生物质灰渣的利用讲解学习

生物质灰渣的利用讲解学习
生物质灰渣的利用讲解学习

生物质灰渣的利用

生物质灰渣的性质研究

摘要

生物质灰渣的pH高,含有丰富的钾、硅以及多种微量元素,在农业生产中可以用作土壤改良剂和制取多元复合肥料。以往对生物质灰渣的研究和资源化利用大多局限于建筑、化工等行业方面,而在农业方面特别是农业化学行为的研究却鲜有报道。本文以四种不同类型的生物质灰渣(锯木灰、谷壳灰、玉米灰、水稻灰)为研究对象,分析了生物质灰渣的物理化学特性,探讨灰渣在不同浓度下对磷吸收、解吸特性。

关键词:生物质灰吸附解吸物理化学特性

第1章背景及研究意义

中国作为一个传统的农业大国,每年农业生产和农村生活中不可避免会产生品种多、数量大以及形态各异的农业废弃物,农业废弃物包括作物稻秆、果壳、农产品加工废弃物、禽畜粪便等,而这些农业废弃物具有污染环境、储存再生利用的特性。中国作为农业废弃物产出量最大的国家,如何充分有效地利用并将其加工转化“变废为宝”,对农业资源的有效利用,减少环境的污染,改善农村生态环境具有重要的意义。目前,国内外对农业废弃物的资源化利用主要有词料化、肥料化、能源化以及基质化等几个方向。随着人类对能源的需要不断增加,应用农业废弃物直接燃烧产能越来越受到各国的重视,以农作物稻杆为主的生物质直燃发电,不仅能使环保和节能效益显著,也是我国大力发展循环经济,利用可再生资源的重要尝试。当今,生物质直接燃烧产能进入大规模推广阶段,大规模的生物质燃烧,也相应的产生了大量的生物质灰。根锯环境保护和资源开发的需要,提高生物质灰的利用价值,而不只是简单的填埋处理,成为循环经济发展中的问题。

1.1农业废弃物的特性

农业废弃物是指在整个农业生产过程中被丢弃的有机类物质,主要指农林业生产过程中产生的植物残余类废弃物;畜牧渣业生产过程中产生的动物类残余废弃物;农业加工过程中产生的加工类废弃物;农村城镇生活垃圾。通常所指的农业废弃物是种植业生产过程中产生的作物稻秆和养殖过程中产生的畜禽粪便[1]。农业废弃物具有数量大、分散性、季节和周期性、差异性等特点。中国是

世界上农业废弃物产出量最大的国家,锯统计,我国每年产生畜禽粪便量26亿t,农作物稻杆7亿t,蔬菜废弃物1.0亿t,乡镇生活垃圾和人粪便25亿t,肉类加

工厂和农作物加工场废弃物1.5亿t,林业废弃物(不包括薪炭柴)0.5亿t,其它类有机废弃物约有0.5亿t,折合7亿t的标准煤[2]。

1.1.1农业废弃物的种类

(1)种植废弃物

种植废物中我国的农作物稻秆产量达5亿吨,随着工农业生产的迅速发展和人口的增加,这些废弃物以年均5%-10%的速度增长[3]。就目前我国稻秆利用情况来看,大约有30%的稻轩直接用作农村生活燃料,20%用作家畜词料,2%-3%用作工业副生产,6%直接还田。随着农村的能源结构、种植结构发生了较大变化,农作物稻杆的大量剩余,使大量的稻秆被浪费或就地焚烧,不仅造成了严重的环境污染和火灾隐患,而且也造成了资源的巨大浪费。

(2)养殖废弃物

我国是世界上经营禽畜养殖业最早的国家之一[4],养殖业的发展在改善我国人民生活水平,调整人民膳食结构,提高农民收入作出巨大贡献的同时,不可避免地产生了大量的“畜产公害”。畜禽类便和养殖污水任意堆弃、排放现象普遍存在,畜禽粪便已成为环境的重要污染源。畜禽废弃物对水体的污染归结起来主要是粪便中有机物的腐败分解产物排入水体改变水体的物理、化学性质和生物群落组成,导致水体污染。对空气污染主要是有机分解物产生的恶臭和有害气体和代谢病原微生物的粉尘直接或间接危害人畜健康[5]。对土壤的污染主要是类便及分解产物携带的污染物质,超过本身自净能力引起土壤组成和形状发生改变[6]。

1.1.2 农业废弃物的利用现状

(1)废弃物的肥料化

农业废弃物含有植物生长所必须的矿质元素和有机质,利用农业废弃物发展有机肥料,不仅可以提供给土壤缺少的元素,还可以增加土壤微生物数量,提高土壤有机质含量,改善土壤理化性状,达到改土培肥的作用。作物稻秆丰富的钾、桂、氮等元素,是一种宝贵的有机肥资源。通过稻杆还田后土壤氮、磷、钾养分都有所增加。稻杆还田的持续增产作用十分明显,每公顷还田4.5t稻秆。培肥阶段增产率为14.6%,后持续阶段增产率达20%[7]。杨文平等

[8]通过在大田条件,以玉米稻秆还田对根际土壤酶活性的影响,得出稻秆还田有利于土壤根际酶活性的升高。李新举等[9]对稻秆覆盖和稻奸翻压还田进行了比较研究,结果表明无论是稻秆覆盖还是稻杆翻压还田都能增加土壤孔隙度、减少土壤容重。曲学勇等[10]在山东东营的小麦种植中发现,玉米稻秆还田条件下,土壤不同深度都保持了较高的含水量,土壤水分的有效性提高。李全起等[11]研究

了稻轩覆盖和灌溉相结合条件下冬小麦一夏玉米一年两熟农田耕层土壤速效养分含量的动态变化,结果表明,稻秆覆盖可明显提高耕层土壤速效磷、速效钾的含量。段华平等[12]研究表明,稻秆还田处理比无稻秆还田处理稻田土壤有机碳含量平均提高了 14.01%。稻杆肥料化的主要技术有稻秆直接还田、堆枢还田、过腹还田,直接还田是稻轩肥化最普遍和简单的一种,是将作物直接铺盖于土壤表面。

(2)农业废弃物的饲料化

农业废弃物的饲料化包括植物纤维性废弃物的饲料化和动物性废弃物的饲料化。植物纤维性废弃物主要指农作物稍汗类物质,其中含有纤维类物质和少量的蛋白质,经过适当的技术处理,便可作为词料应用。动物性废弃物的词料化主要指畜禽粪便和加工下脚料的饲料化[13]。

(3)农业废弃物的能源化

沼气发展模式实施原理是将农作物的稻秆、人畜粪便等有机物在沼气池厌氧环境中,通过沼气微生物分解转化后所产生的发酵产物转化为能源,可以有效缓解部分农村地区的能源紧张情况和大量焚烧稻秆的矛盾。研究表明,农作物稻秆、蔬菜瓜果的废弃物和畜禽粪便都是制沼气的好原料[14]。沼气建设能增加农民收入,一般一户沼气户全年可增收节支1500元左右。锯调查,每个沼气池平均每户每年可节省煤2吨,折节省薪柴2.5吨,相当于0.23公顷薪炭林年生长量,或相当于6.66-10公顷干旱草地的年地表生物量被保护[15]。沼液沼渣是优质有机肥,可作农作物的基肥和追肥,沼液还可作根外追肥生产无公害绿色食品。沼肥保氮率高达99.5%,氨态氮转化率16.5%,分别比敞口抠肥高18%和1.25倍,是一种速缓兼备的多元复合有机肥料。通过幵展沼肥综合利用实践经验证明:施用沼肥与直接施用人畜粪便相比,土豆每亩产量提高30%,蔬菜提高20%-25%,水果提高35%左右。更重要的是农作物施沼肥后可提高品质,减少病虫害,改良土壤结构[16]。

1.1.3稻秆灰渣的农业利用

稻秆作为生物质的主体,是指农作物籽实收获以后的莲杆桔叶部分,包括禾本科期豆科两大类。禾本科包括玉米稻、稻草、爱稻、高粱稻、粟稻、燕麦稻等。豆科包括大豆結、香豆稻与草籽稻。稻秆中有机质含量平均为15%,平均含碳量44.22%、氮0.62%、磷0.25%、钾0.44%,还含有镁、钙、硫及其他重要的微量元素,其蛋白质、可溶性碳水化合物、矿物质和胡萝卜素含量低,而粗纤维含量高,稻秆细胞壁中纤维素、半纤维素和木质素紧密结合在一起。稻杆发电过程中,会产生约占稻秆量15%左右的灰渣。稻秆中碱金属元素和氯元素的含量较高,在生物质燃烧、气化过程中很容易引起受热面的积灰、磨损和腐蚀以及流化

床中燃烧、气化时床料结块等现象形成稻杆灰渣。随着循环和生态农业的发展许多国家开始大规模采用稻秆进行气化或直接燃烧来发电,生物质能源的不断发展,火电厂产生的灰渣废弃物也越来越多,堆积如山的灰渣不仅占用了大量的耕地,也污染了地下水,因此灰渣的综合利用业越来越受到重视。无论在国外还是国内,考虑到生物质燃烧利用过程的物质循环和直燃产业的可持续发展,合理有效地进行灰渣的综合利用不但可以变废为宝、充分利用资源,而且还可以取得良好的经济效益和环境效益[17]。

1.2 研究目的和意义

生物质是指有机物中除了化石燃料外的来源于动、植物能再生的物质。将生物质中C、S、CI、N含量较低,0含量较高,其燃烧所释放的C02被植物物吸收进行光合作用。生物质燃料包括农业生物质,即稻草、稻壳及麦稻等农作物收获后的残疾物;森林生物质即、木屑、树皮、树林剪枝木、木块等。生物质组成成分的含量是由纤维素、木质素、半纤维素、类脂物、淀粉、单糖、水分等组成。生物质废弃物一般用作燃料或词料,而大部分的就地堆积或焚烧,不仅浪费了大量的资源,还严重污染了大气环境。

生物质灰渣作为生物质燃烧后的固体废弃物,在我国随着电力工业的迅猛发展其排放量有逐年上升得趋势,然而这些生物质灰渣并没有得到有效利用。经研究表明生物质灰浪不仅pH高,还含有一定量的P、K等矿质元素,因此研究生物质灰渣的特性,对如何开拓应用途径提高稻秆灰渣的利用水平、减少对环境的污染具有重要的指导意义,实现循环农业倡导的经济、社会、生态的可持续发展。

以往对农业废弃物的研究主要集中在直接进行资源利用所产生的效益,例如稻秆还田产生的肥料效益、用作禽畜饲料以及通过发电产生能源,对灰蜜的研究也大多是在化工领域当中的灰渣,而国内外对生物质灰渣的理化特性以及在农业中的利用研究较少。本文通过研究生物质灰渣的物理化学特性,和对磷和钾的吸附和解吸特性与化肥的加合性,以此利用生物质灰渣生产复合肥。

第2章生物质灰渣的物理化学组成特征

2.1生物质灰渣的物理特性

2.1.1生物质灰渣的颗粒粒径分布特征

研究对象为锯木灰、谷壳灰、玉米灰、水稻灰。

从表中可以看出,四种灰渣在>2mm、lmm-2mm、0.5mn-lmm粒径范围所占的

比例均为水稻灰>玉米灰 > 谷壳灰>锯木灰:0.25mm-0.5mm粒径范围所占的比例表现为玉米灰>谷壳灰>水稻灰>锯木灰;0.125mm-0.25inm粒径范围所占的比例表现为谷壳灰>玉米灰>水稻灰>锯木灰;<0.125mm粒径范围所占的比例表现为

锯木灰>水稻灰>谷壳灰〉玉米灰。锯木灰粒径在<0.125mm范围内所占比例最大,在1mm?2mm粒径范围内所占的比例最小。谷壳灰、玉米灰、水稻灰在粒径

0.25mm-0.5mm和0.125mm-0.25mm范围内占有的比例较大(大于50%),在 1mm-

2mm和<0.125mm粒径范围内所占的比例较小。除了谷壳灰和水稻灰在<0.125mm 粒径范围内所占的百分比表现出差异性不显著外,在其余粒径范围内四种灰渣差异性达显著水平。随着颗粒粒径的变小,锯木灰的占有比例增大,谷壳灰、玉米灰、水稻灰的占有比例先增大后减小。

2.1.2不同生物质灰渣的持水性

从表2-2可以看出,自然含水量最大的为锯木灰4.7%,最小的为玉米灰为

1.09%,四种灰渣的自然含水量大小顺序为玉米灰<谷壳灰<水稻灰<锯木灰,自然含水量最大的锯木灰为自然含水量最小的玉米灰的4.31倍。最大持水量最大的为锯木灰368.41%,最小的为玉米灰198.73%,其大小顺序为:玉米灰<谷壳灰<水稻灰<锯木灰。即灰渣的最大持水量越大,其自然含水量就越大。陈曦等[18]研究表明稻草、棕榈叶、黄麻的最大持水量在112%-376%之间与灰渣的最大持水量

相近,这是由于有机质中含有经基,胺基,羧基等极性基团的物质吸水性较好,因为这些基团可与水形成氢键,能较好的吸收水分。而灰渣中表面大量的Si-0-Si 键与水作用后,使颗粒表面产生大量的轻基而显示出亲水性,这种高的水分渗透性提高了灰渣的持水性能。

2.2生物质灰渣的主要化学元素组成

四种灰渣中的K、Fe、Mg、Ca的组成存在较大的差异,其含量变动分别

为:21.06-91.25、3.38-17.07、2.69-19.52、0.01-15.07g/kg, P、Cu、Mn、Zn的组成在四种灰渣中差异不大,其含量变动分别为:1.93-7.03、0.09-

0.21.0.42-1.98、0.06-0.24g/kg。P的含量在锯木灰中最高,为其他三种灰渣

的2-3倍;K在各类灰渣中含量较髙,且最为稳定,其中K含量最高的是水稻灰,为82.74-91.25g/kg,其他三种灰密度中K的含量相近;Fe、Mg、Ca含量最大的是锯木灰明显高于其他三种灰渣,Fe、Mg、Ca在谷壳灰、玉米灰、水稻灰的含

量相近;Cu、Mn、Zn在四种灰渣中得的含量都相对较低且趋于一致。

2.3小结

研究四种灰渣的物理化学特性,包括粒径组成、自然含水量、最大持水量,以及主要化学组成,研究结果表明:

1、四种灰渣中锯木灰的粒径分布明显不同于谷壳灰、玉米灰、水稻灰,锯木灰中其粒径含量最多的为<0.125mm粒径范围,含量最少的为1mm-2min粒径范围;谷壳灰、玉米灰、水稻灰的其粒径含量最多的为0.125nim-0.25mm粒径范围,含量最少的为1mm-2mm粒径范围。随着粒径范围的变大锯木灰的含量逐减小,而谷壳灰、玉米灰、水稻灰的随着粒径范围的增大含量表现出先增大后减小的趋势。

2、种灰渣中自然含水量和最大持水量的大小均为玉米灰<谷壳灰<水稻灰<锯木灰,吸水率与含水率存在正相关。

3、锯木灰的各化学组成的含量的平均值大小为K> Mg> Ca> Fe> P> Mn> Zn>Cu,谷壳灰、玉米灰、水稻灰的各化学组成的含量相似,平均值大小为

K>Fe>Mg>P> Mn,而Zn、Ca、Cu在该三种灰渣中含量很低且大小相近,其中Zn的平均值为 0.06?0.22g/kg, Ca 的平均值为 0.03-0.07g/kg,Cu 的平均值为

0.08-0.11g/kg。

四种灰渣中K的含量明显高于其他化学组成,尤其以水稻灰中含的K最高,这是因为钾作为植物生长的必要元素,特别水稻秆这种典型的生物质含氧量高,钾在稻秆中所占质量分数较高,且大部分以水溶性或者可离子交换性物质的形式存在,虽然燃烧过程中钾处于易挥发状态,但仍有大部分灰矿物钾残留于灰分中

[19]。锯木灰中Fe、Mg、Ca的含量明显的高于其他三种灰渣,这是因为锯木灰的pH值明显大于谷壳灰、玉米灰、水稻灰,这些碱性化合物具有较高的溶解活性

和移动性,含量随着pH的增加而增加。

第3章生物质灰渣对磷的吸附解吸特性

3.1生物质灰渣对磷的吸附解吸特征

灰渣作为一种常见的固等体废弃物具有较大的比表面积,大的比表面积使其具有固体吸附特性,灰渣颗粒表面的活性基团(-OH)以及灰渣中的活性铁铝均能对水溶性磷酸盐发生吸附作用,这种吸附通常称为阴离子专性吸附或化学沉淀反应,磷酸盐被吸附后,逐渐转化为固体态。灰渣对磷的吸附于解吸能力对土壤中磷的生物有效性有重要影响。

3.1.1不同灰渣对磷的吸附影响

从表3-1中可以看出:四种灰渣磷都有较大的吸附量,随着加入液中磷浓度的增加,灰渣对磷的吸附逐渐增加,在加入浓度为2000mg/L时最大,但增加的速率变缓,在最大浓度条件下灰渣对磷的吸附量为5.15-13.02g/kg。不同灰渣的

最大吸附量差异较大,玉米灰的吸附量最大为13.02g/kg,谷壳灰的吸附量最小

为5.15g/kg,两者相差两倍多。在加入磷浓度为100、200、400、500、800mg/L 溶液中,锯木灰的吸附量最大,谷壳灰旳吸附量最小,四种灰渣的吸附量的大小顺序为:锯木灰>玉米灰>水稻灰>谷壳灰。在加入浓度为1500、2000mg/L的溶液中,玉米灰的吸附量最大,谷壳灰的吸附量最小,四种灰渣的吸附量的大小顺序为:玉米灰>锯木灰>水稻灰>谷壳灰。锯木灰在加入的磷溶液的浓度在1500mg/L时吸附量的增加速率出现急剧下降,玉米灰在加入的磷浓度在2000mg/L时吸附量的增加速率出现急剧的下降,而谷壳灰和水稻灰吸附量的增加速率的拐点则不明显。由于锯木灰含有的Ca、Mg、Fe化合物较高,这些化合物能与水溶态的磷酸盐发生化学沉淀作用,因此锯木灰在不同浓度下其吸附量都较高。

城市垃圾热解气化方案

城市垃圾热解气化案 前言: 垃圾无时无刻不伴随着人类社会生活而存在,垃圾处理也是一个随之不断变革、持续发展的行业。从另一个角度讲,在技术条件足够完善的情况下,垃圾是一种永不枯竭的可利用型资源。本文着重介绍一种新型垃圾处理技术,该技术不仅能有效克服目前国垃圾处理技术的环保缺陷,还能够同时获得几倍于前者的经济效益,真正实现变废为宝,引领未来垃圾处理行业发展向。 一、国垃圾现状与亟待解决的问题 1.伴随着城市化进程加快,全国各地垃圾产生量急剧增加。根据2009年中国城 市建设统计年鉴报告,全国655个设市城市生活垃圾清运量由1980年的3132万吨增加到2008年底的1.52亿吨,平均每年增长速度约为9%。我国目前的垃圾年产量占全球比重已经超过30%,中国已经成为“垃圾围城”最重的。 2.城市垃圾的处理水平偏低。很多地采取露天堆放、自然填沟和填坑等原始式消 纳城市垃圾,部分河流沿岸成为天然垃圾堆放场。该种处理式对土壤、河流、地下水、大气等都造成了重的影响和危害。 3.国城市垃圾无害化处理设施极度缺乏,已建成的垃圾处理设施又有相当部分达 不到环保标准,大多数城市的垃圾对环境的污染日趋重。5亿多平米的城市地面被垃圾侵占,每天向大气释放多达100多种有害、致癌气体。 以北京市为例,目前全市日产垃圾18400吨,其中90%为填埋处理,每年约占用土地五百亩。在这种处理式单一、有效的垃圾分类又较难实现的情况下,没有高效能技术和设施的建设应用,四年后北京就将面临垃圾无法处理的局面。上海市全市日产垃圾近2万吨,在全市垃圾处理厂超负荷运行的情况下,按目前现有的处理

能力,到2020年,全市混合垃圾处理能力及资源化处理能力缺口总计将扩大到约11700吨/日。可见,对城市垃圾实施有效处理,改善城市卫生环境,实现垃圾减量化、无害化、资源化已成为保障国计民生的重大问题。日前住房和城乡建设部、环保部等15部委联合制定的“关于推进城市生活垃圾处理工作的意见”(以下简称“意见”)已报国务院审批,于2011年初下发。“意见”出台后,将大力推动城市生活垃圾处理工作,同时城市生活垃圾处理也将成为地政府城市管理考核的重要容。二、国垃圾处理技术简介 目前国垃圾处理主要使用以下几种技术: 1.卫生填埋处理:这种法是大量消纳城市垃圾的有效措施。但占地面积大,使用 年限短,垃圾分解速度慢(10-20年),填埋区易产生沼气、含毒污水,对空气、土壤和地下、地表水产生污染。大城市边由于土地资源紧,更限制了此类法的应用。 2.堆肥处理:该法通过微生物的生化作用,将垃圾中的有机质分解腐烂,转换成 肥料。但该法对垃圾成分有较高要求,产品肥效低、制造期长,不适应城市生活垃圾的迅速增长。堆肥法对塑料、金属等减量程度不高,后续处理量大,运行费及垃圾转运费用高。由于国未能实现有效垃圾分拣,垃圾中含有重金属和有毒化合物等污染物,导致此种肥料不能进入食物链,因此堆肥产品尚面临销路问题。 3.垃圾焚烧发电:该法是指使用特殊的垃圾焚烧设备,以城市工业和生活垃圾为燃 烧介质,在对垃圾进行焚烧处理的同时,利用其产生的能量发电的一种新型发电式。直接焚烧法可实现城市生活垃圾的减容化和资源化。但其致命缺陷是其焚烧产物中的SOX、NOX、HCl、粉尘和残渣中的重金属。特别是氧化反应产生

生物质气化技术概述

生物质气化技术概述 1. 背景 生物质气化以木头等为原料,在氧气不充足情况下,加热使木头等生物质裂解产生合成天然气,再用合成天然气加热却暖或发电。生物质气化与传统的烧木头等方式加热不同,传统烧木头、秸秆等是在氧气充足情况下燃烧,而生物质气化是在氧气不充分情况下加热。 气化的基本定义为:不完全氧化的热化学反应过程,把含碳物质转化成一氧化碳、氢气、二氧化碳及碳氢化合物如甲烷等。反应温度一般大于700?C,一般在700-1000?C 间。 生物质气化主要过程如下: 生物质预处理后→进入气化炉→加氧气或水蒸气→燃烧气化→产生的气体出来除 焦油→气体冷却→气体净化(除硫化氢、除二氧化碳)→甲烷化→合成天然气(合成气)。 合成气在此作为加热及其他燃料驱动蒸汽机及发电机发电。合成气进一步加工,比如经过费-托反应可以生成液体生物柴油。此过程在二战时,被德国比较大规模地采用,弥补石化柴油不足。 如今,生物质气化的研究与应用主要以奥地利、芬兰、英国和德国为主要国家。 2. 生物质气化主要工艺 2.1生物质气化过程发生了如下反应:

1)水-气反应:C+H2O=H2+CO 2)还原反应:CO2+C=2CO 3)甲烷化:C+2H2=CH4 4)水-气转换反应:CO+H2O=CO2+H2 CO热值:12.64MJ/Nm3 H2热值:12.74~18.79MJ/Nm3 CH4热值:35.88~39.82MJ/Nm3 空气、氧气和水蒸气可作为气化媒介。但不同媒介对过程与结果有不同的影响。空气便宜,但产出气的热值低;氧气贵,产出气热值高;用水蒸气做媒介产生热值与氧气相当,但也耗费比较高的热能。 2.2 生物质气化炉类型 生物质气化炉主要分三种类型,但还6~有其他个性化炉子: 1. 固定/移动床气化炉 -向上排气炉(气体与原料对流) -向下排气炉(气体与原料同方向流动) -错流移动床 2. 流化床气化炉 -循环流化床 -气泡流化床 -气流床(携带床,Entrained flow bed)

生物质电厂灰渣成分及利用前景分析

生物质电厂灰渣成分及利用前景分析 中国新能源发电网2008-07-10 10:09:00 作者:SystemMaster 来源:中国新能源发电网文字大小:[大][中][小] 本文摘要: 生物质电厂灰渣成分及利用前景分析 庄会永a,b徐永进a李军a尹锴c李永庚c李凌浩c肖兵a (a国能生物发电有限公司, 北京100032; c中国科学院植物研究所生态中心, 北京100093) 摘要对于生物质发电厂常用的18种秸秆燃料进行的高温(550℃)模拟燃烧实验表明,秸秆的平均灰分含量为9.33%,秸秆灰分的主要组成为大量不能直接利用的硅酸盐(含量为25.85%)、钙盐(含量为23.34%)以及钾的化合物(含量为17.47%)。而生物质发电厂灰分的钾含量为5.33%(变幅在4.66%~5.93%之间),远远低于高温模拟燃烧秸秆灰分中的平均K2O 含量为17.47%(变幅在9.25%~25.18%之间),与农村常用草木灰含量(5%~10%左右)的含量相持平。生物质发电厂灰分的主要组成为硅酸盐(含量为20.93%)、钾盐(含量为5.33%)以及铁的化合物(含量为1.62%)。此外,灰分中还含有锰、镁、锌、钙、硼等对作物有益的元素,其重金属含量也远远低于相应的国家环保标准。就分析结果来看,生物质能电厂燃烧后的废弃灰渣,仅能具有开发低端肥料的价值。 关键词生物质,秸秆,灰分肥料 Analysis on comprehensive composite of straws ash coming from biomass power plant H.Y. Zhuang a, b, Y.J.Xu a,J.Li a,K. Yin c, Y.G. Li c, G.M. Jiang c a National Bio-Energy CO.,LTD, No 26B, Financial Street, Xicheng District, Beijing 100032, China b Shandong Acadmey of Science,No. 19, Keyuan Road, Jinan, Shandong Province ,250014, China

生物质热解与煤热解气化比较与现状

生物质热解与煤热解气化比较与现状 关键词:生物质煤热解 研究表明[1],生物质与煤的热解特性差异很大;生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高。 现今单一煤种的热解在各方面都已经得到广泛的研究,而生物热解方面也正在取得巨大的研究成果。煤热解的气体产物以一氧化碳、甲烷和氢气为主,其中固体产物为固体焦和焦油。生物质热解气化产物主要是不饱和烃类气体和大量的氢气,还有不饱和烃类液体例如苯等。但是相比之下,由于大量水分的存在,生物质热解气化失重率比较大,而由于硫的掺杂,煤气化热解的产物中含有大量含硫氮化合物,使之燃烧会造成严重的环境污染。 为了提高脱硫脱氮的效率和改善煤单独热解产物不饱和度较高的问题,科学各界开始对生物质同煤共热解进行了研究和探索。研究结果[2]表明,生物质可阻止强粘结性煤热解过程中颗粒之间的粘结,得到粒状焦炭;生物质热解生成较多的H2,有利于煤中硫和氮的脱除;同时随着温度的升高、煤粒度的减小和煤变质程度的降低,热解脱硫和脱氮率增大。 根据研究[2]可知,生物质热解的最大热解峰(低于400摄氏度)和煤的最大热解峰(高于400摄氏度)不重合,而且差值有的在100摄氏度以上。由此可知,生物质与煤共同热解没有明显的协同作用。为了解决不同步热解的问题,科学界提出了两步法煤与生物热解、利用煤的黑度比生物质高的特点以辐射的加热方式进行同步加热、两段管式炉分步控温进行热解等。这些方法的核心都在于利用生物质的富氢产物为煤脱硫脱氮提供天然低廉的氢来源,同时也提高了煤的轻质液相产率,气体中的不饱和烃含量降低,将富裕的生物氢转移到了缺氢的煤焦中。 鉴于生物质与聚合物及生物质与煤的共热解或两步法热解具有很大的优势,加强生物质与聚合物的共热解和生物质与煤的共热解及两步法热解的研究显得很有必要。深入研究生物质与聚合物共热解的协同作用的机理,加强研究生物质与煤共热解中脱硫、脱氮及固体焦具有较强吸附能力的机理,同时,进一步研究改进生物质与煤两步法热解的工艺,为实现生物质中富裕的氢向煤的转移提供可能。 参考文献 [1] 尚琳琳,程世庆,张海清。生物质与煤共热解特性研究 [2] 马光路。生物质与聚合物、煤供热解研究进展

生物质气化制氢

生物质气化制氢 Hydrogen Production from Biomass Gasification 院系: 环境科学与工程学院 专业: 环境工程 姓名: 陈健 学号: M201373228 导师: 胡智泉副教授

2013 年 12 月

摘要 在人类面临严重的能源危机与环境污染的背景下,世界各国都在致力于对洁净能源氢的开发和研究,并取得了一定的研究成果。生物质气化制氢是一项富有前景的制氢技术,已引起了世界各国研究者的普遍关注。 本文重点讨论生物质催化气化制氢的基本原理和基本过程,阐述了氢气的净化分离方法,指出目前我国生物质气化制氢存在的问题和将来的研究方向。 关键词:生物质;气化;制氢。

Abstract In the context of humans face with a series of serious energy crisis and environmental pollution,the world are committed to developing and researching clean energy, and it has made some achievements. The prospective future of hydrogen from biomass gasification makes it a major concern all over the world. This article focuses on the basic principles and fundamental processes of hydrogen from biomass gasification, describes the purification and separation method of hydrogen, pointed out that at present China's biomass gasification problems and future research directions. Key words: Biomass; gasification; Hydrogen production.

垃圾热解气化焚烧技术介绍

如今环境问题越来越成为人们关注的话题,近日,郑州紧跟北上广全面实施“垃圾分类”,更让平日里随处可见的垃圾也成为人们口中的热词,“今天的垃圾你丢对了吗”也成为人们寒暄的话语,这种现象也暴露出全民对于垃圾的关注,更是国家对于生活垃圾无处可放的担忧。 随着“蓝天保卫战”“无废城市”的提出,国家层面也越来越重视固体废弃物带来的新的环境问题,垃圾围城的现象日益凸显,固体废弃物的减量化、资源化、无害化、稳定化处理亟需寻找一条新的出路。 据相关部门公开资料显示,目前我国生活垃圾无害化处理方式主要以焚烧为主,占80%,厌氧消化、卫生填埋、回收利用、堆肥等只占20%左右。生活垃圾焚烧产生的二恶英类物质(PCDDs)是已知的毒性最大的物质之一,焚烧产生的飞灰中含有大量重金属,因此焚烧对大气环境造成比较严重的二次污染。而厌氧消化、卫生填埋不仅需要占用大量宝贵的土地资源,并且渗滤液等有毒有害物质也造成土壤、地下水的严重污染。 塑料垃圾热解气化技术很好的解决了以往塑料垃圾处理中存在的各种环境污染问题。采用塑料垃圾破碎→干化→热解气化的工艺将废塑料热解气化,在此系统中,废塑料经撕碎机撕碎成2 ~ 5公分的碎块(图2),然后经过滚筒干化机(图3)干化后在热解气化装置(图4)中经过高温加热热解气化,产生CO、H2、CH4 等可燃气体,这些可燃气体经过净化系统(图5)冷却净化后直接通入燃烧室进行燃烧,燃烧后的气体通入余热锅炉产生蒸汽提供给附近纸厂使用,余热气体又引入滚筒干化机,使撕碎后的塑料干燥到含水率15%~20%,最后气体脱硫后排入大气中,在这个系统中,整个反应处在贫氧、高温、密闭的条件下,因此杜绝了二恶英类物质的生成,也杜绝飞灰泄露进入大气环境中,此外气化焚

中级职称 生物质与生物质气化 考题

单选题 1.以下哪个被认为是当前生物质气化的技术瓶颈?(5.0分) A.水分问题 B.灰分问题 C.焦油问题 D.温度问题 我的答案:C√答对 2.固定床气化过程中,下列哪个阶段的温度最高?(5.0分) A.干燥层 B.热解层 C.氧化层 D.还原层 我的答案:C√答对 3.下列选项属于下吸式固定床气化炉优点的是()。(5.0分) A.气化效率高 B.燃气热值高 C.焦油量较低 D.热利用率高 我的答案:C√答对 4.固定床气化过程中,下列哪个是生物质反应的第一阶段?( 5.0分)

A.干燥层 B.热解层 C.氧化层 D.还原层 我的答案:A√答对 5.固定床气化炉中提供主要热源的是()。(5.0分) A.干燥层 B.热解层 C.氧化层 D.还原层 我的答案:C√答对 6.生物质的元素组成中,与煤炭相比,下列哪个元素的含量比较高?(5.0分) A.C B.H C.O D.S 我的答案:C√答对 7.生物质气化生产的可燃气体主要用于发电。目前小型系统常采用()气化炉和()发电。(5.0分) A.固定床;燃气轮机

B.流化床;燃气轮机 C.流化床;内燃机 D.固定床;内燃机 我的答案:D√答对 8.秸秆的化学组成中,下列哪个组成含量最高?(5.0分) A.纤维素 B.半纤维素 C.木质素 D.提取物 我的答案:A√答对 9.下列哪个不属于生物质的热转化技术?(5.0分) A.燃烧技术 B.气化技术 C.热解技术 D.沼气技术 我的答案:D√答对 10.在气化技术路线中,通常规模最小的是?(5.0分) A.下吸式固定床 B.上吸式固定床 C.流化床

煤气化灰渣资源化利用策略研究

煤气化灰渣资源化利用策略研究 摘要:煤炭是我国社会经济发展重要的产业,为国民经济发展提供物质基础。 煤化工行业作为其中重要的一个环节,为国计民生提供甲醇、合成氨、天然气、 乙二醇等化工原材料。煤炭具有成分复杂、生产工艺繁琐、原料提纯困难等特点,因此煤化工也是高能耗、高污染的行业。随着人们对环保、绿色、健康理念的重视,我国煤化工行业面临巨大的机遇与挑战,能否解决好行业发展中的环境污染 问题成为制约煤化工加速发展的重要影响因素。基于此,本文就煤气化灰渣资源 化利用策略进行简要阐述。 关键词:煤气化;资源化;利用 近年来,国家提出了科学可持续发展煤化工的理念。而煤气化灰渣占煤化工 固废很大比例,对其进行综合利用是整个煤化工实现绿色可持续发展的重要因素。对煤气化灰渣进行高效合理利用,既可以消除灰渣引带来的环境危害,又可以实 现“化害为利、变废为宝”,节约资源。因此,研究煤气化灰渣资源化途径、开发 灰渣综合利用策略,有益于提高我国自主供应水平,对我国今后合理开发利用资源、保护生态环境、建设资源节约型、环境友好型社会具有重要的意义。 1 煤气化灰渣的特性 随着现代煤化工的发展,气流床气化技术逐渐成为煤气化技术的主流,主要 包括干煤粉加压气化技术和水煤浆加压气化技术两种。气流床气化技术根据煤质 的灰熔点不同,气化操作温度高达1400℃-1600℃,高温合成气夹带着灰渣经过 水浴激冷至220℃左右。灰渣分为细灰和粗渣两种,它们随着气化炉运行条件的 不同而呈现不同的外观形态。细灰为不完全反应的细颗粒,含有20%-40%残碳成分,颜色成灰黑色,比表面积15m3/g,空隙发达。粗渣的残碳含量比较低,一般在1%以下,颜色呈现棕色、灰色、黄褐色的颗粒物质。灰渣成分与气化原料煤 灰分含量、组成以及生产工艺相关,主要取决于煤中的无机矿物质、有机物成分。灰渣成分复杂,主要成分为二氧化硅,大约占39.67%;三氧化二铝大约占 26.77%;四氧化三铁大约占12.80%;氧化钙大约占9.96%;氧化镁大约占2.43%;还要一些残余碳等大约占8.37%。灰渣的化学元素除含有大量的硅、铁、铝、钙、镁、碳外,还含有少量铜、铅、汞、砷、铬、镍、锰、钡、锶等以及微量的有害 元素。另外,煤气化灰渣中还含有少量的放射性元素,比如:铀、钍等。 2 煤气化灰渣的资源化途径 灰渣的利用可以分为多种形式,包括回填结构、填筑路基等低值化形式;制 造水泥等中值化形式和土壤改良、分选化合物等高值化形式,具体形式如下: 2.1 热利用 气化细灰中含有20%-40%残碳,热值较高。在国内有很多工厂尝试将气化细 灰掺烧到锅炉中再次燃烧,但是效果不理想,主要原因为气化细灰的空隙发达, 经过普通脱水处理后,水分仍然高达50%,很难实现气化细灰的输送。宁夏神耀 科技有限责任公司开发的气化细灰脱水干化一体化成套技术是将脱水和干化过程 有机结合,可将气化细灰脱水至20%以下,既提高了细灰的热值,又可解决气化 细灰的输送问题,为气化细灰的燃烧再利用提供技术保证。气化细灰经过再次燃 烧脱碳后,碳含量可降至1%左右,为气化细灰的进一步资源化利用打开了通道。 2.2 回收多种金属 目前,欧美等国家已经成功的采用磁选和筛分等技术从煤气化灰渣中提取出 金属。还有一些工厂采用涡电流成功的分离出有色金属。

【创新案例】生物质热解气化技术

【创新案例】生物质热解气化技术 1背景 随着日益严峻的环境污染问题,各国政府都越发重视可再生能源的开发与应用。生物质气化技术作为新一代生物质利用技术,具有能源转化效率高、设备简单、投资少、易操作、占地面积小、不受地区、燃料类型和气候限制等特点,在为工业生产提供生产必须的电和热(热水/蒸汽)的同时,副产品可被用于制备炭基肥、活性炭及冶金行业保温材料等。项目环保性能和经济性能俱佳,对于降低工业生产用能成本,促进我国能源利用朝着绿色可持续方向迈进具有重要意义。 2解决方案 费曼能源采用国际领先的全新一代生物质气化技术,该技术通过精准控制热解可以将生物质转化为高品质合成气,合成气可用于燃烧生产工业生产必须的电能及热能(热水/蒸汽),副产品生物炭具有较高的商业利用价值。由于副产品的高效利用可显著降低电能及热能的生产制备成本,在帮助工业企业实现低碳化绿色生产的同时,显著降低工业企业用能成本。目前,可利用的生物质原料包括:稻壳、竹屑、木屑、烟叶梗、山核桃壳、棕榈壳、椰子壳、玉米芯渣、甘蔗渣、柚子壳、酒糟、制药残渣、造纸剩余物、干化污泥、高聚物废弃物等。3生物质热解气化反应原理4设备示意图5技术对比与其他

生物质供热应用方式相比,生物质热解气化的优势如下:6案例根据国家及江苏省政府清洁能源替代燃煤锅炉的相关政策,江苏泰兴化工园区内的多家化工企业,急需淘汰燃煤锅炉。费曼能源作为项目所有者及实施方,以“生物质天然气”多能互补方式,以稻壳为原料,为园区企业提供热蒸汽等清洁能源,副产物稻壳炭作为保温材料销售给钢厂或有机肥公司。 项目地点:江苏泰兴项目规模:18t/h(15t/h 备用)原料用量:2.66万吨/年蒸汽产量:6.45万吨/年稻壳碳/灰分量:0.63 万吨/年客户类型:食品、化工、印染、电池等所有生产用热企业解决问题:(1)降低企业用能成本,吨蒸汽使用成本降低20元/吨以上(2)降低企业清洁化改造成本,蒸汽管网直接连通各用热企业 (3)帮助企业实现绿色生产,彻底杜绝自备锅炉环保不达标而造成的非生产性停产。技术创新:“生物质天然气”多能互补方式该项目的产品分为能源产品(热蒸汽)和副产品(稻壳炭)。其中能源产品是客户主要的需求,副产品销往附近钢厂用于熔炼工艺保温材料,为项目创造另一部分收益。稻壳炭还可进一步深加工,做成炭基肥等,真正实现(农业能源环保)循环经济生态圈。

热解气化

3.2 热解气化处理技术 废水污泥在热解气化过程中将经历一系列的物理和化学变化,在缺氧性、有蒸汽参与的还原性气氛条件下污泥将发生一系列化学反应(如表4所示)。 表4: 污泥在热解气化过程中的主要化学反应 化学反应式 处理过程中的热行为 C(燃料中的碳)+ O2 →CO2 + 热量 放热 C + H2O(蒸汽)→CO + H2 吸热 C + CO2 →2CO 吸热 C + 2H2 →CH4 放热 CO + H2O →CO2 + H2 放热 CO + 3H2 →CH4 + H2O 放热 污泥的热解过程可分为三个阶段:一,干燥期;二,热解期;三,需热(气化反应)期。在干燥阶段,污泥中的水分以蒸汽形态脱离污泥相,根据所采用的热解气化装置类型的不同,在干燥阶段干污泥的产率从85%到93%(占绝干污泥的比率)不等(资料来源:Furness and Hoggett, 2000),干燥阶段的操作温度约为150℃(302℉);污泥干燥完成后,其温度即被提高到400℃(752℉),进入到热解反应阶段;在最后一个阶段,热解产生的可冷凝气相产物和不凝性气相产物以及热解焦产物发生气化反应(需热阶段),热解产物被氧化、然后再被还原,并被转化为焦渣块、蒸汽、焦油及气体产物。污泥的氧化反应剂为二次送入炉中的、经过化学式量计算并计量过的氧气。在气化阶段,炉膛的操作温度范围在800到1400℃(1472至2552℉)之间,为了维持气化反应所需的温度,需补充

加入煤炭或石油焦做为辅助燃料。 需热期之后,从炉中引出的高温合成原料气体可采用水、泥浆和/或冷的循环合成气进行急冷降温处理,在进行除尘处理之前也许还需要对合成原料气再进行一次冷却处理,此时可采用热交换器(安装于合成气冷却装置系统内)。当采用水喷淋法除尘方式时,颗粒物被水捕集,然后对含尘水进行过滤处理;也可以采用干式滤尘器或热气体过滤器来除去合成气中的颗粒物。合成气在被冷却的过程中,若温度降到水的露点以下时,合成气中的水分即会发生凝结;洗涤器和合成气冷却装置中排出的水中肯定含有一定量的可溶性气体成分(如氨、氰氢酸、氯化氢、硫化氢等)。此时的合成气是否还需要进一步精制处理则取决于其最终的用途,但不论最终用途如何,通常都会对其进行脱除硫化物(主要为硫化氢)处理并回收可进行市售的商品级高纯硫产品。从合成气冷却和净化处理装置中排出的水经过脱除固体颗粒物处理之后,一般被输送回热解气化炉或洗气器中循环使用;循环使用时,必须对其中一定比例的水流进行净化脱盐处理以避免水中可溶性盐类的累积,脱盐处理后的水可继续循环使用,也可将其中的一部分排放到常规污水处理装置。合成气冷凝水还应当采取蒸馏法来脱除其中的氨、二氧化碳和硫化氢成分。污泥热解气化的三个阶段均在同一台气化反应器中进行,反应器的运行工艺参数变化范围则与其型式有关。 最为常用的气化装置有固定床反应器、流化床反应器和循环(移动)床反应器三种类型。固定床和流化床气化装置通常设置有耐火材料内衬或水冷壁以防止高温对反应腔室的损害,这两类气化装置常采用旋转式或固定式炉排设计。移动床气化装置不常见,一般采取在金属材质的反应腔室中设置间接加热系统的方式来确保反应的温度。近年来新开发的废水污泥热解气化工艺中,最引人关注的是“Lurgi -Rhurgas工艺”,这是一种基于循环流化床技术的新工艺,该技术系采取强化污泥颗粒与循环流态化热媒之间的接触几率,从而使产出的合成气热值高达23MJ/m3。 与废水污泥热解气化装置污染物排放方面有关的数据非常少,这可能与污染物排放情况变化多端、难以获得稳定数据有关。对污泥热解气化过程污染物排放情况有重要影响的因素有:装置类型、污泥特性、操作工艺条件(温度及压力)、以及气相氛围操作条件等。法律规定必须大幅降低排量的废水污泥热处理过程的

生物质气化技术

生物质气化技术 一、常见生物质气化炉类型 1、生物质气化按照使用的气化炉类型不同分为固定床气化和 流化床气化两种。固定床气化炉是将切碎的生物质原料由 炉子顶部加料口投入固定床气化炉中,物料在炉内基本上 是按层次地进行气化反应。反应产生的气体在炉内的流动 要靠风机来实现,安装在燃气出口一侧的风机是引风机, 它靠抽力(在炉内形成负压)实现炉内气体的流动;靠压 力将空气送入炉中的风机是鼓风机。固定床气化炉的炉内 反应速度较慢。按气体在炉内流动方向,可将固定床气化 炉分为下流式(下吸式)、上流式(上吸式)、横流式(横 吸式)和开心式四种类型。 a、 下流式固定床气化炉示意

气固呈顺向流动。运行时物料由上部储料仓向下移动,边移动边进行干燥与热分解的过程。在经过缩嘴时,与喷进的空气发生燃烧反应,剩余的炭落入缩嘴下方,与气流中的CO2, 和水蒸气发生反应产生CO 和H2。可以看出,下吸式气化炉中的缩嘴延长了气相停留时间,使焦油经高温区裂解,因而气体中的焦油含量比较少;同时,物料中的水分参加反应,使产品气中的H2含量增加。 b、 上流式固定床气化炉示意 气固呈逆向流动。在运行过程中湿物料从顶部加入后被上升的热气流干燥而将水蒸气带走,干燥后的原料继续下降并经热气流加热而迅速发生热分解反应。物料中的挥发分被释放,剩余的炭继续下降时与上升的CO2及水蒸气发生反应产生CO和H2。在底部,余下的炭在空气中燃烧,放出热量,为整个气化过程供热。由图2 , 可见,上吸式气化炉具有结构简单,操作可行性强的优点,但湿物料从顶部下降时,物料中的部分水分被上升的热气流带走,使产品气中H2的含量减少 横流式固定床气化炉示意

垃圾热解气化项目报告书

垃圾热解气化项目报告书 一、垃圾热解气处理技术简介 垃圾热解气是利用垃圾中有机物的热不稳定性,在对其进行加热蒸馏,使有机物产生裂解,经冷凝后形成各种新的气体、液体和固体,从中提取燃料油、可燃气的过程。在运行过程中所生成的气体含有大量甲烷、一氧化碳和氢气,可以用于工业燃气,具有良好的经济效益。 垃圾热解气技术的环保特点在于:能从根本上解决二噁英的生成,同时减少空气中有毒物质的排放量,将重金属固化并有效回收利用,有利于城市环境的发展。 北京宝能科技有限公司垃圾热解气化技术是针对城市垃圾差异性较大所提出的一套低成本、适合中国国情的城市生活垃圾清洁综合利用技术,主要是让城市生活垃圾在还原性气氛下发生反应,从源头上避免二噁英的生成。 根据垃圾处理过程,可日处理100—2000吨生活垃圾,每吨生活垃圾(干基)最低可产生约1500立方米的燃气,热值约1500大卡/立方米,能够满足一般工业燃气的需要。而垃圾处理后产生5%―8%体积的固体无机物,可作为生产建筑砌块。酸性气体作为气化剂在气化炉中得到处理。清洁处理后的合成气可作为燃料供给锅炉,也可经过高效燃气轮机发电机系统发电。 1.1开发垃圾热解项目的市场背景 1.1.1.我国垃圾资源概况 垃圾是一种可再生资源,如果能够有效的资源整合利用,能够创造巨大的经济效益,目前政府部门也越来越重视垃圾资源的回收问题。随着城镇化工业化进程加快,未来我国生活垃圾处理设施的建设力度将大幅增加。 垃圾处理行业拥有着庞大的市场容量,据统计,全球每年排放各类垃圾近5亿吨,中国主要城市年产生活垃圾1.5亿吨,并且还在以每年8%—10%的速度攀升。建设部2010年调查结果显示,全国600多座城市中,有1/3以上正在陷入垃圾重

生物质气化技术发展分析

文章编号:0253?2409(2013)07?0798?07  收稿日期:2013?06?09;修回日期:2013?06?24三  基金项目:国家科技支撑计划(2012BAA 09B 03);国家自然科学基金(51176194)三 联系作者:阴秀丽,E?mail :xlyin @https://www.360docs.net/doc/631350684.html, 三 生物质气化技术发展分析 吴创之,刘华财,阴秀丽 (中国科学院广州能源研究所中国科学院可再生能源重点试验室,广东广州 510640) 摘 要:生物质气化技术在世界范围内得到了广泛应用三研究综述了生物质气化技术的发展现状和应用情况,阐明了生物质气化技术目前存在的主要问题;对中国生物质气化生活供气和工业供气典型项目的经济性进行了分析,在此基础上对中国生物质气化技术应用前景进行了展望;结合中国生物质气化产业发展面临的新形势,为生物质气化产业的发展提出建议三关键词:生物质;气化技术;气化应用;现状;前景中图分类号:TK 6 文献标识码:A Status and prospects for biomass gasification WU Chuang?zhi ,LIU Hua?cai ,YIN Xiu?li (Key Laboratory of Renewable Energy ,Guangzhou Institute of Energy Conversion , Chinese Academy of Sciences ,Guangzhou 510640,China ) Abstract :Biomass gasification for energy utilization has been wildly used.The development and applications of biomass gasification technologies were reviewed in this paper.Special attention was paid to major problems encountered in practical use.A comparison of economical performances of gas supply for livelihood and industry was made.The prospects of biomass gasification in China were put forward.Taking into account the new situation ,several suggestions were given for the development of biomass gasification industry.Key words :biomass ;gasification ;applications ;status ;prospects 1 国外生物质气化技术发展现状 1.1 技术现状 经过几十年的发展,欧美等国的生物质气化技术取得了很大的成就三生物质气化设备规模较大,自动化程度高,工艺较复杂,主要以供热二发电和合成液体燃料为主,目前,开发了多系列已达到示范工厂和商业应用规模的气化炉三生物质气化技术处于领先世界水平的国家有瑞典二丹麦二奥地利二德国二美国和加拿大等三欧洲和美国在生物质气化发电和集中供气已部分实现了商业化应用,形成了规模化产业经营三20世纪80年代末90年代初,主要利用上吸式和下吸式固定床气化炉来发电或供热,规模大都较小三由于下吸式产气焦油含量较低,近来已逐渐占据主导地位,尤其以发电为目的时,主要在中国和印度使用三近年的大中型气化发电系统多采用常压循环流化床,容易扩大,原料适应性好,对原料尺寸和灰分要求不高三空气气化常用于发电和供热,富氧气化常用于气化合成,加压气化则用于IGCC (整体气化联合循环发电系统)二气化合成燃料或化工品三在过去的二三十年里,欧洲和北美的研究和 技术都有了显著的进展,建立了一批示范或商业工程,部分典型工艺和应用见表1三1.2 应用情况 生物质气化目前主要应用于供热二窑炉二发电和合成燃料,具体见图1三各种应用的规模都在增长,CHP (热电联产)的增长尤其快,已成为目前最主要的利用方式三除了上述技术,生物质气化还有其他新型利用,比如燃料电池等三 从20世纪80年代起,生物质气化被美国二瑞典和芬兰等国应用于水泥窑和造纸业的石灰窑,既能保证原料供给又能满足行业需求,这种应用方式简单可靠,具有较强的竞争力,但应用却不多三 20世纪90年代起,生物质气化开始被应用于 热电联产,多用柴油或燃气内燃机,对燃料品质和系统操作的要求较高,成本也较高,其应用推广受到限制,常常需要政府的支持和补贴三受煤的IGCC 应用结果的推动,生物质IGCC 成为90年代的关注热点,IGCC 系统有望在中等成本和中等规模下提供高发电效率,研究者对其进行了大量的研究并建设了几个示范工程,主要集中在欧洲,但由于系统运行 第41卷第7期2013年7月 燃 料 化 学 学 报 Journal of Fuel Chemistry and Technology Vol.41No.7 Jul.2013

浅论垃圾热解气化技术

浅析垃圾热解气化技术 垃圾处理方式随着技术的更新和发展逐渐优化,从一开始的填埋,到生物质利用,再到现在减量化效果最好的焚烧,每一步的技术更新都引领着行业的发展方向。和垃圾焚烧一样,能做到真正3R 原则的处理方式,是垃圾热解法。但据统计,国内垃圾主要以填埋、焚烧和堆肥为主。填埋是目前的主要处理方式,占比近一半,焚烧占12注右,堆肥不到10%仍有30%勺生活垃圾未能处理。 那么为什么和垃圾焚烧一样能达到3R原则的垃圾热解技术却没能占得市场先机呢?我们先来了解什么是垃圾热解技术。 定义及作用原理:热解法和焚烧法是两个完全不同的过程。焚烧是一个放热过程,而热解需要吸收大量热量。焚烧的主要产物是二氧化碳和水,而热解的主要产物是可燃的低分子化合物:气态的氢气、甲烷、一氧化碳;液态的甲醇、丙酮、醋酸、乙醛等有机物及焦油、溶剂油等。固态的主要是焦炭和炭黑。

热解法是利用垃圾中有机物的热不稳定性,在无氧或缺氧条件下对其进行加热蒸馏,使有机物产生裂解,经冷凝后形成各种新的气体、液体和固体,从中提取燃料油、可燃气的过程。热解产率取决于原料的化学结构、物理形态和热解的温度与速度。 热分解过程由于供热方式、产品形态、热解炉结构等方面的不同,热解方式各异。 按热解温度不同,1000OC以上称为高温热解,600 -700 oC称为中温热解,600oC以下称为低温热解。按供热方式不同,分为直接加热法和间接加热法。直接加热法指垃圾部分直接燃烧,或向热解反应器提供空气、富氧或纯氧作为补充燃料。纯氧作催化剂会产生CO2 H2O 等气体,其混在热解可燃气中,稀释了可燃气,会降低热解气的热效应。采用空气作催化剂则含大量N2,更稀释了可燃气,使热解可燃

生物质灰渣的利用讲解学习

生物质灰渣的利用

生物质灰渣的性质研究 摘要 生物质灰渣的pH高,含有丰富的钾、硅以及多种微量元素,在农业生产中可以用作土壤改良剂和制取多元复合肥料。以往对生物质灰渣的研究和资源化利用大多局限于建筑、化工等行业方面,而在农业方面特别是农业化学行为的研究却鲜有报道。本文以四种不同类型的生物质灰渣(锯木灰、谷壳灰、玉米灰、水稻灰)为研究对象,分析了生物质灰渣的物理化学特性,探讨灰渣在不同浓度下对磷吸收、解吸特性。 关键词:生物质灰吸附解吸物理化学特性 第1章背景及研究意义 中国作为一个传统的农业大国,每年农业生产和农村生活中不可避免会产生品种多、数量大以及形态各异的农业废弃物,农业废弃物包括作物稻秆、果壳、农产品加工废弃物、禽畜粪便等,而这些农业废弃物具有污染环境、储存再生利用的特性。中国作为农业废弃物产出量最大的国家,如何充分有效地利用并将其加工转化“变废为宝”,对农业资源的有效利用,减少环境的污染,改善农村生态环境具有重要的意义。目前,国内外对农业废弃物的资源化利用主要有词料化、肥料化、能源化以及基质化等几个方向。随着人类对能源的需要不断增加,应用农业废弃物直接燃烧产能越来越受到各国的重视,以农作物稻杆为主的生物质直燃发电,不仅能使环保和节能效益显著,也是我国大力发展循环经济,利用可再生资源的重要尝试。当今,生物质直接燃烧产能进入大规模推广阶段,大规模的生物质燃烧,也相应的产生了大量的生物质灰。根锯环境保护和资源开发的需要,提高生物质灰的利用价值,而不只是简单的填埋处理,成为循环经济发展中的问题。 1.1农业废弃物的特性 农业废弃物是指在整个农业生产过程中被丢弃的有机类物质,主要指农林业生产过程中产生的植物残余类废弃物;畜牧渣业生产过程中产生的动物类残余废弃物;农业加工过程中产生的加工类废弃物;农村城镇生活垃圾。通常所指的农业废弃物是种植业生产过程中产生的作物稻秆和养殖过程中产生的畜禽粪便[1]。农业废弃物具有数量大、分散性、季节和周期性、差异性等特点。中国是 世界上农业废弃物产出量最大的国家,锯统计,我国每年产生畜禽粪便量26亿t,农作物稻杆7亿t,蔬菜废弃物1.0亿t,乡镇生活垃圾和人粪便25亿t,肉类加

立式连续热解气化焚烧技术(修改)

GYY立式连续热解气化焚烧技术--废弃物焚烧最佳解决方案 光耀环境工程

概述 光耀环境工程(光耀环境),是光耀能源技术股份全资子公司,光耀环境以高新技术为先导,系专业从事节能环保领域的技术开发、工程设计、产品制造、设备成套及工程总承包的国家级高新技术企业。 光耀环境工程固废事业部从事废弃物焚烧系统工程的咨询、总包(EPC)、焚烧系统的设备研发和制造、焚烧系统的维护维修、代管运行;废弃物处置项目的投资运营(BO)。 公司拥用GYY型立式连续热解气化焚烧系统的全套技术,秉承焚烧”3T+1E”的设计理念,保证系统运行稳定、焚烧彻底减量(≤5%)、尾气排放全面达标,二噁英排放达到欧盟标准。该系统全流程密闭,不存在不可控的漏风点,减少了漏风结露腐蚀。采用塔篦式灰渣下泄装置,灰渣下泻顺畅。 立式连续热解气化焚烧系统适用于中小规模生活垃圾、医疗废弃物、市政污泥、工业废弃物(固体/半固/液体)的焚烧减量处理。目前公司已形成单线日焚烧5吨至300吨的生产能力。 坚持诚信、注重业绩、渴望变革是我们的核心价值观,我们拥有国家节能环保领域的权威专家团队,以及适合人才发展的企业运行机制。我们承诺:将永远保持坚定的诚信,对客户极高的热情,为用户提供高价值解决方案和服务。

GYY立式连续热解气化焚烧技术 GYY型立式热解焚烧处置系统由自动进料、热解气化炉、二燃室、换热器、烟气净化、自动控制(含在线监测)及余热综合利用等组成。核心部分为无需添加辅助燃料助燃的立式热解气化焚烧炉,是公司自主研发的废弃物焚烧专用设备。 将国际流行的热解气化技术引入立式圆筒热解气化焚烧炉,与传统的炉床炉焚烧机理有机结合,重点针对传统的炉床炉和热解气化炉的缺点和不足之处,在炉型结构上和焚烧技术方面进行了独特的创新设计。在结构创新上,采用主燃室,二燃室和余热锅炉比邻布设,使热能得以集中和充分利用;多功能可控炉排,使垃圾均匀布撒,且有破拱通风作用;高效导热火墙有效地沟通两个燃烧室的热学空间;运行时不需添加辅助燃料,靠废物自燃实现废物燃烬烧结。在焚烧技术创新上,采用副炉膛以干燥热解气化为主,烟气下行;主炉膛中部以深度焚烧为主,烟气上行,两种烟气强制混合并控制在最佳的空间位置侧向进入二燃室进一步燃烧,使废物的固、气相态均得到充分燃烧。从而使生活垃圾焚烧处置达到国家标准要求。 在集成创新上,采用磁力雾化方式的半干法急冷脱酸+活性炭粉预敷+袋式除尘器除尘的烟气净化处理工艺,可使烟气稳定达标排放;自动提升上料和自动除渣系统大大地降低了操作人员的劳动强度,保证了操作人员的安全卫生;磁力雾化方式的半干法急冷脱酸的烟气净化系统使整个生产过程中无工艺废水产生,达到了零排放。PLC+PC的计算机控制系统能对焚烧控制参数和烟气净化处理的工艺参数实施有效地调节和控制,并实现对所有运行参数的监测、显示、记录和控制、数据传输、系统的安全保护等功能,既提高了管理水平,又保证了处置效果。主要技术指标与国外同类技术相当,在国同类技术中处于领先水平,可有效地解决中小城市生活垃圾焚烧处置工艺设备的国产化或本土化问题。 项目产品已经通过了国家认可的专业机构的检测,检测结果为各项指标符合国家规和标准要求(尤其是二恶英的检测指标低于欧盟检测标准),该项目成果达到了国领先水平,通过推广应用将会取代同类设备的进口。 GYY立式热解气化焚烧系统技术参数:

生物质气化技术

在原理上,气化和燃烧都是有机物与氧发生反应。其区别在于,燃烧过程中氧气是足量或者过量的,燃烧后的产物是二氧化碳和水等不可再燃的烟气,并放出大量的反应热,即燃烧主要是将生物质的化学能转化为热能。而生物质气化是在一定的条件下,只提供有限氧的情况下使生物质发生不完全燃烧,生成一氧化碳、氢气和低分子烃类等可燃气体,即气化是将化学能的载体由固态转化为气态。相比燃烧,气化反应中放出的热量小得多,气化获得的可燃气体再燃烧可进一步释放出其具有的化学能。 生物质气化技术首次商业化应用可追溯1833年,当时是以木炭作为原料,经过气化器生产可燃气,驱动内燃机应用于早期的汽车和农业灌溉机械。第二次世界大战期间,生物质气化技术的应用达到了高峰,当时大约有100万辆以木材或木炭为原料提供能量的车辆运行于世界各地。我国在20世纪50年代,由于面临着能源匮乏的困难,也采用气化的方法为汽车提供能量。 20世纪70年代,能源危机的出现,重新唤起了人们对生物质气化技术的兴趣。以各种农业废弃物、林业废弃物为原料的气化装置生产可燃气,可以作为热源,或用于发电,或生产化工产品(如甲醇、二甲醚及氨等)。 生物质气化有多种形式,如果按照气化介质分,可将生物质气化分为使用气化介质和不使用气化介质两大类。不使用气化介质称为干馏气化;使用气化介质,可按照气化介质不同分为空气气化、氧气气化、水蒸气气化、水蒸气-氧气混合气化和氢气气化等。 生物质气化炉是气化反应的主要设备。生物质气化技术的多样性决定了其应用类型的多样性。在不同地区选用不同的气化设备和不同的工艺路线来使用生物质燃气是非常重要的。生物质气化技术的基本应用方式主要有以下四个方面:供热、供气、发电和化学品合成。生物质气化供热是指生物质经过气化炉气化后,生成的生物质燃气送各入下一级燃烧器中燃烧,为终端用户提供热能。此类系统相对简单,热利用率较高。

生物质燃烧灰渣利用概述

生物质燃烧灰渣利用概述 XXX 摘要:在人类面临着能源与环境双重压力的今天,生物质能作为一种清洁、可再生的能源日益受到人们的亲睐,于是生物质发电作为一种清洁的电力生产方式得到了迅速发展。生物质燃烧发电是一种简单直接的方式,我国也已建立了多家生物质直燃、混燃发电厂。生物质电厂运行过程中会产生大量的灰渣,其填埋不仅会占据大面积土地,还给环境带来了巨大的压力,且生物质灰渣中含有较多的K、N、S、P等无机元素,有一定的回收利用价值,因此,研究对生物质灰渣更加合理、高效的利用是十分必要的。本文将对目前生物质灰渣的利用情况做简要概述。 关键词:生物质电厂、灰渣特性、综合利用 1. 前言 随着化石能源的大量开采、利用,能源危机与随之而来的环境污染问题已成为全世界关注的焦点,此两点问题的重要性已不必再多加赘述。在这个全球大背景下,化石能源的清洁高效利用和开发清洁、可再生的新能源也成为了研究的两大热点领域。电力行业是典型的能源行业,传统的火电更是要消耗大量的化石燃料。我国是煤炭大国,火力发电一直以燃煤为主。但是煤炭作为一种不可再生的能源,总会面临资源枯竭的一天。而且煤炭在燃烧过程中会产生SO2、NOx等气态污染物以及粉尘灰渣等固态废弃物,需要在后续过程中进行脱硫、脱硝、除尘等污染物减排处理。因此、用更加清洁的燃料代替煤炭或者研究煤炭的清洁高效利用是十分必要的。 风能、太阳能、水能、地热能、潮汐能和生物质能都是典型的可再生清洁能源,其中生物质能是唯一可再生的碳源,有着很广阔的研究和发展空间。生物质能是指蕴藏在生物质中的能量,能够作为能源使用的生物质资源有很多种,大体可以分为植物和非植物两大类。其中植物类主要包括森林、农作物、草类等陆生植物和水草、藻类等水生植物;而非植物类主要有动物粪便、有机废水、生活垃圾等。我国拥有丰富是生物质资源,据测算,我国理论生物质资源量约为50亿吨/年。如果这些生物质资源得到充分的利用,将大大缓解我国的能源和污染物治理问题。

相关文档
最新文档