某桥桥墩结构计算

某桥桥墩结构计算
某桥桥墩结构计算

设计计算书

设计人: 复核人: 日期: 日期:

2 0 17年2月

F匝道桥桥墩计算

一、概述

本桥上部结构采用 2 X(4 X25)+4 X(3 X25)PC连续箱梁+1 X43.5简支钢箱梁+4 X17钢筋砼连续箱梁+1 X33简支钢箱梁+ (18+20.5 )+3 X21+3 X46+4 X25米PC连续箱梁,下部桥墩采用花瓶墩、板式墩配桩基础。现选取其中有代表性的21#墩(花瓶墩(1.7X2.2米),上部为43.5米钢箱梁接4x17米钢筋砼现浇梁)、23#墩(板式墩(4x1.8米),上部为4x17米钢筋砼现浇梁)、25#墩(花瓶墩(1.5X2.0米),上部为33米钢箱梁接4x17米钢筋砼现浇梁),相应构造见下图:

■O

立面

21#墩构造(单位:cm )

if 侧⑥

23#墩构造(单位:cm )

31

110

40

25#墩构造 (单位:cm )

承台 : C30砼 桩基 :

C25砼

、使用阶段荷载效应

1) 结构恒载

2) 活载:包含活载引起的竖向反力及引活载引起的纵横向弯矩

3 )风荷载:按规范 JTG D60 — 2004第437条计算:单独风荷载作用时选用 27.4m/s

(1/100 ),风荷载与其它荷载共同作用时选用 25.8 m/s (1/50 ) 4 )船撞击力:根据《荆东互通水中桥墩群防撞设施设计说明》确定,并考虑 1.1的安全系

数:

桥梁

桥墩 防撞船型 撞击速度

防撞力标

防撞设施 方案

增设防撞

设施后船 撞力

撞击点距 离承台顶

立面

320

1 2】0

W0

材料:

墩身:C40砼

其中21#墩墩高:32.3m , 23#墩墩高:

33.4m , 25# 墩墩高:32.9m 。

①恒载+活载+风荷载

②恒载+活载+船撞力

③恒载+风荷载+船撞力

④恒载+风荷载(百年一遇)三、结构内力计算

5 9 9

根据上述计算,结构横桥向强度由恒载+风荷载+船撞力(偶然组合)控制,顺桥向强度由恒载+活载+船撞力(偶然组合)控制,结构正常使用阶段由恒载+活载+风荷载组合控制。

四、截面配筋验算

附表1 :

21#墩顺桥向墩身承载力及裂缝验算,计算过程及结果:

1.已*[]的计算参数

结构重要性系墩To 1.1

构件的计算长度「5)40

截面咼度h(n)2, 2载面宽度b(m) 1.7

纵向受拉的普通钢筋至受拉边的距离1;(m)0. 1纵向受压的普通钢筋至受压边的距离£ <⑷0. 1

纵向受拉的普通钢筋直径(mm)28

纵向受拉的普通钢筋根数32

纵向受拉的普通钢筋裁面面积A s (c197.0

m f

纵向受压的普逋钢筋直径(小)28

纵向受压的普通钢筋根数32

纵向受压的普通钢筋裁面面积A\i f )1ST. 0混凝土轴心抗压强度设计值fcdtMPa)18.4普通钢筋抗拉强度设计值仙d(MPR3X)普通钢筋抗压强度设计值f J sdfMPa)330普通钢筋的弹性模量E E(lT a) 2.0E-405混凄土的极限压应变& =.0. 0033

轴向力Nz(W 弯矩M/KNm) 相对界限壹压区高度系数P

正嘗面抗压承载力复核

规范《JTG D62-2004》第5.3. 6-1^

因为枸件沖大偏心受压枸件』所以390(MPa) 7 N^=7005- 26 (刚)

25198. 07(KM)

満足规范公式5. 3. 5-1

规范《:m恥2-2X4》第乩3. 5-2^

V :x ie—17496.837E2(KN.m)

兀氐備£)4几=55771.30

満足眾范公式5. 3. 5-271S6. 6 &26B.4 0-56 0,8

裂缝宽度验算

K已知的计算参数

截面高度h Cm) 2.2

截面宽度b (ID) 1.7

偏心受压构件的计算长度40

纵向受拉的普通钢筋根数32

纵向受拉的普通钢筋换算直径cKirm)23

纵向受拉的普诵钢筋的弹性模量血(冊刃200000

纵向受拉的昔通钢筋的截面面积仏(曲)197. 04

竟拉区昔通钢筋至頁拉边的距离业(in)0.1

作用长期效应组合的轴力叫(KN)680&. 7

作用长期效应组合的彎矩听(KN. m)1584. 2

作用短期效应组合的轴力叽(烦)718S. 6

作用短期效应组合的弯矩Ms(KW. ID)2390. 5

钢筋表面形状系数51

与构件受力性质有关的系数內 6 9 '

满足规范公式535-1

Y °N d e f cd bx(h )

2 f'sd A's (h ° a's )

丫 0Nie =

裂缝宽度验算

1、已知的计算参数

截面咼度h (m

2.2

截面宽度b(m)

1.7

偏心受压构件的计算长度L 0(m)

40

纵向受拉的普通钢筋根数

28

纵向受拉的普通钢筋换算直径d(mm)

28

纵向受拉的普通钢筋的弹性模量Es(MPa)

200000

纵向受拉的普通钢筋的截面面积A s (cm 2)

172.41

受拉区普通钢筋至受拉边的距离a s (m)

0.1

作用长期效应组合的轴力N l (KN)

6806.7

作用长期效应组合的弯矩M l (KN.m)

1448.7

作用短期效应组合的轴力N s (KN)

7186.6

作用短期效应组合的弯矩Ms(KN.m)

1771.5

钢筋表面形状系数C 1

1

与构件受力性质有关的系数C 3

0.9 '

满足规范公式5.3.5-2

规范《JTG D62-2004〉第 5.2.5 条

Y °N d e' f sd A s (h a s a's )

丫 Nie'=

8226.803054 KN.m

f sd A s (h a s a's )

8534.325 KN.m

满足规范公式第5.2.5条

(KN.rr)

19489.36

f cd bx(h ° X) f'sd A's (h 0 a's )

正截面抗压承载力复核

规范《JTG D62-2004〉第 5.3.5-1 条 (因为x<2a',所以不需 丫0肌 f cd bx

f'S

d A's

6人

因为构件为大偏心受压构件,所以

330

丫 o N d =

6930.33 (KN) f cd bx f' sd A s O"s A s

7253.0091 (KN)

规范《JTG D62-2004〉第 5.3.5-2 条

18622.29805 (KN.rr )

裂缝宽度W fk ss

30 d

Wk 口3匚(0^石)

=0.064 (mm)

本墩横桥向承载力及裂缝宽度满足规范和设计要求。

2、计算过程

截面的有效高度h 0

h ° h a s 2.1

(m) 轴向力对截面重心轴的偏心距e

e o

0.247 作用长期效应影响系数C 2

N l

c 2

1 0.5 —

N s

偏心距增大系数n s

1.474

n s

1 1

4000V ①

1.704

所以n s 取

1.704 轴向力作用点至纵向受拉钢筋合力点的距离e s

纵向受拉钢筋合力点至截面受压区合力点的距离Z Z [0.87 0.12 (1

'f )(^)2

]h °

e s

(b'f b)h'f h 0 2

{0.87

0.12 [1 — J ]( °)2

}h 。

bh 0 e s

钢筋应力C ss

SS

NsG Z)

A s Z

47.09 纵向受拉钢筋的配筋率P

A s bh °

所以P 取 0.0048

0.006 1.276

(MPa)

< 0.006

(m)

1.42 (m)

e s

sQ

y s

(m)

1.827 所以Z 取

1.276 (m)

(m) .276 0.87h 0

=

附表2 :

23#墩顺桥向墩身承载力及裂缝验算,计算过程及结果:

矩形截面偏心受压构件正截面抗压承载力复核

裂缝宽度验算

本墩顺桥向承载力及裂缝宽度满足规范和设计要求。

23#墩横桥向墩身承载力及裂缝验算,计算过程及结果:

矩形截面偏心受压构件正截面抗压承载力复核

附表3 :

25#墩顺桥向墩身承载力及裂缝验算,计算过程及结果:

矩形截面偏心受压构件正截面抗压承载力复核

裂缝宽度验算

桥梁上部结构计算

第2章 桥梁上部结构计算 2.1 设计资料及构造布置 2.1.1 设计资料 1.桥梁跨径桥宽 标准跨径:30m (墩中心距离) 主梁全长:29.96m 计算跨径:28.9m 桥面净空:净—11m+2?0.5m=12m 2.设计荷载 公路-Ⅰ级,,每侧人行柱、防撞栏重力作用分别为1 1.52kN m -?和14.99kN m -?。 3.材料及工艺 混凝土:主梁采用C50,栏杆及桥面铺装采用C30。 预应力钢筋采用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)的s φ12.7钢绞线,每束7根,全梁配6束,pk f =1860Mpa 。 普通钢筋直径大于和等于12mm 的采用HRB335钢筋;直径小于12mm 的均用R235钢筋。 按后张法施工工艺制作主梁,采用内径70mm 、外径77mm 的预埋波纹管和夹片锚具。 4.设计依据 (1)交通部颁《公路工程技术标准》(JTG B01—2003),简称《标准》; (2)交通部颁《公路桥涵设计通用规范》(JTG D60-2004),简称《桥规》 (3)交通部颁《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004),简称《公预规》。 5.基本计算数据(见表2-1) 表2-1 基本计算数据 名称 项目 符号 单位 数据

混 凝 土 立方强度 弹性模量 轴心抗压标准强度 轴心抗拉标准强度 轴心抗压设计强度 轴心抗拉设计强度 ,cu k c ck tk cd td f E f f f f MPa MPa MPa MPa MPa MPa 4 503.451032.4 2.6522.41.83 ? 短暂状态 容许压应力 容许拉应力 ' '0.70.7ck tk f f MPa MPa 20.721.757 持久状态 标准荷载组合 容许压应力 容许主压应力 短期效应组合 容许拉应力 容许主拉应力 0.50.6ck ck f f 0.850.6st pc tk f σσ- MPa MPa MPa MPa 16.219.44 01.59 15.2 s φ钢 绞 线 标准强度 弹性模量 抗拉设计强度 最大控制应力con σ 0.75pk p pd pk f E f f MPa MPa MPa MPa 51860 1.951012601395 ? 持久状态应力 标准荷载组合 0.6pk f MPa 1209 料 重 度 钢筋混凝土 沥青混凝土 钢绞线 123γγγ 3 33 ///kN m kN m kN m --- 25.023.078.5 钢筋与混凝土的弹性模量 比 Ep α 无量纲 5.65 2.1.2 横截面布置 1.主梁间距与主梁片数 主梁间距通常应随梁高与跨径的增大而加宽为经济,同时加宽翼板对提高主梁截面效率指标ρ很有效,故在许可条件下应适当加宽T 梁翼板。由于本设计桥面净空为17.5m,主梁翼板宽度为2500mm ,由于宽度较大,为保证桥梁

桥梁下部结构通用图计算书

目录 第一部分项目概况及基本设计资料 (1) 1.1 项目概况 (1) 1.2 技术标准与设计规范 (1) 1.3 基本计算资料 (1) 第二部分上部结构设计依据 (3) 2.1 概况及基本数据 (3) 2.1.1 技术标准与设计规范 (3) 2.1.2 技术指标 (3) 2.1.3 设计要点 (3) 2.2 T梁构造尺寸及预应力配筋 (4) 2.2.1 T梁横断面 (4) 2.2.2 T梁预应力束 (5) 2.2.3 罗望线T梁构造配筋与部颁图比较 (6) 2.3 结构分析计算 (6) 2.3.1 活载横向分布系数与汽车冲击系数 (6) 2.3.2 预应力筋计算参数 (6) 2.3.3 温度效应及支座沉降 (7) 2.3.4 有限元软件建立模型计算分析 (7) 第三部分桥梁墩柱设计及计算 (8) 3.1 计算模型的拟定 (8) 3.2 桥墩计算分析 (8) 3.2.1 纵向水平力的计算 (8) 3.2.2 竖直力的计算 (9) 3.2.3 纵、横向风力 (10) 3.2.4 桥墩计算偏心距的增大系数 (11)

3.2.5 墩柱正截面抗压承载力计算 (12) 3.2.6 裂缝宽度验算 (13) 3.3 20米T梁墩柱计算 (13) 3.3.1 计算模型的选取 (13) 3.3.2 15米墩高计算 (14) 3.3.3 30米墩高计算 (18) 3.4 30米T梁墩柱计算 (22) 3.4.1 计算模型的选取 (22) 3.4.2 15米墩高计算 (23) 3.4.3 30米墩高计算 (27) 3.4.4 40米墩高计算 (32) 3.5 40米T梁墩柱计算 (36) 3.5.1 计算模型的选取 (36) 3.5.2 15米墩高计算 (37) 3.5.3 30米墩高计算 (41) 第四部分桥梁抗震设计 (47) 4.1 主要计算参数取值 (47) 4.2 计算分析 (47) 4.2.1 抗震计算模型 (47) 4.2.2 动力特性特征值计算结果 (48) 4.2.3 E1地震作用验算结果 (49) 4.2.4 E2地震作用验算结果 (49) 4.2.5 延性构造细节设计 (51) 4.3 抗震构造措施 (53)

8m钢筋混凝土空心板简支梁桥上部结构计算书完整版

8m钢筋混凝土空心板简支梁桥 上部结构计算书 7.1设计基本资料 1.跨度和桥面宽度 标准跨径:8m(墩中心距) 计算跨径:7.6m 桥面宽度:净7m(行车道)+2×1.5m(人行道) 2技术标准 设计荷载:公路-Ⅱ级,人行道和栏杆自重线密度按照单侧8kN/m计算,人群荷载取3kN/m2 环境标准:Ⅰ类环境 设计安全等级:二级 3主要材料 混凝土:混凝土空心板和铰接缝采用C40混凝土;桥面铺装采用0.04m 沥青混凝土,下层为0.06m厚C30混凝土。沥青混凝土重度按23kN/m3计算,混凝土重度按25kN/m3计算。 钢筋:采用R235钢筋、HRB335钢筋 2.构造形式及截面尺寸 本桥为c40钢筋混凝土简支板,由8块宽度为1.24m的空心板连接而成。 桥上横坡为双向2%,坡度由下部构造控制

空心板截面参数:单块板高为0.4m ,宽1.24m ,板间留有1.14cm 的缝隙用于 灌注砂浆 C40混凝土空心板抗压强度标准值Mpa f ck 8.26=,抗压强度设计值 Mpa f cd 4.18=,抗拉强度标准值Mpa f tk 4.2=,抗拉强度设计值Mpa f td 65.1=, c40混凝土的弹性模量为Mpa E C 41025.3?= 图1 桥梁横断面构造及尺寸图式(单位:cm ) 7.3空心板截面几何特性计算 1.毛截面面积计算 如图二所示 2)-4321?+++=S S S S S A (矩形 2 15.125521cm S =??= 2 cm 496040124=?=矩形S 225.1475)5.245(cm S =?+= 2 35.2425.2421cm S =??=

桥梁工程恒载内力计算例题

一、 设 计 资 料 (一) 桥面净空 16m (行车道)+2*0.75(人行道)+ 2* 0.25 (栏杆)。 (二)主梁跨径和全长 标准跨径 m l b 00.20=(墩中心距离) 计算跨径 m l 50.19=(支座中心距离) 主梁全长 96m .19=全l (主梁预制长度) (三)设计荷载 根据该桥所在道路的等级确定荷载等级为: 公路-Ⅱ级,人群荷载3.5kN/m 2 (四)材料 混凝土:主梁用40 号(C40),人行道、栏杆及桥面铺装用25 号(C25) 钢筋:直径〉=12mm 时采用Ⅱ级钢筋,直径<12 mm 时采用Ⅰ级热轧光面钢筋。 每侧的栏杆和人行道构件重量的作用力为5KN/m 。 (五)计算方法

1.恒载内力 (1)恒载:假定桥面构造各部分重量平均分配给各主梁承担,计算下表

构件名 构件简图及尺寸(cm) 单元构件体积及算式(m 3) 容重 (KN /m 3) 每延米重量(kN/m) 主 梁 434 .0)2 14 .008.030.1(91.0230.100.2=+-? ?-? 25 85.1025434.0=? 横 隔 梁 中 梁 089.05.19591.02216.018.0)214.008.000.1(=÷???+?+- 25 228.225089.0=? 114.12/228.2= 边 梁 桥 面 铺 装 沥青混凝土: 64.01604.0=? 混凝土垫层(取平均厚12cm ): 92.11612.0=? 223 224 72.142364.0=? 08.462492.1=? ∑=+=76 .69/)08.4672.14(人 行 道 部 分 11.19/25=?

某桥桥墩结构计算

设计计算书 设计人:日期:复核人:日期:审核人:日期: 2017年2月

F匝道桥桥墩计算 一、概述 本桥上部结构采用2×(4×25)+4×(3×25)PC连续箱梁+1×43.5简支钢箱梁+4×17钢筋砼连续箱梁+1×33简支钢箱梁+(18+20.5)+3×21+3×46+4×25米PC连续箱梁,下部桥墩采用花瓶墩、板式墩配桩基础。现选取其中有代表性的21#墩(花瓶墩(1.7x2.2米),上部为43.5米钢箱梁接4x17米钢筋砼现浇梁)、23#墩(板式墩(4x1.8米),上部为4x17米钢筋砼现浇梁)、25#墩(花瓶墩(1.5x2.0米),上部为33米钢箱梁接4x17米钢筋砼现浇梁),相应构造见下图: 21#墩构造(单位:cm)

23#墩构造(单位:cm) 25#墩构造(单位:cm) 材料:墩身:C40砼 承台:C30砼 桩基:C25砼 其中21#墩墩高:32.3m,23#墩墩高:33.4m,25#墩墩高:32.9m。 二、使用阶段荷载效应 1)结构恒载 2)活载:包含活载引起的竖向反力及引活载引起的纵横向弯矩

3)风荷载:按规范JTG D60-2004第4.3.7条计算:单独风荷载作用时选用27.4m/s(1/100),风荷载与其它荷载共同作用时选用25.8 m/s(1/50) 4)船撞击力:根据《荆东互通水中桥墩群防撞设施设计说明》确定,并考虑1.1的安全系数: 主要荷载工况: ①恒载+活载+风荷载 ②恒载+活载+船撞力 ③恒载+风荷载+船撞力 ④恒载+风荷载(百年一遇) 三、结构内力计算 1)单项结构内力计算

2)组合内力计算 3)结构验算取用内力 根据上述计算,结构横桥向强度由恒载+风荷载+船撞力(偶然组合)控制,顺桥向强度由恒载+活载+船撞力(偶然组合)控制,结构正常使用阶段由恒载+活载+风荷载组合控制。 四、截面配筋验算

桥梁下部结构设计——毕业设计

建筑工程系道路桥梁工程技术专业 毕业设计 :钢筋混凝土简支梁桥下部结构设计 (一)毕业设计原始资料 1. 道路等级:乡村道路; 2. 桥面横坡:设置1.5%的人字坡; 3. 横向布置:0.5m(防撞墙)+7.5m(车行道)+0.5m(防撞墙),桥梁全宽8.5m.; 4. 设计荷载:公路-Ⅱ级; 5. 桥面铺装:12cm厚C40防水钢筋混凝土及涂HM1500防水剂; 6. 桥梁孔跨布置:本桥为上跨铁路而设,设3-20m 预应力混凝土空心板梁,桥面连续; 7. 桥梁线形:本桥位于直线上,与铁路正交; 8. 地震基本烈度:8度。 地质情况详见:桥梁工程地质纵断面图。 (二)、毕业设计的任务与内容 1. 桥墩和基础的方案比选; 2. 盖梁设计; 3. 桥梁墩柱设计; 4. 基础(钻孔灌注桩)设计; 5. 施工组织设计; 6. 设计图纸:桥梁总体布置图、盖梁配筋图、桥墩构造图、桥墩配筋图、基础构造图、基础配筋图。

目录 摘要 (Ⅰ) Abstract (Ⅱ) 前言 (Ⅲ) 第一章设计资料与方案比选 (1) 1.1设计资料与方案必选 (1) 1.1.1设计标准及上部构造 (1) 1.1.2水文地质条件 (1) 1.1.3材料 (1) 1.1.4下部结构比选 (1) 1.1.5桥梁下部构造尺寸 (3) 第二章盖梁计算 (3) 2.1 荷载计算 (3) 2.1.1上部构造永久荷载表 (3) 2.1.2 盖梁自重及作用效应计算 (4) 2.1.3 可变荷载计算 (5) 2.1.4 双柱反力Gi的计算 (12) 2.2 内力计算 (12) 2.2.1 恒载加活载作用下的各截面内力 (12) 2.2.2 盖梁内力汇总表 (14) 2.2.3 盖梁各截面的配筋设计及承载力校核 (15) 第三章桥墩墩柱设计 (17) 3.1 荷载计算 (17) 3.1.1 恒载计算 (17) 3.1.2 活载计算 (17) 3.1.3 双柱反力横向分布计算 (17) 3.1.4 荷载组合 (18) 3.2 截面配筋计算及应力验算 (19)

桥梁如何划分上中下附属结构

桥梁如何划分上中下附属结构 桥梁上部包括有那些?桥梁中部包括有那些?下部有那些组成桥梁的三个主要组成部分是: 上部结构,下部结构和附属结构。 上部结构由桥跨结构、支座系统组成。 桥跨结构或称桥孔结构,是桥梁中跨越桥孔的、支座以上的承重结构部分。 按受力图示不同,分为梁式、拱式、刚架和悬索等基本体系,并由这些基本体系构成各种组合体系。 它包含主要承重结构、纵横向联结系、拱上建筑、桥面构造和桥面铺装、排水防水系统,变形缝以及安全防护设施等部分。 支座系统设置在桥梁上、下结构之间的传力和连接装置。 其作用是把上部结构的各种荷载传递到墩台上,并适应活载、温度变化、混凝土收缩和徐变等因素所产生的位移,使桥梁的实际受力情况符合结构计算图示。 一般分为固定支座和活动支座。 下部结构,由桥墩、桥台、墩台基础几部分组成。 桥墩、桥台1是在河中或岸上支承两侧桥跨上部结构的建筑物。 桥台设在两端,桥墩则在两桥台之间,见下图。 而桥台除此之外,还要与路堤衔接,并防止其滑塌。 为保护桥台和路堤填土,桥台两侧常做一些防护和导流工程。 墩台基础保证桥梁墩台安全并将荷载传至地基的结构部分。

桥梁组成示意图附属构件,主要包括伸缩缝、灯光照明、桥面铺装、排水防水系统、栏杆(或防撞栏杆)等几部分。 ____________________伸缩缝在桥跨上部结构之间,或桥跨上部结构与桥台端墙之间,设有缝隙保证结构在各种因素作用下的变位。 为使桥面上行驶顺直,无任何颠动,此间要设置伸缩缝构造。 特别是大桥或城市桥的伸缩缝,不但要结构牢固,外观光洁,而且需要经常扫除深入伸缩缝中的垃圾泥土,以保证它的功能作用。 2灯光照明现代城市中标志式的大跨桥梁都装置了多变幻的灯光照明,增添了城市中光彩夺目的晚景。 桥面铺装或称行车道铺装,铺装的平整、耐磨性、不翘壳、不渗水是保证行车舒适的关键。 特别在钢箱梁上铺设沥青路面的技术要求甚严。 排水防水系统应迅速排除桥面上积水,并使渗水可能降低至最小限度。 此外,城市桥梁排水系统应保证桥下无滴水和结构上的漏水现象。 栏杆(或防撞栏杆)它既是保证安全的构造措施,又是有利于观赏的最佳装饰件 1、桥梁一般讲由上部结构、下部结构和附属构造物组成,上部指主要承重结构和桥面系;下部结构包括桥台、桥墩和基础;附属构造物则指桥头搭板、锥形护坡、护岸、导流工程等。 2、桥梁的分类: 按使用性分为公路桥、公铁两用桥、人行桥、机耕桥、过水桥等。 3按跨径大小和多跨总长分为小桥、中桥、大桥、特大桥。 涵洞L<8 L0<5按行车道位置分为上承式桥、中承式桥、下承式桥。

桥梁上部结构

1. 什么是桥梁的净跨径、计算跨径、标准跨径、总跨径、桥梁总长、建筑高度、 桥高? 净跨径:梁式桥的净跨径是指设计洪水位上相邻两个桥墩之间的净距。拱式桥的净跨径是指每孔拱跨两个拱脚截面最低点之间的水平距离。 计算跨径:对于拱式桥是指相邻两个拱脚截面形心点之间的水平距离,对于梁式桥是指桥跨结构相邻两个支座中心之间的水平距离。 标准跨径: 对于梁式桥,是指两相邻桥墩中心线之间的距离,或墩中心线至桥台台背前缘之间的距离。对于拱桥, 是每孔两个拱脚截面最低点之间的水平距离 多孔桥梁中各孔净跨径的总和称为总跨径,它反映了桥下泄洪的能力。 桥梁总长:桥梁两端两个桥台侧墙或八字墙后端点之间的距离 建筑高度:桥上行车路面(包括桥面铺装)或轨顶标高至桥跨结构最下缘之间的距离桥高:指桥面与低水位之差,或桥面与桥下线路路面之间的距离 2. 桥梁按主要承重结构基本体系、跨径大小、行车道位置如何分类? 承重结构:梁式桥,拱桥,悬索桥,钢架桥,组合系桥 跨径大小:特大桥(多孔跨径L大于等于1000米,单孔跨径大于等于150米) 大桥(多孔跨径L大于等于100米小于1000米,单孔跨径大于等于40米小于150米)中桥(多孔跨径L大于30米小于100米,单孔跨径大于等于20米小于100米) 小桥(多孔跨径L大于等于8米小于30米,单孔跨径大于等于5米小于20米) 涵洞(单孔跨径小于5米) 行车道位置:上承式桥,下承式桥,中承式桥 3. 梁式桥、拱式桥、悬索桥的主要承重结构是什么?主要受力特点是什么? 梁式桥:主要承重结构为梁(板),受力特点:在竖向荷载的作用下,支座处只有竖向反力,梁(板)内主要产生弯拉应力。 拱桥:主要承重结构为主拱圈;受力特点在竖向荷载的作用下,支座处除了竖向反力,还有水平推力;拱圈内主要产生弯压应力。 悬索桥(吊桥):主要承重结构是缆索;受力特点:在竖向荷载作用下,缆索只承受拉力受力后,变形大,振动大。 5. 桥梁纵断面设计主要包括哪几个方面的内容? 1确定桥梁总跨径 2桥梁分孔 3桥面标高 4桥下净空 5桥上及桥头纵坡布置等。 6. 桥梁分孔时其经济跨径和通航跨径如何选择?连续梁一般如何分孔? 桥梁的总跨径一般根据水文计算确定,必须保证桥下有足够的排洪面积。分孔布置时,对于通航河流,当通航净宽大于经济跨径时,一般将通航孔的跨径按通航净宽来确定,其余的桥孔跨径则选用经济跨径。 连续梁通常按照2到5孔为一联进行分联布置。为使连续梁边跨与中跨的梁高和配筋协调一致,各孔跨径的划分,通常按照边跨与中跨的跨中最大弯矩趋于相等的原则来确定承担传递支方力。 7. 桥面标高一般根据什么条件来确定?拱桥设计中的标高主要有哪几个? 根据路线纵断面设计中规定或者根据设计洪水位及桥下通航需要的净空高度确定。 拱桥的标高主要有:桥面标高、拱顶底面标高、起拱线标高和基础底面标高。 8. 桥梁桥下最小净空高度值如何规定? 对于非通航河流,梁底一般高出设计洪水位不小于0.5米,对于无铰拱桥,拱脚允许被计算洪水位淹没,但是一般不超过拱圈矢高的三分之二,拱顶底面至洪水位的净高不小于1米。 9. 桥梁桥面纵坡、桥头引道纵坡取值有何规定?

结构设计大赛(桥梁)计算书

桥梁结构设计理论方案作品名称蔚然水岸 参赛学院建筑工程学院 参赛队员吕远、李丽平、李怡潇、赵培龙 专业名称土木工程 一、方案构思 1、设计思路 对于这次的设计,我们分别考虑了斜拉桥、拱桥、梁式桥和桁架桥的设计方案。斜拉桥可以看作是小跨径的公路桥,且对刚度有较高的要求,所以斜拉桥对材料的要求比较高,对于用桐木强度比不上其他样式的桥来得结实;拱桥最大主应力沿拱桥曲面而作用,而沿拱桥垂直方向最小主应力为零,可以很好的控制桥梁竖直方向的位移,但锁提供的支座条件较弱,且不提供水平力,显然也不是一个好的选择;梁式桥有较好的承载弯矩的能力,也可以较好的控制使用中的变形,但桥梁的稳定性是个很大的问题,控制不了桥梁的扭转变形,因此,我们也放弃了制作梁式桥的想法;而桁架桥具有比较好的刚度,腹杆即可承拉亦可承压,同时也可以较好的控制位移用料较省,所以,相比之下我们最后选择了桁架桥。 2、制作处理

(1)、截杆 裁杆是模型制作的第一步。经过试验我们发现,截杆时应该根据不同的杆件,采用不同的截断方法。对于质地较硬的杆应该用工具刀不断切磋,如同锯开;而对于较软的杆应该直接用刀刃用力按下,不宜用刀口前后切磋,易造成截面破损。 (2)、端部加工 端部加工是连接的是关键所在。为了能很好地使杆件彼此连接,我们根据不同的连接形式,对连接处进行处理,例如,切出一个斜口,增大连接的接触面积;刻出一个小槽,类似榫卯连接等。 (3)拼接 拼接是本模型制作的最大难点。由于是杆件截面较小,接触面积不够,乳胶干燥较慢等原因,连接是较为困难的。我们采取了很多措施加以控制,如用铁夹子对连接处加强压、用蜡线进行绑扎固定等。对于拱圈的制作,则预先将杆件置于水中浸泡并加上预应力使其不断弯曲,并按照先前划定的拱形不断调整,直至达到理想形状。 在拱脚处处理时,先粘结一个小的木块,让后用铁夹子施加很大的压力,保证连接能足够牢固。 乳胶粘接时要不断用电吹风间断性地吹风,使其尽快形成粘接力,达到强度的70%(基本固定)后即可让其自行风干。 (4)风干 模型制作完成后,再次用吹风机间断性地吹粘接处,基本稳定后,让其自然风干。 (5)修饰

桥易与桥梁通关于桥梁下部结构计算的对比测试

xx与桥梁通关于桥梁下部结构计算的对比测试 xx是新近开发的一款软件,主要应用在桥梁设计行业,解决桥梁下部结构的计算及出图和桥梁总图绘制的问题,目前正处于推广阶段。桥梁通是比较成熟的一款桥梁辅助设计软件,其功能强大,适用范围广,已经为众多的设计人员所接受。现就两款软件的桥梁下部结构计算功能做对此,主要在功能范围、用户感受方面着手,并未对计算结果进行验算。具体内容见下表: xx与桥梁通比较表 2 功 能 描 述 1、主要包含土压力、温度力、制 动力和地震力等水平力的计算 2、墩柱极限荷载组合 3、基础极限荷载组合和基础容许 荷载组合 4、墩柱强度计算(配筋) 5、桩基础强度计算(配筋) 6、桩基础承载计算(求桩长) 1、计算土压力、温度力、制动 力等水平力 2、进行各种荷载组合 3、计算墩身和基桩的内力、配 筋、裂缝及变形 二者均能满足桥梁下部结 构设计所要求的计算深 度。关于上部结构反力, xx需要人工输入恒、活载; 桥梁通需要输入恒载,活 载可以自动加载。关于水 平力计算,xx考虑了地震 作用,并把地震力加入到

程载反力和车列数。在对桩 基的验算中,桥梁通考虑 了水的浮力影响,xx没有 此项考虑 包括基本数据、墩柱荷载单项、输出恒载内力、活载支反力、活 载墩顶作用力制动力、墩柱分配 系数、摩阻力表、土压力计算表、 单柱顶水平力、每个柱作用力、 柱顶截面配筋、柱底截面内力、 xx输出的计算书比较简 单,桥梁通的计算书则详 综上所述,xx专注于做桥梁下部结构,以Excel为载体,擅于批量处理数据,在处理特大桥梁方面体现出很大的优势,另外,由于其所要求录入的数据量相对较小,在极大程度上节省了用户的时间;桥梁通功能全面,兼顾各种计算和绘图,这也就要求用户录入相对较多的数据,并且造成了在执行单一计算时整体连贯性不强的现象,但其输出的计算书甚是详细,这也是其优势所在。 附图:

桥梁上部结构设计

桥梁上部结构设计 0前言 随着经济不断发展,桥梁建设得到了飞速发展,它已从最开始的方便人们过河、跨海之用,已广泛应用于各种场合,它的用途不断多样化,它的形式也在最基本的三种受力体系上逐渐多样化,不仅从功能上、规模上,还从美观上、经济效益上,逐渐与时代发展相协调。所以桥梁建筑已不仅是交通线上的重要载体,也是一道美丽的风景被人津津乐道。 面对着新工艺、新挑战,原有的桥梁建设正面对历史的考验,当代建设者肩负着光荣而又艰巨的任务,为明天创造历史。 本设计说明书所编写的是至公路桥的上部设计方案。通过详细的勘察确定上部可变荷载,拟定桥梁尺寸,以确定相应的力,配置以合适的预应力钢筋,使其提高桥梁的承载力,使达到桥梁的耐久性要求。在桥梁的使用期,完成桥梁的使命。 通过本次设计,我基本上掌握了桥梁上部设计的基本容,从选截面尺寸,到配置钢筋,每一个细节都是经过多次考虑,通过反复验算,使桥梁结构满足要求,且以经济合理的材料用量完成。所以上部设计是要求桥梁设计者,从一开始就要考虑到最后,这样就不会盲目的试算。但通过试算,使我深刻了解到了适当的真正含义。本次设计旨在使我巩固、加深本科期间所学理论知识,使自己能够具备在以后工作中利用知识解决问题的的能力。

1 概述 1.1 设计资料 桥孔布置为535m ?预应力混凝土简支桥梁,跨径为35m,桥梁总长为175m。 设计车速为80/ km h,整体式双向四车道。 路线等级:一级公路;荷载等级:公路-Ⅰ级荷载,人群荷载:2 kN m。 3.0/ 桥面宽: ?++?+?= 行车道双黄线人行道防撞墙。 m m m m m 4 3.75()0.5()2 1.0()20.5()18.5 1.2 工程地质资料 该地区土质主要分5层:1、素黏土 2、砾石 3、亚黏土 4、粉砂 5、泥岩。 地下水类型为第四季孔隙水,水位埋深4m左右,含水层主要岩性为砾石,厚3m左右。地震烈度为四度。 1.3 水文及气候资料 桥梁位于市境,河流均为独流水域,流量随季节变化较大,平均水深0.5m左右,地表水体为沙河支流,属于季节性河流(勘察时无水),设计洪水频率百年一遇。 气候属北温带大陆性气候,冬寒夏热,昼夜温差大,年平均最低气温-23℃,历史最高气温为37.4℃,年平均气温为7℃。年平均降水量为450mm-550mm,无霜期为145-160天。

桥梁下部结构通用图计算书

第一部分项目概况及基本设计资料 (1) 1.1 项目概况 (1) 1.2 技术标准与设计规范 (1) 1.3 基本计算资料 (1) 第二部分上部结构设计依据 (3) 2.1 概况及基本数据 (3) 2.1.1 技术标准与设计规范 (3) 2.1.2 技术指标 (3) 2.1.3 设计要点 (3) 2.2 T梁构造尺寸及预应力配筋 (4) 2.2.1 T 梁横断面 (4) 2.2.2 T 梁预应力束 (5) 2.2.3 罗望线T梁构造配筋与部颁图比较 (6) 2.3 结构分析计算 (6) 2.3.1 活载横向分布系数与汽车冲击系数 (6) 2.3.2 预应力筋计算参数 (6) 2.3.3 温度效应及支座沉降 (7) 2.3.4 有限元软件建立模型计算分析 (7) 第三部分桥梁墩柱设计及计算 (8) 3.1 计算模型的拟定 (8) 3.2 桥墩计算分析 (8) 3.2.1 纵向水平力的计算 (8) 3.2.2 竖直力的计算 (9) 3.2.3 纵、横向风力 (10)

3.2.4 桥墩计算偏心距的增大系数................. 错误!未定义书签。

3.2.5 墩柱正截面抗压承载力计算. (12) 3.2.6 裂缝宽度验算. (13) 3.3 20 米T 梁墩柱计算 (13) 3.3.1 计算模型的选取. (13) 3.3.2 15 米墩高计算 (14) 3.3.3 30 米墩高计算 (18) 3.4 30 米T 梁墩柱计算 (22) 3.4.1 计算模型的选取. (22) 3.4.2 15 米墩高计算 (23) 3.4.3 30 米墩高计算 (27) 3.4.4 40 米墩高计算 (32) 3.5 40 米T 梁墩柱计算 (36) 3.5.1 计算模型的选取. (36) 3.5.2 15 米墩高计算 (37) 3.5.3 30 米墩高计算 (41) 第四部分桥梁抗震设计 (47) 4.1 主要计算参数取值. (47) 4.2 计算分析. (47) 4.2.1 抗震计算模型. (47) 4.2.2 动力特性特征值计算结果. (48) 4.2.3 E1 地震作用验算结果 (49) 4.2.4 E2 地震作用验算结果 (49) 4.2.5 延性构造细节设计. (51) 4.3 抗震构造措施. (53) 第一部分项目概况及基本设计资料 1.1 项目概况 贵州省余庆至安龙高速公路罗甸至望谟段,主线全长77.4 公里,项目地形起伏大,山高坡陡,地质、水文条件复杂,桥梁工程规模大,高墩大跨径桥梁较多,通过综合比选,考虑技术、经济、结构耐久、施工方便、维修便利及施工标准化等因素。主线普通桥梁结构主要选择20m 30m 40m装配式预应力砼T梁。

桥梁上部结构

第一篇桥梁上部结构 第一章总论 第一节概论 一.桥梁在交通事业中的地位 二.国内外桥梁建筑的成就 1、国内桥梁建筑的成就 宋朝在浙江郡县洞桥乡修建的洞桥为2 孔石墩木梁结构,桥长26.76米,宽8.1米 赵州桥(空腹式石拱桥)为公元605年修建,净跨 37.02米,宽9米,拱矢高度为7.23米,现仍在 使用 目前在长江上建成的桥梁已有20余座。第一座是武汉长江大桥。 第一座由我国自己设计自己建造的长江大桥是南京长江大桥。 最大跨径的桥梁是江阴长江大桥(悬索桥),跨径为1385米。 最大跨径的斜拉桥是南京长江二桥,主跨628米。 2、国外桥梁建筑的成就 1873年在法国首创建成第一座钢筋混凝土桥(拱式人行桥)。 1928年由法国著名工程师弗莱西奈发明了预应力混凝土技术,后 在法国和德国开始修建预应力混凝土桥。 1937年修建的美国旧金山金门大桥(吊桥)跨径1280米,保持 了27年的桥梁最大跨径的世界纪录。 1974年在英国修建的亨伯桥(吊桥)跨径达到1410米,为世界 第二大跨径桥梁。

1998年建成的日本明石海峡大桥(吊桥)跨径达到1990米,为世 界第一大跨径桥梁。 3、桥梁发展趋势 轻质、高强、大跨 三、桥梁的组成 1.桥梁的组成 桥梁由上部结构和下部结构组成。 上部结构(桥跨结构):在线路中断时跨越障碍的主要承载结构。 下部结构(桥墩和桥台):支承桥跨结构并将恒载和车辆等活载传至地基的建筑物。 设置在桥梁两端的称为桥台。 设置在桥梁中间的支承结构物称为桥墩。 把所有荷载传至地基的底部奠基部分,称为基础。 支座:在桥跨结构与桥墩或桥台的支承处所设置的传力装置。 附属建筑物:锥坡 2.桥梁的主要尺寸和术语: 净跨径:梁桥指设计洪水位上相邻两个桥墩(或桥台)之间的净距离。 拱式桥指每孔拱跨两个拱脚最低点之间的水平距离。

简支梁桥下部结构计算书

计算书 工程名称: 设计编号: 计算内容:桥梁计算书 共页 计算年月日校核年月日审核年月日专业负责年月日

目录 一、计算资料.......................................... 错误!未定义书签。 二、桥梁纵向荷载计算.................................. 错误!未定义书签。 1.永久作用........................................... 错误!未定义书签。 2.可变作用........................................... 错误!未定义书签。 三、桥墩、桥台盖梁抗弯、抗剪承载力计算及裂缝宽度计算.. 错误!未定义书签。 四、墩台桩基竖向承载力计算............................ 错误!未定义书签。 五、桥台桩身内力计算.................................. 错误!未定义书签。 1、桥台桩顶荷载计算................................... 错误!未定义书签。 2、桥台桩基变形系数计算............................... 错误!未定义书签。 3、m法计算桥台桩身内力............................... 错误!未定义书签。 六、桥墩桩身内力计算.................................. 错误!未定义书签。 1、桥墩墩柱顶荷载计算................................. 错误!未定义书签。 2、桥墩桩基变形系数计算............................... 错误!未定义书签。 3、m法计算桥墩桩身内力............................... 错误!未定义书签。 七、桥台、桥墩桩基桩身强度校核........................ 错误!未定义书签。 1、桥台桩基桩身强度校核............................... 错误!未定义书签。 2、桥墩桩基桩身强度校核............................... 错误!未定义书签。 一、计算资料

桥梁下部结构通用图计算书

桥梁下部结构通用图计 算书 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

目录

第一部分项目概况及基本设计资料项目概况 贵州省余庆至安龙高速公路罗甸至望谟段,主线全长公里,项目地形起伏大,山高坡陡,地质、水文条件复杂,桥梁工程规模大,高墩大跨径桥梁较多,通过综合比选,考虑技术、经济、结构耐久、施工方便、维修便利及施工标准化等因素。主线普通桥梁结构主要选择20m、30m、40m装配式预应力砼T梁。 根据《中国地震动参数区划图》(GB18306-2001),项目区地震动峰值加速度为、。项目起点~K22+400路段为,对应地震基本烈度为Ⅵ度(路线长度约)。 K22+400~项目终点路段为,对应地震基本烈度为Ⅶ度(路线长度约)。6度区与7度区分界点位于罗甸县罗苏乡纳庆村,属第LWSJ-1标范围。 按照桥梁相关规范要求,对位于7度区内的桥梁需进行抗震计算及抗震措施的设置。桥梁通用图设计计算时,需充分考虑桥梁的抗震要求。 技术标准与设计规范 (1)中华人民共和国交通部标准《公路工程技术标准》(JTG B01-2014) (2)中华人民共和国交通部标准《公路桥涵设计通用规范》(JTG D06-2004)(3)中华人民共和国交通部标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62-2004),以下简称《规范》 (4)中华人民共和国交通部标准《公路桥涵地基与基础设计规范》(JTG D63-2007) (5)中华人民共和国交通部标准《公路坞工桥涵设计规范》(JTG D61-2005)(6)中华人民共和国交通部标准《公路工程抗震规范》(JTG B02-2013) (7)中华人民共和国交通部标准《公路桥梁抗震设计细则》(JTG/T B02-01-2008) 基本计算资料 (1)桥面净空:2x净米、净米 (2)汽车荷载:公路Ⅰ级,结构重要系数 (3)设计环境条件:Ⅰ类

桥梁下部结构分类和受力特点

桥梁下部结构分类和受力特点 一、桥梁下部结构分类 可分为重力式桥墩、重力式桥台、轻型桥墩、轻型桥台。 (一)重力式墩、台 重力式桥墩与重力式桥台的主要特点是靠自身重量来平衡外力而保持其稳定,因此,墩、台身比较厚实,可以不用钢筋,而用天然石材或片石混凝土砌筑。它适用于地基良好的大、中型桥梁,或流冰、漂浮物较多的河流中。在砂石料方便的地区,小桥也往往采用。主要缺点是圬工体积较大,因而其自重和阻水面积也较大。 拱桥重力式桥墩分为普通墩与制动墩,制动墩要能承受单向较大的水平推力,防止出现一侧的拱桥倾坍,因而尺寸较厚实;与梁桥重力式桥墩相比较,具有拱座等构造设施。 梁桥和拱桥上常用的重力式桥台为u型桥台,它适用于填土高度在8~lom以下或跨度稍大的桥梁。缺点是桥台体积和自重较大,也增加了对地基的要求。此外,桥台的两个侧墙之间填土容易积水,结冰后冻胀,使侧墙产生裂缝,所以宜用渗水性较好的土夯填,并做好台后排水措施。 (二)轻型墩、台 1.梁桥轻型桥墩、台 (1)梁桥轻型桥墩 ·钢筋混凝土薄壁桥墩:施工简便,外形美观,过水性良好,适用于低级土软弱的地区。需耗费用于立模的木料和一定数量的钢筋。 ·柱式桥墩:外形美观,圬工体积少,而且重量较轻。 ·钻孔桩柱式桥墩:适合于多种场合和各种地质条件。通过增大桩径、桩长或用多排桩加建承台等措施,也能适用于更复杂的软弱地质条件以及较大的跨径和较高的桥墩。 ·柔性排架桩墩:优点是用料省、修建简便、施工速度快。主要缺点是用钢量大,使用高度和承载能力受到一定限制。因此它只适合于在低浅宽滩河流、通航要求低和流速不大的水网地区河流上修建小跨径桥梁时采用。

桥梁下部结构设计图文详解

一、桥涵水文基础知识 跨水域桥梁,满足洪水宣泄要求。桥梁基本尺寸,包括桥孔长度、桥面标高、 基础埋深等的确定,必须考虑设计使用年限内可能发生的最大洪水,包括其流量、流速及水位等因素。 1大、中桥设计流量推算 设计流量的推算,要按《公路工程水文勘测设计规范》的要求,根据所掌握 的资料情况,选择适当的计算方法。对于大、中河流,具有足够的实测流量资 料时,主要采用水文统计法。而缺乏实测流量资料时,则多采用间接方法或经 验公式计算。 计算时要注意水文断面与桥位的关系,正确推算桥位处的设计流量和设计水位。 2小桥涵设计流量推算 桥涵一般都缺乏观测资料。因此相关部门制定了各种小流域流量计算公式和相 应的图表作参考,设计时,应以多种计算方法予以比较。 常用的方法:形态调查法、暴雨推理法和直接类比法。 暴雨推理公式是直接根据设计规定频率P推求出对应的洪峰流量Qp,此方法计 算出的Qp即是拟建小桥涵处设计流量。 形态调查法和直接类比法仅推出了形态断面处或原有小桥涵位处的流量Q‘p故须向拟建小桥涵位处折算成设计洪峰流量Qp。 在条件许可情况下,宜用几种方法计算互相核对比较,并通过加强调查研究、 积累资料、进行科学实验,找出适合本地区的计算方法,结合实际情况确定计 算公式和有关的参数。 3桥位选择的一般规定 (1)调查和勘测。对复杂的大桥、特大桥应进行物探和钻探;考虑现状,征求有关部门的意见,经全面分析认证,确定推荐方案。 (2)在整体布局上与铁路、水力、航运、城建等方面规划互相协调配合;保护文物、环境和军事设施等;照顾群众利益,少占良田,少拆迁。 (3)高速公路、一级公路的特大、大、中桥桥位线形应符合路线布设要求。原则上应服从路线走向;桥、路综合考虑;注意位于弯、坡、斜处的桥梁设计和 施工的难度。 (4)对水文、工程地质和技术复杂的特大桥位、应在已定路线大方向的前提下、根据河流的形态特征、水文、工程地质、通航要求和施工条件以及地方工农业 发展规划等,在较大范围内作全面的技术、经济比较确定。 (5)跨河位置、布孔方案等应征求水利、航运等部门的意见。

公路桥梁结构设计系统(GQJS)详细介绍

公路桥梁结构设计系统(GQJS)详细介绍 公路桥梁结构设计系统(汉语拼音缩写为GQJS)于98年8月正式推出Windows版,该版本称为GQJS 4.0。其前身是由交通部组织行业专家联合开发的桥梁综合程序GQZJ (参见陆楸、王春富、冯国明编《公路桥梁设计电算》上、下册(桥梁上部结构)人民交通出版社1983年6月)。GQZJ程序1978年投入试用,1980年通过原交通部公路总局的技术鉴定。该系统在公路系统推广应用20年多年来,历经许多桥梁界计算机专家的修改完善,在工程上得到广泛的使用与验证。在转为Windows版时定名为公路桥梁结构设计系统GQJS。因新的系统已不仅仅是单纯进行结构分析,还包括的动态可视化的数据前处理界面、数据图形检验、结果图形浏览和检索、预拱度设置、施工图绘制等一系列的设计功能。它改变了过去桥梁结构计算只能以文本文件操作方式进行的老模式,并对桥梁综合程序输入数据结构做了改造,特别改变了单元坐标和预应力信息数据表达方式,使数据结构大为简化。软件操作改为在仿Office的软件界面的全新操作方式,输入数据、结构计算、察看计算结果集成于同一界面系统之中。 99年3月推出GQJS 5.0版。GQJS 5.0版增加了解题规模使计算单元数可达1000,增加了输入数据图形检验功能,增加了输出结果在界面中快速浏览功能,即通过界面直接浏览查询计算结果,并形成内力、应力、位移以及影响线的曲线分布图、曲线包络图。GQJS 5.0版首次在国内同类桥梁结构分析软件中用彩色云图方式表示计算结果中的应力、内力及位移。GQJS 5.0版增加了读DXF文件,辅助输入横断面变宽点信息的功能,即用户可以先在AutoCAD中用line、arc、circle命令绘制横断面,并形成DXF文件,系统再将DXF文件中线段坐标信息转换成截面变宽点信息。GQJS 5.0版还增加了根据结构计算结果形成桥梁施工控制用的预拱度表和各施工阶段桥面高程表的功能,这些表可由本系统直接调用EXCEL 形成,也可选择形成文本文件“GQJSL.GXL”。在GQJS 5.0改版过程中根据用户反馈意见对原有数据输入界面做了大量改进完善工作,增加了Windows NT网络运行功能,使软件使用更加方便,性能更加稳定。 2000年2月推出GQJS 6.0版。这次改版主要是增加了绘制设计图功能,其中包括:施工工序图、结构构造图、预应力钢筋平纵布置图、预应力钢筋断面布置图、预应力钢筋几何要素表等(计划中的普通钢筋布置图功能暂缓),其中施工工序图中包括各施工阶段计算内容和结构简图,以及带尺寸标注的结构单元离散图。2000年11月推出GQJS 6.5版,GQJS 6.5版可以直接在Windows 2000系统下运行。在GQJS 6.0版基础上增加了TCP/IP网络服务功能,即在符合TCP/IP协议的局域网络上的任意一个Windows 9x/ NT/2000 系统的终端上安装加密锁并运行网络版服务程序,则网上各终端均可同时运行GQJS。GQJS 6.5版还增加了各类单元信息的平移和镜像拷贝功能,使单元信息输入更方便快捷。结果分析中增加了预应力钢筋调整、位移图中增加了初位移叠加功能。数据输入框中增加了许多数据合理性的智能判别。使初次接触GQJS的用户输入数据时尽可能少地出错。 2001年4月推出GQJS 7.0版。这次改版主要是进一步完善网络服务程序和绘制预应力钢筋设计图功能。在使用阶段信息中增加了结构自重安全系数、汽车影响线加载步长、冲击系数计算选择。在结果分析中增加了位移累加和预应力配束功能。在结构材料信息中增加了两种收缩徐变系数计算方法,使收缩徐变计算与《公桥规》JTJ-023-85 附录四相符。 2001年8月推出GQJS 7.5版。这次改版主要根据用户要求,在GQJS计算模块中增加了公路——A级车道荷载(新桥规)、城市桥梁汽车荷载(A级、B级)、铁路设计活载(中-活载特种活载和中-活载普通活载)、规范法定单位制和传统公制单位制选择,温度荷载直

桥梁下部结构通用图计算书

目录 第一部分项目概况及基本设计资料 ............... 错误!未定义书签。项目概况......................................... 错误!未定义书签。技术标准与设计规范............................... 错误!未定义书签。基本计算资料..................................... 错误!未定义书签。第二部分上部结构设计依据 ..................... 错误!未定义书签。概况及基本数据................................... 错误!未定义书签。技术标准与设计规范............................... 错误!未定义书签。技术指标......................................... 错误!未定义书签。设计要点......................................... 错误!未定义书签。 T梁构造尺寸及预应力配筋 ......................... 错误!未定义书签。 T梁横断面....................................... 错误!未定义书签。 T梁预应力束..................................... 错误!未定义书签。 罗望线T梁构造配筋与部颁图比较................... 错误!未定义书签。 结构分析计算..................................... 错误!未定义书签。

相关文档
最新文档