例,打开后一量,电压只剩1V,在确定正负极之后,我将手机锂电的正负极各拉一条电线,并在正极端先焊上一个电阻,因我手边只有一颗200欧母的电阻,不过没关系,只是慢一点,其实也差不了一点时间,反而比较安全,47欧母以上都可以用,越大电流越小,所耗时间也久一些。

正极对正极,负极对负极,最好用三用电表监看,是看是否达到3.6V,就算你出门很久,这系统也不会出错,更不会有安全顾虑。

如果你有时间一旁守候,就会看到电压一路增加上来,大约一小时电压就会到达3V以上,等到3V 以上,就可以换4.7欧母的电阻来加快速度,不换的话就去作别的事情,以我200欧母来算,3V 以上大约是6Ma在充,反正只要一点电力就可以使电池恢复正常电压,不急啦,果然很快就到达3.6v左右,于是卸下电线,先别急着合上盖子,过个五分钟再量一次,以免刚刚量到的是虚电压,等你合上盖子后又降到保护电压以下,造成不充电,让你觉得是电池已坏掉,那就冤啦。

合上盖子后果然充电恢复正常,充放两次后一切完好如初,不用换电池了。

一点小技巧,给大家参考一下。

接线部份放大一点,红色线是正极,接一个200欧母电阻(47欧母以上都可以)

不论是数码相机,还是收音机,随身听,电池是所有设备的动力,电池性能的好坏决定了设备的使用性能。电池的结构不同,规格不同,容量的差别很大,就是相同规格的电池,由于型号不同,生产厂家不同,容量也不一样。拿我们最常用的AA尺寸电池(5号电池)来说,早期的镍镉电池容量是500mAh,新式的镍镉电池容量是850mAh,而同样尺寸的镍氢电池,容量更大,在

1100mAh~2100mAh之间。

电池的容量是以mAh来计算的,你可以理解为在多少mA(毫安)电流下放电1小时。例如,1000mAh 就是指电池可以在1000mA电流下放电1小时这么大容量。这样,假如负载(用电器)的耗电为100mA,该电池就可以放电10小时,假如负载电流为200mA,该电池可以使用5小时,依此类推。

电池的原理是化学反应产生电能,两种金属材料在电解液的作用下产生电流,这我们在中学的物理课中都学到过。不同种类电池的端电压也不相同,干电池为1.5V,氧化银电池为1.55V,银汞电池为1.3V,镍镉电池和镍氢电池为1.2V,铅酸电池为2V,一次性锂电池为3V,二次锂电池为3.6V。用电器的供电电压不同,使用的电池种类与节数也不同。例如,早期的爱娃随身听使用口香糖型铅酸电池,工作电压设计在2V,新式的索尼随身听使用镍镉口香糖电池,端电压为1.2V,现代的数码相机多使用锂电池,工作电压高达7.6V,需要两节二次锂电池串联供电(虽然是单体,但在外壳内封装了两节二次锂电池),而多数现代收音机都设计能够使用干电池或镍镉、氢镍电池,由2~4节电池串联供电,供电电压可以在一定的范围内改变。

一次性的电池不能再充电,象干电池,碱性干电池,氧化银电池,银汞电池,一次锂电池等。它们的电量用尽以后就只能报废了。有许多人试图给这类电池充电,设计了各种充电器,写了大量的文章,我也一样,曾经为此做出了很大的努力,对各种电池做过上百次试验,结果收效甚微,充电以后,电池的容量连新的一半也达不到,再放电很快就又枯竭了!但是今天仍然有不少文章,提出这种带有欺骗性的理论与充电产品。

随着科技的发展,电池的技术也不断进步,虽然这种进步比起其他电器来显得过于缓慢。镍镉二次电池已经有很长的历史了,其品种规格比较齐全,但多数为圆筒形,大小不一,容量不同。这种电池的放电性能比干电池好,内阻比较低,允许大电流放电,但记忆性较强,正常寿命在400次到1000次之间。近几年大量开发的镍氢电池具有更大的容量,更低的内阻,更适合大电流放电,记忆特性比镍镉小多了,寿命多在1000次充放电,价格也不贵多少。所以,镍氢取代镍镉已经是必然趋势,目前已经很少能够看到镍镉电池有售了。二次锂电池是最新一代高级电池,它具有端电压高,容量最高,内阻特低,性能稳定,寿命长的特点(充放电1000次以上)。但是它的售价比较高,主要用在高级电器上,如笔记本电脑,手机,掌上电脑,数码相机等等。

电池的记忆特性是这样的,假如你经常让电池放电到还剩一半容量就给它充电,那么日久它的实际容量就会减小。没有记忆特性的电池可以随时为它补充电,它的容量也不会有任何变化。目前只有锂电池号称是没有记忆特性的电池,但是,实际上任何化学电池都具有一定的

锂离子电池研究现状

锂硫电池的研究现状 近年来,随着不可再生资源的逐渐减少,清洁能源的利用逐渐得到重视,而电池作为储能装置也受到越来越多的考验。锂硫电池与传统的锂离子电池相比,优势主要在于硫的高比容量,单质硫的理论比容量为1600mAh/g ,理论比能量2600Wh/kg。并且硫是一种廉价且无毒的原材料。而与此同时,硫作为锂电池的正极材料也存在着诸多问题[1]: 1、单质硫以及最终放电产物都是绝缘的,如果与正极中掺入的导电物质结合不好,就会导致活性物质不能参与反应而失效; 2、单质硫在反应过程中会生成长链的聚硫化物离子S n2-,这种离子容易溶解在电解液中,并与锂负极反应,产生“穿梭效应”,引起自放电并使库伦效率降低; 3、在每次放电过程结束之后,都会有一些Li2S2/Li2S沉淀在正极上,并且这些不溶物随着循环次数的增加,在正极表面发生团聚,并且正极结构也会发生变化,导致这部分活性物质不能参与电化学反应而失效,并且使电池的内阻增加; 4、硫正极随充放电的进行会产生约22%的体积变化,从而导致电池物理结构破坏而失效。 针对硫作为正极材料的种种弊端,研究者们分别采用了多种方法予以解决,其中将硫与碳材料复合的研究较多。针对几种典型方法,分别举例介绍如下:一、石墨烯-硫复合材料 Wang等人采用石墨烯包覆硫颗粒的方法制作复合材料电极[2]。如图1所示,他们首先采用化学方法制备了硫单质,并利用一种特殊的表面活性剂Triton X-100在硫颗粒的表面修饰了一些PEG高分子,然后再用导电炭黑和石墨烯的分散液对硫颗粒进行包覆。这种方法的优点在于:首先,石墨烯和导电炭黑具有优异的导电性能,可以克服硫以及硫反应产物绝缘的问题;第二,导电炭黑、石墨烯和PEG高分子对硫颗粒进行了包覆,可以解决硫在电解液中溶出的问题;第三,PEG高分子具有一定的弹性,可以在一定程度上缓解体积变化带来的影响。 二、碳纳米管-硫复合材料 Zheng等人用AAO做模板制备了碳纳米管阵列[3],随后将硫加热使其浸入到碳纳米管中间,然后将AAO模板去掉,得到碳纳米管-硫复合材料,如图2所示。这种方法的优点在于碳纳米管的比表面积大,有利于硫化锂的沉积。并且长径比较大,可以较好地将硫限制在管内,防止其溶解在电解液中。碳纳米管的导电性好管壁又很薄,有利于离子导通和电子传输。同时,因为制备过程中先沉积硫,后去除模板,这样有利于使硫沉积到碳管内,减少硫在管外的残留,从而防止这部分硫的溶解。

混合动力汽车用锂离子电池的研究

作者简介: 余章华(1968-),男,湖北人,武汉大学化学与分子科学学院博士生,研究方向:电化学; 汪 莉(1978-),女,湖北人,武汉力兴电源股份有限公司工程师,研究方向:化学电源; 周运鸿(1940-),男,湖北人,武汉大学化学与分子科学学院教授,博士生导师,研究方向:电化学。?科研论文? 混合动力汽车用锂离子电池的研究 余章华1,2,汪 莉2,周运鸿1 (11武汉大学化学与分子科学学院,湖北武汉 430072; 21武汉力兴电源股份有限公司,湖北武汉 430074) 摘要:混合动力汽车电池主要特点之一是能以15C 以上的大电流放电。用扣式电池测试极片厚度、材料粒度和导电剂含量对电池放电倍率的影响;运用优化的实验参数,做成8Ah 动力电池,并测试电池性能;对8Ah 电池的功率特性进行了讨论。关键词:锂离子电池; 混合动力汽车; 高倍率 中图分类号:TM91219 文献标识码:A 文章编号:1001-1579(2005)04-0248-02 Study on Li 2ion battery for HEV YU Zhang 2hua 1,2,WAN G Li 2,ZHOU Yun 2hong 1 (11College of Chemist ry and Molecular Sciences ,W uhan U niversity ,W uhan ,Hubei 430072,China ; 21W uhan L ixing Power Sources Co 1,L td 1,W uhan ,Hubei 430074,China ) Abstract :HEV battery should be discharged at above 15C high current 1The effects of the thickness of the electrode ,the parti 2 cle sizes of the materials and the amount of the conductive carbon on the dischar ge rate were studied with the coin cell 1The 8Ah power battery was manufactured with optimized experimental parameters 1The performance of the battery was tested 1The power characteristic of the 8Ah power battery was discussed 1 K ey w ords :Li 2ion battery ; hybrid electric vehicles (HEV ); high rate 混合动力汽车主要动力源是内燃机,在启动加速和爬坡时用电池辅助,减速时通过电池回收能量,从而可以使内燃机始终在其最佳负载下工作,因此可以提高燃油的燃烧效率,同时降低油耗和减少污染气体的排放。这样,对电池的容量要求大幅度降低,但功率要求却相应提高[1]。 一般锂离子电池的最大放电倍率为3~5C ,而目前要将放电倍率提高到15C 以上,难免会有发热的问题。为了研究方便,本文作者首先采用扣式电池来研究配方和工艺对大幅减少电池发热的影响,待各方面条件优化后,再测试8Ah 电池。 1 实验 将LiCoO 2、碳黑、PVDF 按质量比93∶3∶4均匀混合,根据不同的涂覆量涂在厚度为0102mm 的铝箔上,正、反面涂覆厚度相同。将负极材料石墨、SBR (丁苯橡胶)、CMC 按质量比95∶3∶ 2混合均匀,涂覆在厚度为0102mm 的铜箔上,正、反面涂覆厚 度相同。将涂好的正、负极片放在真空干燥箱内120℃干燥8 h 。将正、负极片以卷绕方式组装成L IR2430扣式电池,注液后 封口。单体8Ah 电池壳为方形不锈钢,正、负极片按叠片方式装配。采用程控测试仪(武汉产)进行测试,环境温度为20~25℃。2 结果与讨论 211 极片厚度、导电剂和粒径的影响 将用不同厚度的极片做成的扣式电池,用20C 电流进行放电,放电曲线如图1a 。由图1a 看出:以20C 放电时,正极厚度为0106mm 的电池可放出额定容量(25mAh )的76%;正极厚度为0112mm 的电池可放出额定容量的6%;而正极厚度为0116mm 的电池基本放不出电。由此可知:极片的厚度对电池在大倍率放电时的容量有很大影响。减小极片厚度,可改善电池高倍率放电的性能。 在正极中加入不同量的导电剂(石墨)后,做成电池进行放电,放电曲线如图1b 。由此可知:在正极粉中加大导电剂的量,对大电流放电影响不大。 用不同粒径的正极材料按相同的配方和极片厚度做成扣式电池,进行放电,其放电曲线如图1c 。由图1c 可以看出:正极材料LiCoO 2的粒径为11μm 和6μm 时,电池放电容量基本相同。6μm 的放电平台稍高。212 8Ah 电池的性能 选择粒径为6μm 的LiCoO 2,导电剂含量为3%,做成厚度为0106mm 的正极片;负极采用人造石墨,电极厚度也为0106mm ,用叠片方法做成8Ah 的电池;分别用715C 和15C 倍率放电,放电结果如图2a 。电池表面温度变化如图2b 。 第35卷 第4期2005年 8月电 池 BA TTER Y BIMON THL Y Vol 135,No 14 Aug 1,2005

锂电池循环充放电寿命问题

锂电池循环充放电寿命问题 锂电池寿命问题:循环充放电一次就是少一次寿命吗?回答这个问题前,我们先来说说锂电池循环寿命的测试条件。 循环就是使用,我们是在使用电池,关心的是使用的时间,为了衡量充电电池到底可以使用多长时间这样一个性能,就规定了循环次数的定义。实际的用户使用千变万化,因为条件不同的试验是没有可比性的,要有比较就必须规范循环寿命的定义。 锂电池充电器 1国标规定的锂电池循环寿命测试条件及要求:在环境温度20℃±5℃的条件下,以1C充电,当电池端电压达到充电限制电压4.2V时,改为恒压充电,直到充电电流小于或等于1/20C,停止充电,搁置0.5h~1h,然后以1C电流放电至终止电压2.75V,放电结束后,搁置0.5h~1h,再进行下一个充放电循环,直至连续两次放电时间小于36min,则认为寿命终止,循环次数必须大于300次。 2国标规定的解释: A.这个定义规定了循环寿命的测试是以深充深放方式进行的 B.规定了锂电池的循环寿命按照这个模式,经过≥300次循环后容量仍然有60%以上 然而,不同的循环制度得到的循环次数是截然不同的,比如以上其它的条件不变,仅仅把4.2V的恒压电压改为4.1V的恒压电压对同一个型号的电池进行循环寿命测试,这样这个电池就已经不是深充方式了,最后测试得到循环寿命次数可以提高近60%。那么如果把截止电压提高到3.9V进行测试,其循环次数应该可以增加数倍。3这个关于循环充放电一次就少一次寿命的说法,我们要注意的是,锂电池的充电周期的定义:

一个充电周期指的是锂电池的所有电量由满用到空,再由空充电到满的过程。而这并不等同于充电一次。另外大家在谈论循环次数的时候不能忽视循环的条件,抛开规则谈论循环次数是没有任何意义的,因为循环次数是检测电池寿命的手段,而不是目的!4▲误区:许多人喜欢把手机锂离子电池用到自动关机再充电,这个完全没有必要。 实际上,用户不可能按照国标测试模式对电池进行使用,没有一个手机会在2.75V 才关机,而其放电模式也不是大电流恒流放电,而是GSM的脉冲放电和平时的小电流放电混合的方式。 有另外一种关于循环寿命的衡量方法,就是时间。有专家提出一般民用的锂离子电池的寿命是2~3年,结合实际的情况,比如以60%的容量为寿命的终止,加上锂离子电池的时效作用,用时间来表述循环寿命我认为更为合理。 注意事项 对于锂离子电池,没有必要用到关机再充电,锂离子电池本来就适合用随时充电的方式进行使用,这也是他针对镍氢电池的最大优势之一,请大家善加利用这个特性。锂电池完全充放电一次(完全充放电并不等同于一次充放电),循环寿命才减少一次。 电池保养常识: 1 记忆效应镍氢充电电池上常见的现象。具体表现就是:如果长期不充满电就开始使用电池的话,电池的电量就会明显下降,就算以后想充满也充不满了。所以保养镍氢电池的重要方式就是:电必须用完了才能开始充电,充满了电了才允许投入使用。现在常用的锂电池的记忆效应是可以小到忽略不计的。2 完全充电,完全放电

2020年(发展战略)中国国家计划专家谈全球锂离子动力电池的发展潜力

(发展战略)中国国家计划专家谈全球锂离子动力电池的发展潜力

中国国家“863”计划专家谈全球锂离子动力电池的发展潜力 7月16~18日于北京举行的“第十六届中国电动车辆学术年会暨第二届电动汽车产业发展战略研讨会”上,中国国家“863计划”动力电池测试中心主任王子冬从市场和技术层面全面分析了全球锂离子动力电池的发展潜力。他指出,全球锂离子动力电池市场正处于壹个重大转型期,于电动车(EV)市场需求带动下,预计该市场规模于未来5年内将超过2000亿元人民币。 王子冬首先以日产绿叶(Leaf)电动车为例,介绍了锂离子动力电池的市场需求情况。该车将于2010年秋季上市,且计划于2010年生产5万辆,2012年生产20万辆。以锂离子动力电池产量来见,每辆绿叶的电池容量为24kWh,20万辆的容量相当于48亿kWh。这是目前全球手机锂离子电池30亿kWh市场的1.6倍。即壹款汽车就能够完全改变整个市场状态。目前,全球主要汽车制造商均已宣布要大规模生产采用锂离子电池的电动车,而日产只是其中壹家而已。 诱人的行业前景吸引了业内外大量投资 王子冬指出,电动汽车的量产为锂离子电池产业带来了重要的发展机会。按照上述测算,几年之内,锂离子动力电池市场将超过全球手机锂离子电池市场的规模。这种改变将引发关联制造设备和厂房的新壹轮投资,同时,众多新进入锂离子动力电池及材料的厂商将使关联领域的技术竞争更趋激烈。 受到诱人行业前景的吸引,很多来自不同行业的厂商将目标定位于电动汽车市场,欲于锂离子动力电池商机中分壹杯羹。 例如,索尼于2009年11月进入了电动汽车和大容量蓄电池领域,且表示未来几年内将于量产设施上投资1000亿日元。三洋电机将于2015年前投资800亿日元,松下也准备于2012年前投入1230亿日元。另外,三菱重工于其长崎造船厂也投资了约100亿日元建立实验基

锂离子电池研究进展

硕士研究生文献阅读报告 锂离子电池的研究进展 The research progress of lithium ion batteries 学科专业名称及代码:s1******* 研究方向:成像电子器件与系统 研究生:梁超

锂离子电池的研究进展 S1******* 梁超 2013年11月17 摘要:随着现今各种移动电子设备的需求越来越多,锂离子电池的需求量也在快速增长,传统锂离子电池在充放电效率及循环寿命上仍存在一些问题。文中讨论了硅微通道板在锂离子电池上的改进。采用光辅助电化学刻蚀和无电镀银方法,制备出一种可用于三维锂离子电池的覆银硅微通道板(Ag/Si一MCP)负极结构。 关键词:锂离子电池硅微通道板覆银硅微通道板 Abstract: With the demand for a variety of mobile electronic devices today, more and more demand for lithium-ion batteries is also growing rapidly, there are still some problems of the traditional lithium-ion battery charge and discharge efficiency and cycle life. The silicon micro-channel plates in lithium-ion battery improvements discussed in this paper.A three--dimensional(3-D)anode using a silver-coated Si micro-channel plate(Si-MCP)as the active materials was prepared by photo-assisted electrochemical etching followed by electroless deposition. Key Words: Lithium-ion battery Silicon micro-channel plates Silver-coated Si micro-channel plate 一、引言 锂电池(Lithium battery)是指电化学体系中含有锂(包括金属锂、锂合金和锂离子、锂聚合物)的电池。锂电池大致可分为两类:锂金属电池和锂离子电池。锂金属电池通常是不可充电的,且内含金属态的锂。锂离子电池不含有金属态的锂,并且是可以充电的。所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。 锂离子电池以其具有的电压高,比能量高,无记忆效应,对环境污染小等优点,已经作为一种重要的化学电池被广泛地应用于手机,笔记本电脑等数码产品中.随着便携设备小型化的发展,对电池小型化的要求也在提高. 1、传统锂电池构造及原理 正极为含锂的过渡族金属化合物,负极为碳材料。充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中.放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合.锂离子的移动产生了电流. 2、传统锂电池存在的问题 目前锂离子电池中使用最广泛的正极材料是氧化钴锂。随着各种移动电子设备的需求越来越多,锂离子电池的需求量也在快速增长,因而,氧化钴锂的需求也在增加。由于金属Co比较稀缺,并且价格昂贵。所以,目前人们正在积极开发低钴或是无钴的正极材料,同时,许多国内外研究工作者正在研究回收锂离子电池。 另外,负极材料的稳定性及其配比、电解液组成、膈膜的选择、氧化钴锂的热稳定性及其与电解液反应活性都会影响锂离子电池的安全性。在工艺方面,微短路,结构性内短路(电芯极耳过长,

锂离子电池研究进展

华东理工大学2013—2014学年第1学期 《新能源与新材料》课程论文 2013.11 班级___复材101__ 学号__10103638__ 姓名____温乐斐_____ 开课学院材料学院任课教师张衍成绩__________

锂离子电池研究进展 温乐斐 (华东理工大学) 摘要 二次锂电池的优点是高体积、高质量比容量、长循环寿命、低放电速率,是环保型电源的理想备选之一。本文简单介绍了锂离子电池的正极材料、负极材料及电解质的种类和发展概况,并对当今锂离子电池发展所面临的问题和发展前景进行阐述。最后说明了一下其发展前途和产业化趋势。 关键词:锂电池;正极材料;负极材料;电解质;发展进程 The Research and Development of Rechargeable Lithium-ion Battery Wen Lefei (East China University of Science and Technology) Abstract The rechargeable lithium-ion battery has been extensively used in mobile communication and portable instruments due to many advantages, such as high volumetric and gravimetric energy density, long cycle life, and low self-discharge rate. In addition, it is one of the promising alternatives as the power sources. The development of researches on materials of lithium-ion battery for cathode, abode and electrolyte are introduced in this paper, at the same time lithium-ion existing problems is battery and prospects are also outlined. At last, the strategic position and some future investigating trends are also presented. Key words: Li-ion battery; cathode materials; anode materials; electrode materials; research and development; progress

锂电池放电放得越尽,电池的损耗就会越大

锂电池放电放得越尽,电池的损耗就会越大 “锂电池放电放得越尽,电池的损耗就会越大,”艾克郎大学,帮助美国太空总署NASA研究延长电池寿命的电子工程教授TomHartley,说到,“给电池充电充得越满,电池的损耗也会越大。锂电池最好是处于电量的中间状态,那样的话电池寿命最长。” 1 过高和过低的电量状态对锂电池的寿命有最不利的影响,而充放电循环次数反而是次要的。其实,大多数售卖电器或电池上标识的可反复充电次数,都是以放电百分之80为基准测试得出的。实验表明,对于一些笔记本电脑的锂电池,经常让电池电压超过标准电压0.1伏特,即从4.1伏上升到4.2伏,那么电池的寿命会减半,再提高0.1伏,则寿命减为原来的3分之一;长期低电量或者无电量的状态则会使电池内部对电子移动的阻力越来越大,于是导致电池容量变小。美国宇航局NASA让其哈勃太空望远镜上电池的消耗电量设定在总容量的百分之10,以确保电池可以反复充放电10万次而不必更新。2 其次,温度对锂电池寿命也有较大的影响(手机和其他小型电子设备对此点可忽略)。冰点以下的环境有可能使锂电池在电子产品打开的瞬间烧毁,而过热的环境则会缩减电池的容量。因此,如果笔电长期使用外接电源也不将电池取下来,电池就长期处于笔记本排出的高热当中,更主要的是,电池长期处于百分之100的电量状态,很快就会报废(包括我自己的笔电电池就是这么玩完的)。3 由以上,我们可以总结出以下几点确保锂电池容量和寿命的 注意事项 :4

不需要将锂电池充到百分之100满电,更不要将电量使用殆尽。在情况允许的情况下,尽量使电池的电量维持在半满状态附近,充电与放电的幅度越小越好;5 通用ChevyVolt电动车的出厂设计就是强制将电池电量维持在20%至80%,而苹果笔电的内置电池可能也是运用了这一方法(包括其他一些笔电和电子产品),让电池的可充放电周期数增加。6 不要将锂电池(尤其是笔记本锂电池)长期在设备使用外接电源的情况下。就算您的笔记本散热良好,长期百分之100的电量就等于对锂电池的谋杀。7 如果你长期用外接电源为笔记本电脑供电,或者电池电量已经超过80%,马上取下你笔记本的电池、平时充电不需将电池充满,充至80%左右即可;调整操作系统的电源选项,将电量警报调至20%以上,平时电池电量最低不要低于20%,在下降到20%以前即要进行充电;8 手机等小型电子设备,充好电了就应立刻断开电源线(包括充电功能的USB接口),一直接着会损害电池;要经常充电,记起来就充,但不必非得把电池充满;9 无论是对笔记本还是手机等,都一定不要让电池耗尽;10 如果要外出旅行,把电池充满吧,但请记得在条件允许的情况下随时为电器充电,为了电池寿命,一定不要等到电池放干; 电池保养常识: 1 记忆效应镍氢充电电池上常见的现象。具体表现就是:如果长期不充满电就开始使用电池的话,电池的电量就会明显下降,就算以后想充满也充不满了。所以保养镍氢电池的重要方式就是:电必须用完了才能开始充电,充满了电了才允许投入使用。

锂纽扣电池可靠性预测和地的应用寿命估算

锂纽扣电池可靠性预测和应用寿命估算 工业设备尤其是便携式设备均离不开嵌入的锂纽扣电池--系统的“源动力”。据此,锂纽扣电池的制造厂商及产品又是层出无穷、品种繁多,从而导致使许多最终用户在对其锂纽扣电池的使用寿命和选用上不是茫茫然就是束手无策。为此,如何解决这致关系统可靠安全的重要问题及如何寻找出新方案、新产品等新途径就成为其重中之重。目前国际上有不少著名制造厂商, 能提供有备用锂纽扣电池的非易失存储器(NVM—Non volatile MEMORY)或实时时钟(RTC)的应用产品,以确保当系统(微控制器、嵌入式等系统)掉电时保存数据或信息。这些产品的典型规格是在没有系统电源的条件下提供10年的使用寿命。因为最终应用是不确定的,所以对使用寿命的预测还是比较保守的。最终用户针对锂纽扣电池的具体应用, 应评估(电池结构/特征、电池测试/筛选、容量等)或预期出使用寿命,特别是对那些工作环境超出了典型范围或所需应用时间超过10年的用户来说。必须了解这电池可靠性模型,这将有助于用户单独选购电池控制器, 从而又将电池控制器与电池组装在一起构成性能价格比较高的锂纽扣电池,也就解决了不必购买包含电池控制器和电池在内的高成本模块问题。本文论述了备用锂纽扣电池应用寿命估算及寿命对IC集成电路(指SRAM--静态随机存取存储器或RTC)影响的有关问题。这儿指IC均属于是由系统电源供电或锂备用电池供电。为此,首先要说明为何选用备用电池?为何选用备用电池众所周知,系统断电时,有多种保存数据的方案,当对读写速度或周期数要求比较严格时,有备用电池的SRAM是一种较为可靠的替代方案。闪存或EEPROM同样提供NV(非易失)数据存储,但在简易性和速度指标上存在不足。而有备用电池的SRAM,其主要缺陷是电池是一个消耗品,产品选择必须慎重考虑电池容量并确定其产品最终的使用寿命。对于没有系统电源供电同时要保持信息或计时功能,并需要提供一定的电能才能维持晶振工作,则用电池提供电流是非常适合的.IC集成电路所需电流如果IC(SRAM或RTC)将由电池供电,则需要在IC工作时的电流、使用寿命与电池容量之间加以匹配。购买电池和IC时,其数据手册将提供与IC负载相对应的有关估算电池寿命的信息,如果购买集IC和电池于一体的模块,则最终用户应依靠模块厂商对模块产品的适当筛选来保证系统使用寿命的要求。半导体制造厂商为其所有电池供电产品制订了测试条件,以保证在电池容量的允许范围内为最终器件提供10年的使用时间。而Dallas Semiconductor公司对这种应用的IC进行优化设计并利用先进的处理工艺满足低电流的需求。对于其它供货商提供的高密度SRAM需作特殊的筛选才能满足模块使用寿命的要求。图1来自于由锂纽扣电池供货商-松下公司提供的电池容量报告,图中四条线代表最常用的电池尺寸(BRl225、BRl632、BR2330和BR3032)。电池供应商提供的额定电池容量(单位为mAH-毫安时)与电池尺寸相对应。电池结构/特征在其需要有备用电池的模块内选用一次性锂钮扣电池,这些电池的额定电压为3V,对系统典型工作电压为2.7V来说,则该锂钮扣电池作为备用电源非常合适。电池电压在放电状态下保持稳定平坦(见图2所示),电池放电接近终止时仍能提供与新电池几乎相同的电压。平坦的放电曲线对于备用电池而言是极为理想的特性,但它为估算电池的剩余电量增添了难度。一次性锂钮扣电池具有较好的可预测性,它的开路电压或内部阻抗等关键参数的离散性极小,极小的离散性使电池厂商筛选电池时很容易设置电池检测的条件,从而便于剔除有缺陷的电池,同时也有助于电池用户鉴别有故障的IC /电池系统。例如,电池电压离散性或电压与电池负载的对应关系是已知的,则电池加载后的电池电压可用以指示其电池的负载情况。如果电池负载与IC所需要的电流一致,则负载电压的离散性极小。根据从外部测得的负载电压可以检测异常IC或电池,从而排除潜在的可靠性风险。电池测试/筛选电池制造商经过100%的测试使产品性能极其一致,但是,任何用户为其系统选用电池时还需对电池作进一步测试,以确保最终产品选用工作正常的电池。经过适当的筛选可以检测出三种类型的缺陷:首先是那些被电池制造商的测试系统所遗漏的电池,这类电池最易检测;第二类缺陷是低水平的内部泄漏,这些电池可能经过一段时间后才能显现出它的内部故障,对于这类电池的检测不仅要了解其合适的测试电平,还要预先了解其测试结果的离散性;第三类缺陷是电池用户在处理或系统制造过程中产生的,由于电池容量是有限的,如果有意想不

大容量高功率锂离子电池研究进展_毕道治

收稿日期:2007-05-20 作者简介:毕道治(1926-),男,河北省人,教授级高工。 Biography:BIDao-zhi(1926-),male,professor. 大容量高功率锂离子电池研究进展 毕道治 (天津电源研究所,天津300381) 摘要:发展电动车是解决能源危机和环境污染的有效手段之一。大容量高功率锂离子蓄电池是电动车的理想储能电源,因为它具有单体电压高、循环及使用寿命长、比能量高和良好的功率输出性能等优点。介绍了国内外大容量高功率锂离子蓄电池的研究进展,包括关键材料、技术性能和安全问题,并以作者的观点提出了大容量高功率锂离子蓄电池的发展前景和近期研究内容。关键词:锂离子蓄电池;电极活性材料;电解液;电动车;混合电动车中图分类号:TM912.9 文献标志码:A 文章编号:1008-7923(2008)02-0114-06 Researchprogressofhighcapacityandhighpower Li-ionbatteries BIDao-zhi (TianjinPowerSourceInstitute,Tianjin300381,China) Abstract:Developmentofelectricvehicleisoneoftheeffectivemeanstoovercomeproblemsofenvironmentpollutionandenergycrisis.HighcapacityandhighpowerLi-ionstoragebatteryisanappropriatepowersourceforelectricvehicleduetoitshighcellvoltage,longercyclelife,higherenergydensityandhighpowercharacteristics.ThedevelopmentstatusofhighcapacityandhighpowerLi-ionstoragebatteries,includingkeymaterials,technicalperformanceandsafetyproblemsarereviewedinthispaper.ThetechnicalissuesandthefutureofhighcapacityandhighpowerLi-ionbatteriesarefinalllydescribedinwriter'spointofview. Keywords:Li-ionstoragebattery;electrodeactivematerial;electrolyte;EV;HEV 环境污染和能源危机是目前人类面临的两大课题,而燃油汽车的大量普及则是造成上述问题的主要原因之一。发展电动车是有效解决上述问题的重要手段,因为电动车具有能源多样化、污染排放少和能源利用效率高的优点。发展电动车的技术瓶颈问题是迄今为止还没有哪种电池使电动车的性价比能与燃油汽车相比。通过比较各类动力电池的典型性 能,可以看出锂离子电池具有单体电压高、比能量大和自放电小的优点,但也存在安全性差、 成本高和长期循环和贮存后性能下降的问题。为了充分利用并发挥锂离子电池的优势,克服其存在的缺点,世界各主要国家的政府、汽车制造商和相关科技人员都对大容量、高功率动力用锂离子蓄电池的研究非常重视。纷纷制定发展计划、投入大量人力、物力、财力积极进行研制。文章对大容量、高功率锂离子蓄电池的关键材料、性能水平和安全性等方面的研究进展进行综合评述,并探讨了今后的研发方向。

锂离子电池的正极材料的分析研究综述

锂离子电池的正极材料的研究综述 班级:********* 姓名: ******** 学号:********* 课程老师:***** 日期: *******

锂离子电池的正极材料的研究综述 摘要:本文简要介绍了锂离子电池的发展简况,并对锂离子电池的工作原理进行分析。重点综述了各类锂离子电池正极材料的研究状况和性能表征,通过比较各类材料的优缺点,对今后的进一步研究分析,提供了一个思路和纲领。最后,介绍了正极材料的近期一些研究进展,并对锂离子电池的今后发展进行了展望。希望,锂离子电池材料能够有个更大的突破。 关键词:锂离子电池;正极材料;工作原理;制备方法 1 引言 过去半个世纪内,可充电电池作为一种高效储能装置得到了迅猛的发展。而科学技术的进步则对这种储能装置的电化学性能提出了越来越多的要求。比如:集成电路技术的发展使电子仪器日趋小型化、便携化,相应地要求电池具有体积小、重量轻、比能量高的特点;空间探索技术和国防、军事装备技术的不断发展要求电池具有高的比能量和长储存寿命;环境保护意识的加强使人们对电动机车的发展日益关注,而这种电池则应有大的比能量和比功率。在众多的电池体系中,锂离子电池以其工作电压高、能量密度大和质量轻等优点倍受全球该领域的科研工作者的关注。 自1980年Goodenough等提出钻酸锂(LICoO2>作为锂充电电池的正极材料,揭开了锂离子电池发展的雏形后,锂离子电池在其后得到了飞速的发展。1990年,日本SONY公司的新型锂离子二次电池研制成功并实现商品化,进入90年代以后锂离子电池作为新一代的高效便携式能源,在无线电通讯、笔记本电脑、摄录一体化及空间技术等方面显示出广阔的应用前景和潜在的巨大经济效益,并被认为是21世纪最有潜力的新型能源。 2 锂离子电池的发展简况 2.1锂原电池 20世纪60年代发生的能源危机促进了锂原电池的的商品化。锂原电池是以Li或Li-Al合金作为负极材料的一系列电池,包括Li/MnO2、Li/I2、 Li/SOC12、Li/FeS2等。与一般的原电池相比,它具有电压高、比能量高、工作温度范围宽和放电平稳的优点,因此先后在便携式电器、心脏起搏器、军事设备、及航空航天领域得到应用。 2.2锂二次电池

锂电池行业发展现状及未来发展前景预测精编版

锂电池行业发展现状及未来发展前景预测 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 98.11%。三国的竞争策略各不相同。日本竞争全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下, 2016 年中国、韩国、日本三国占据了全球锂电池电芯产值总量的 98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020 年中国及全球锂电产值 数据来源:公开资料整理国内锂离子电池市场的发展处于行业的高速增长期。 2010 年至2016 年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。 2016 年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。 2016 年,我国电动汽车产量达到 51.7 万辆,带动我国动力电池产量达到 33.0GWh,同比增长 65.83%。随着储能电站建设步伐加快,锂

离子电池在移动通信基站储能电池领域逐步推广, 2016 年储能型锂离子电池的应用占比达到 4.94%。 2010-2016 年我国锂离子电池下游应用占比 数据来源:公开资料整理业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量 90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015 年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为 68%。江西紫宸 2016 年全球份额提升至 10.5%,国内份额提升至 14.8%,预计 2017 年份额维持提升趋势。江西紫宸国内排名前三,行业集中度有望进一步提高。目前国内锂电池负极材料生产企业中:贝特瑞、杉杉科技、江西紫宸为行业前三名,处于行业领先地位。

锂离子电池循环寿命影响因素分析

锂离子电池循环寿命影响因素分析 摘要:随着电子科学技术的不断发展,越来越多的电子产品使用锂离子电池作 为能量的供给,但是锂离子电池目前在使用上还存在许多问题,其中锂离子电池 的循环寿命就对整个电子产品的使用有关键的影响作用.当电池的寿命较低时,电子产品的使用寿命也会受到影响,即使及时更换新的电池也不能达到原来电池的 高匹配程度,所以有必要对锂离子电池循环寿命的影响因素进行探索。本文对锂 离子电池使用过程中循环寿命的影响因素进行分析和探讨,其中包括锂离子电池 设计和制造工艺、锂离子电池所使用的材料老化和衰退的情况、锂离子电池所使 用的环境和充放电制度等方面展开详细的探讨,并提出相应的对策。 关键词:锂离子电池;循环寿命;影响因素 锂离子电池作为最常用的充电电池,具有单体电压高、质量轻、自放电小、工作温度范围广、环境容纳度高等出色优点,其他类型电池很少全面具备这样的性能。但是锂离子电池依然存 在缺点,例如有些锂离子电池在经过一定周期的充电和放电循环之后,电池的容量下降过快,达不到标准500次循环的,本文将对锂离子电池的循环性能进行探讨。影响锂离子电池循环 性能的因素有很多,其中,电池在使用过程中,在其内部发生的化学反应是直接影响电池循 环寿命的,除此以外,电池制备所使用的材料、制作设计工艺等也会对电池的循环寿命造成 影响。本文就这几方面的内容进行探讨。 一、简述锂离子电池的构成和原理 (一)锂离子电池的构成 虽然锂离子电池从发明到使用经历较多改进,但是锂离子电池的本质构成并不复杂。锂 离子电池主要由正极、负极、电解液、隔膜、集流体以及电池外壳所构成。正负极所采用的 材料各自不同,但是都有一定的要求。电解液的选择需要满足良好的离子导体和电子绝缘体 的要求,同时应具备良好的热稳定性及化学稳定性。合适的集流体能够保证极片在工作过程 中处于稳定的状态。每一个部分的合理构成可以保证锂离子电池正负极反应的顺利进行。 (二)锂离子电池的反应原理 锂离子电池在工作过程中所发生的反应主要为:充电时,锂离子从正极经过电解液穿过 隔膜嵌入到负极,同时有相同数量的电子经外电路传递到负极,保证电荷平衡;而进行放电时,则相反,锂离子从负极脱嵌,经过电解液穿过隔膜再回到正极,此时相同数量的电子经 外电路传递到正极。在锂离子电池进行首次充电时,有机电解液在碳负极表面发生还原分解,形成一层电子绝缘、离子可导的钝化膜,这层钝化膜被称为固体电解质界面膜(solid electrolyte interface,SEI),该钝化膜能够阻止电解液与碳负极的反应以及溶剂分子共插对负极结构的破坏,对负极进行保护。 二、影响锂离子电池循环寿命的因素 影响锂离子电池循环寿命的因素包括内部和外部因素,内部因素主要是锂离子电池进行 充电和放电过程的化合反应,外部因素主要是在使用过程中的环境控制等。我们讨论在可控 范围内对锂离子电池循环寿命造成影响的因素,希望能够发现并且控制这些因素的办法,延 长电池的循环寿命,使锂离子电池能够得到更加良好的应用。

锂离子电池技术发展现状与趋势

锂离子电池技术发展现状与 趋势

一、文献综述 1、前言 现阶段,日本、韩国、美国等国家引领锂离子动力电池技术的发展。日本的行业技术水平具有领先优势,韩国的动力电池制造能力处于领先地位,美国则具有引领前沿的科研能力。 2、国外发展现状 2·1日本 2·11 2009年,日本政府推出了RISING计划(创新型蓄电池尖端科学基础研究事业)和U~EAD项目(汽车用下一代高性能电池系统),并于2013年更新了动力电池技术发展路线图(RM2013),具体指标有2020年电池的续航里程实现250~350km·电池系统总电量达到25~35kW·h,电池能量密度实现250Wh· kg-1,功率密变达到1500W·kg-1,循环寿命达到1000-1500次,价格成本降低到2万日元/W·h。RM2013指明了电极材料的发展方向,正极材料要发展xLiMn03·(1~x)LiMO2(M=Ni,Co,Mn,0≤x≤1)、LizMSi0s、LiNiosMn1s04、LiCnP04、Li2MSO·F、LiMO2(M=Ni,Co,Mn);负极材料要发展Sn~CoC合金,Si基负极包括Si/C和Si0,以及Si基合金。 2·12日本具有代表性的锂离子动力电池企业为松下电池公司。松下是动力电池行业的领导者,作为Tesla最主要的动力电池供应商,凭借Tesla的发展稳居市场领导者地位,全球市场份额在20%左右。目前松下电池主要给ModelS和MndelX提供18650圆柱电池,正极采用镍钴铝三元材料(NCA),负极使用硅碳复合材料,单体能量密度可达252Wh·kg-1,而即将使用在Mode13上的21700圆柱形电池单体能量密度更是提高到300Wh·kg-1·是目前行业内能量密度最高的电池。 2·2韩国 2·21 2011年,韩国启动了包含锂离子电池关键材料、应用技术研究、评价及测试基础设施以及下一代电池研究的二次电池技术研发项目。LG化学和三星SDI是具有代表性的韩国锂离子动力电池企业,也是动力电池领域的后起之秀,两者凭借先

浅析蓄电池的三大寿命

浅析蓄电池的三大寿命 21世纪以来,随着信息技术、新能源技术的不断发展,这些技术所衍生的产品对电池的需求也日益突出,电池技术在这个过程中也发生了量与质的转变。但随着大众对产品体验的无止境的追求,继而衍生了对电池续航能力和使用寿命的高要求。 接下来,让我们一起走进电池使用寿命的世界。 要评价电池的使用寿命,我想可以从电池的三大寿命去着手,他们分别是标准循环寿命(cycle life),工况循环寿命(Working condition life),和日历寿命(Calendar life)。 电池标准循环寿命是指在一定的充放电制度(比如放电电流,放电环境温度,放电截止电压等)下,电池容量衰减到某一规定值(通常而言是额定容量的80%)之前,电池能经受的充电与放电循环次数。一个循环指一次满充+一次满放。 针对不同类型和用途的电池,其充放电制度也是不同的,例如:用于常见便携式电子产品的锂电池的充放电倍率为0.2C;用于无人机的锂电池的充电倍率为0.5C,放电倍率为3C(依据广东省无人机地方标准DB44/T 1885/2016);用于电动汽车的锂电池的充放电倍率则均为1C。根据目前国际国内的实际情况,常见便携式电子产品的锂电池和无人机用锂电池的循环寿命为300—500次,而电动汽车用的锂电池的循环寿命为500—1000次。这也是为什么国内外一些标准通常限定便携式电子产品和无人机用的锂电池的循环寿命不能低于300次,电动汽车用的锂电池的循环寿命则要求不能低于500次。

我司测试的某款动力电池循环寿命图谱 我司测试的某款无人机锂电池的循环寿命图谱 工况循环寿命则多用于电动汽车用的动力电池,其主要考核的是电池按照工况图谱来测试动力电池的使用寿命。这主要是因为汽车在行驶过程中的状况会复杂很多,不同的地形,不同的交通状况等都会影响电池的工作情形。 例如,动力电池国标GB/T 31484就严格规定了动力电池的工况循环寿命要求。以纯电动商用车能量型蓄电池为例:

相关文档
最新文档