第四章 动态参数测试及动态标定

第四章 动态参数测试及动态标定
第四章 动态参数测试及动态标定

4 动态参数测试及动态标定

测试系统中的某些元件的性能会因使用程度和随时间而有所变化。因此测试系统在使用中经常要对其性能指标、参数进行标定。除了在产品研制中对各个指标进行逐项的校准标定外,在使用过程中还应定期校准,另外,针对某项测试任务,还经常要设计由各种类型的传感器、放大器和记录设备组成的特定的测试系统,这时测试系统的各项指标就需要进行系统标定。由于测振系统的种类很多,使用的场合也不相同,因此标定试验也有各种类型,本章主要叙述测试系统的动态标定和试验。

在某些特定场合测试系统只需测量不变或变化缓慢的量,这时,测试系统的性能指标不必用微分方程就能正确地描述测量工作的品质,这些标准称为测试系统的静特性。

通常情况下必须用微分方程来描述的确定测试系统输入和输出之间的动态关系的标准,称为系统的动特性。

上一章的理论分析对于了解测试系统的性能参数之间的基本关系是非常重要的,但实际上很难精确计算出测试系统的各项参数,因此对测试系统进行标定是必不可少的。测试系统的标定分为静态标定和动态标定两种。

静态标定的目的是确定测试系统静态特性指标,如线性度、灵敏度、滞后和重复性等。

动态标定的目的是确定测试系统的动态特性参数如频率响应、时间常数、固有频率和阻尼比等,以建立测试系统的动态数学模型。

4.1 测试系统的静态标定

4.1.1 静态标定的概念

静态标定是指这样一种标定情况,在这种情况下除一个输入量可变外,所有其它输入量(可以是有用输入量、干扰输入量或修改输入量)将保持为某一常数。然后,在某一固定范围内改变所研究的输入量,这就使输出量也在某一固定范围内变化。用这种方法所建立的输入—输出关系构成了对一个输入量的静态标定特性,它只有在其它所有的输入量都处于所规定的恒定情况下才有效。通过轮流改变每个所研究的输入量来重复进行静态标定过程,便得到一组输入—输出关系的静态标定特性。这一组标定特性就可以描述系统总的静态性能。

4.1.2 静态标定的系统组成

测试系统静态标定系统的一般组成为:

(1)被测物理量标准发生器。如产生恒定加速度的离心机,静重式活塞压力计等;

(2)被测物理量标准测试系统。如标准力传感器、压力传感器、标准长度、量块;

(3)被标定传感器所配套的测试设备。

4.1.3 静态标定的步骤

(1)检查系统构造和原理,识别并列出一切可能的输入信号;(2)确定测试系统的使用场合、使用环境和主要的输入信号;(3)选择或设计标定系统,使之能在必要的范围(应覆盖可能的使用范围)内,依次改变所有的主要输入信号;

(4)确定或设计标定系统的精度等级,通常遵循的原则是,标定系统的精度至少应为被标定测试系统精度的10倍;

(5)固定其它所有输入信号,而仅改变其中的一个输入信号(通常是在测量范围内等分成若干个点,使输入信号逐渐从小到大,再从大到小,变化一个循环),同时记录下与各输入值相对应的输出值,建立对应的输入—输出关系(表格或曲线);

(6)改变过程(5)中的变化输入信号,建立一系列对应的输入—输出关系(表格或曲线);

(7)对测试数据进行必要的处理,以确定测试系统的线性度、灵敏度、滞后、重复性静态特性指标。

4.2 测试系统的动态标定

4.2.1 动态标定的含义

静态校准的首要问题是要有足够精度的标准器,而动态校准的首要问题是要有频带能充分覆盖被标定传感器或测试系统频宽的动态激励信号发生器,才能将被标定系统的主要模态激发出来。电参数的动态激励信号比较容易产生,例如,变频正弦信号、脉宽可变的方脉冲、正负阶跃、半正弦和伪随机序列信号等,均有相应的信号发生器可提供所需的动态激励信号。所以,需要电量动态激励的部件与系统的动态校准比较容易进行。例如,各种电磁元件,各种放大器和信号调理器,自动平衡电桥式测试系统,模—数变换器,数—模变换器,电信号记录仪器(磁带机、紫外线记录仪、函数记录仪、笔录仪等),这些系统的动态校准实验,都可以利用相应的信号发生器进行。

如前一章所述,动态特性是指测试系统传递动态量的特性。它是以系统的冲击响应函数h(t)、频率响应函数H(f)和传递函数H(s)分别在时域、频域和拉氏域描述的。

由于测试系统的复杂性,完全用理论的方法来计算是非常困难的,甚至是不可能的,研究测试系统动态特性的基本方法是实验和分析相结合的方法。首先,对测试系统进行动态校准实验,由实验数据建立动态数学模型,然后计算其频率特性与动态性能指标。这个过程称为动态标定。

测试系统中最关键的部件是传感器。传感器种类繁多,五花八门,需要测量某种参数,就需要测该参数的传感器。要研究传感器的动态性能,首先必须产生相应测试量的动态激励信号,将传感器使用频带内的各种模态都激励起来,其动态响应才能反映传感器的动态特性。

测试系统的组成部件中,除传感器之外,还有放大器、调理器、变换器、记录仪器和数字计算机(包括单片机微处理器)等多个环节,对测试系统各个部件的动态性能都应该有确切的了解,此外,还应该对该系统的整个通道(传感器、放大器、变换器、接口、计算机)进行动态校准,求出整个通道的动态性能。

对于动态测试系统,组成系统的每个环节的动态特性都必须注意,不可忽视。在整个测试系统中,动态特性最差的薄弱环节往往需要给予特别的重视。

用变频正弦信号发生器进行上述各种部件和系统的频率特性实验时,将激励信号的最高频率做到系统的通频带

(对应于对数幅频

s

曲线的-3dB点)处即可。在频率特性的平直段,特别在实际工作频带附近,实验点应多些。

非电参数的动态激励信号发生器比较复杂,例如,激波管可以产生上升沿只有零点几微秒的阶跃压力,是压力传感器动态校准的理想激励信号,但是,它能产生的阶跃压力较小(例如几兆帕至十余兆帕,最大可达100MPa左右)。落锤装置可以产生冲击力、压力、加速度等的动态激励信号,这些装置只能产生单次性的时间域动态激励信号。其中,每种装置所产生的激励信号的大小,只适用于一定的范围。

传感器所测的参数很多,本书中主要讨论用于机械系统的动态测试系统,除了上述产生瞬态激励信号的激波管和落锤装置外,主要还有各类频率可在一定范围内调节,用于进行非电参数传感器频率特性实验的装置如电磁振动台和液压振动台等,这类振动台除了可以产生瞬态激励信号外,还可以产生标准的各种周期信号(正弦波、三角波、梯形波、后峰锯齿波等)以及窄带和宽带随机信号。但这些振动台的频率范围一般都比较有限,液压振动台的频率范围一般小于200Hz,电磁振动台的频率范围一般在5~3000Hz之间。

用变频周期信号直接测出传感器和测试系统频率特性的校准方法称为频率域动态校准方法。用时间域动态激励信号测出传感器和测试系统的瞬态响应的校准方法称为时间域动态校准方法。用伪随机信号激励被校准系统,求得输入、输出的互相关函数,便可求出系统的脉冲响应,故称为相关分析法。

由动态激励信号发生器产生激励信号给被校准系统,用瞬态记录仪(数字波形存储器、存储示波器、数字记忆示波器)记录被校准系统受激励之后的瞬态响应,并通过接口送入计算机,用时间域动态校准数据处理软件进行处理,求出动态数学模型和动态性能指标,由打印机打印出动态数学模型的阶次和参数以及动态性能指标,由绘图机绘出系统的瞬态响应曲线和频率特性曲线,这套系统称为时间域动态校准系统,不同传感器和测试系统的动态激励信号发生器不同,系统其余各部分(包括瞬态记录仪、接口、计算机以及数据处理软件包)都是共同的。所以,各种传感器和测试系统的动态校准系统的主要工作在于研究动态激励信号发生器。这也是建立动态校准系统的难点。4.2.2 动态标定的系统性能指标

对应于描述测试系统的时间域数学模型和频率域数学模型,动态性能指标一般分为两类:一类是时间域指标,另一类是频率域指标,这两类指标是等效的,可以相互换算。一般而言,频率域指标更好些,应用也更为广泛。

4.2.2.1 时间域动态性能指标

时间域动态性能一般都用常系数线性微分方程来描述,系统的性能参数一般即为微分方程中的系数。而动态性能指标一般都应该能方便地从输入和输出的信号中提取,并能定量的确定系统的动态性能参数。对于零阶系统,其响应是立即完成的,故无动特性存在。以下讨论一阶和二阶系统的动态特性标定。

(1)一阶低通系统

一阶低通系统的微分方程为

)()()(001

t x b t y a dt

t dy a =+ (4-1) 或化简为: )()()(t x S t y dt t dy S =+τ (4-2) 其中s S 为静态灵敏度,只有时间常数τ为动态参数,因此,一阶

系统仅需标定一个动态参数。

(a )阶跃响应

为了给一阶系统加上一个阶跃输入,我们假定在初试条件下系统处于平衡状态,即t=0时,0)0(=y ,则方程的解为

)1()(τt

S e S t y --= (4-3)

即系统响应速度仅决定于τ值,τ越小,响应速度越快(图4.1),将式(4-3)写成无量纲形式

图4.1 一阶低通系统的阶跃响应

τt S

e S t y --=1)( (4-4) 以τ/t 为横坐标,以s S y /为纵坐标,绘制曲线,该曲线对于任何

数值的s S ,τ,y 都具有普遍的适用性。

图4.2 一阶低通系统无量纲化的阶跃响应

阶跃响应曲线上有如下几个特征时间点:

①输出上升到稳态值的63%所需的时间T ,即时间常数τ。

②输出上升到稳态值的95%或98%所需时间T 5,和T 2,称为响应时间。

③输出从稳定值的10%达到稳态值的90%所需时间,称为上升时间r t 。 ④输出上升到稳态值的50%所需的时间,称为半值时间5.0t 。

一阶系统的时间域动态性能指标用上述哪一个指标均可,主要视标定的方便而定。各指标之间的关系为

T t T t T T T

T r 7.02.2435.025====

此外,我们还可以定义误差为:???

? ??--=-t t m e

x x E 1 (4-5) 将式(4-5)无量纲化为: τt

m e x E -= (4-6) 对于式(4-6)两边取对数:

τ

t x E Z m -==ln ,τ1-=dt dZ (4-7) 由于上式使用的是通过各数据点的最佳直线,而不是在63.2%方法中仅通过两点的直线,所以此时得到的τ值比较精确,如果各数据点近似地分布在一直线上,则该测试系统为一阶系统,如果各数据明显偏离一直线,则可判定该系统不是一阶系统,且通过63.2%方法所得到的τ值也是错误的。

(b )斜坡响应

为了给系统加上斜坡输入,假定在初试条件下系统处于平衡状

态,在0=t 时,输入量x 突然以一恒定速度x

开始变化, 此时,系统的解及其偏差为

)()(τττ-+=-t e x

S t y t

s (4-8) τττx e x S t y t x E t s m +-=-=-)()( (4-9) 式(4-9)的右边的第一项将随时间的增加而逐渐消失,即为瞬态误差,第二项为稳态误差。如果τ小,瞬态误差消失的将更快,稳态误差和τ成正比,τ小稳态误差也将减少。稳态误差直接随被测量

的变化速率x

而增加。在稳态情况下,输入和输出曲线之间的水平距离就是τ。即稳态的时间滞后为τ。

图4.3 一阶系统的斜坡输入及斜坡响应

(2)二阶系统

二阶系统的微分方程为

)()()()(001222t x b t y a dt t dy a dt

t y d a =++ (4-11) 虽然方程具有三个参数0012b a a a ,但只有三个是真正的基本参数,即==00a b S S 静态灵敏度;20a a n =ω=无阻尼固有频率,2

012a a a =ξ=阻尼比 上述方程可写为: )(1

)()(2)(22t x k

t y t y t y n n n ωωξω=++ 或: )()()(2)(2t x S t y t y t y

s n n =++ωξω (4-12)

其中S S 为静态灵敏度,ξωn 为动态参数,因此,二阶系统需标定二

个动态参数。

(a )阶跃响应

二阶系统阶跃响应曲线上有如下几个特征时间点:

①输出上升到稳态值的95%或98%所需时间T 5,和T 2,称为响应时间;

②输出从0上升到超调量的第一个峰值所需的时间,称为峰值时间p t ; ③最大超调量σ%;

④衰减率d.,对数衰减率D ;

⑤振荡周期T ;

二阶系统的时间域动态性能指标用上述哪一个指标均可,主要视标定的方便而定。各指标之间的关系为

243/125T t D T T D T T d p ====σ

图4.4 二阶系统的阶跃响应

4.2.2.2 频率域动态性能指标

频率域动态性能指标主要有通频带s

ω(即在对数幅频曲线上衰减3dB 的点),工作频带g ω(视测试要求而定,例如幅值误差小于±10%,

±5%,±2%,±1%等,或相位误差小于±10?,±5?,±2?,±1?等)。对于一阶系统还可以用通频带τω/1=s 表示,二阶系统为固有频率n ω和阻尼比ξ。

(1)一阶系统的频响函数

使测试系统在一定频率范围内受到正弦输入的作用,并记录其输入和输出。幅值比曲线用对数坐标,相位角曲线为线性坐标,其幅值比曲线按典型的低频和高频渐进线(即斜率为0和-20dB/10倍频程的两条直线)绘出,其相位角曲线则按渐进线接近-90?绘出。交接点的频率即为H s f πτω2/1==。

图4.5 一阶系统频响函数

一阶系统的归一化频响函数为

)()(11)(ω?ωωτ

ωj e A j j H -=+= (4-13) 式中,幅频 ()2211

ωτω+=A (4-14)

相频: ()τωω?arctg -=)( (4-15) s B B ωτω==

(4-16)

式中 )11(2-=ηB ,幅值误差: η-=?1A

当707.0=η时,τω/1,1==s B 为常用的通频带。由式(4-13)~

(4-16)即可算出对应于各种幅值误差A ?时的工作频带g ω

当对相角有确定的要求时,就可确定在工作频带g

ω内所允许的相角g

?。这时系统的时间常数 g g g tg ?ωτ1

= (4-17)

(2)二阶系统的频响函数

典型二阶系统传递函数为:()2222n

n n S s H ωξωω++= (4-18) 其频响函数为: ()()()ω?ωωj e A j H -= (4-19)

令频率比n ωωλ/=,幅频

()[]()222211

ξλλλ+-=A (4-20)

相频 ()2

12λξλλ?-=arctg (4-21) 当频率从零变到所要求的工作频带g ω时,幅频从1变到η(例如

η=±0.9或±0.95等),相频从零变到g ?

则幅频和相频的方程为

()()ηλξλλ=+-=g

g g A 2222411

(4-22) ()g g

g arctg 212λξλλ?-= (4-23)

解式(4-21)和式(4-22)并令()22/1ηη-=c ,即可得

2

122111-????????++-±=g g g n tg c tg ??ωω (4-24) c --=42221λλλ

ξ (4-25) 上二式即为系统固有频率和阻尼比与工作频带g ω(对应于给定

幅值误差?A 和相位误差g ?)的关系式。

4.2.2.3 测试系统动态数学模型建模和参数估计

用动态标定的实验数据,建立测试系统的动态数学模型,称为测试系统的实验建模,由系统输入动态激励信号和输出动态响应求出系统数学模型的方法,又称为系统辨识。系统辨识主要解决模型阶次和参数的估计,由于系统的输入和输出信号带有测量噪声,因此采用前述的方法,直接应用时间域和频率域指标时,会受到噪声的干扰,影响精度。建立动态数学模型的优点是:由模型计算的频率特性比较符合实际,光滑而有规则,并便于求出动态性能指标。建立测试系统动态数学模型之后一般还需要进行模型检验,模型检验的目的是检验模型计算值和动态标定实验结果是否吻合。吻合较好的模型,说明用该模型描述被标定的测试系统的动态特性是合适的。此外,通过比较,还可以检验标定过程中的测量噪声及标定精度。

4.3 动态标定信号的分析与选择

对动态激励信号的要求,主要是要激发被标定系统的全部模态频率,以得到被标定系统完整的动态响应。换句话说,动态激励信号的频谱要能充分覆盖被标定系统的全部模态频率。

图4.5 被标定系统和动态激励信号

图4.5给出被标定系统和动态激励信号的幅频特性。例如,某测试系统的频率特性如曲线1所示。对于这个系统,若采用幅频特性如

曲线3的激励,则系统能够准确、无失真地测量这种信号。若采用曲线2所示的幅频特性的信号激励,因为激励信号的频谱很宽,可将被校系统全部模态都激励起来,对被标定系统来说,相当于一个脉冲激励,该激励信号的频谱充分覆盖了被校系统的全部模态。

上述两个例子说明了选择动态标定激励信号的重要性。对几种典型的动态激励信号进行分析研究,并讨论其选择方法,是本节的主要任务。动态激励信号可分为频率域的、时间域的和随机的三种。

4.3.1 频率域动态激励信号的分析与选择

频率域的动态激励信号比较简单,一般都采用正弦信号,它的频谱是对应于各种频率的单谱线,谱线的高低取决于正弦信号的幅值。频率的变化可以由人工逐点调节也可以由仪器在给定的频率范围自动扫频。为简化数据处理,测试系统频率特性时,一般都保持激励信号的幅值不变。实验的频率范围一般都必须覆盖到系统的-3dB 点,即一般都测试到系统的幅频响应小于0.707或对数幅频响应小于-3dB 之后,实验中还应注意正弦激励信号的幅值应保持在测试系统的线性范围之内。

4.3.2 时间域动态激励信号的分析与选择

时间域激励信号的种类较多,下面只分析几种典型的信号。

4.3.2.1 矩形脉冲信号

矩形脉冲信号的频率响应为 )sin cos 1()1()(τωτωω

ωωτωj j X e j X j X m j m +-=-= (4-26)

幅频为: ()()22s i n s i n c o s 122τω

τωττωτωωωm m

X X X =+-= (4-27)

相对幅频为: ()()()

22s i n 0τωτω

ωω==X X A (4-28) 当(τω/2)→0时,()ωA →1,当(τω/2)→∞时,()ωA →0由此式可绘出相对幅频特性曲线。

假设被校准系统的通频带粗略估计为1s ω,若用矩形脉冲信号对

它进行动态校准时,动态激励信号的通频带应大于或等于被校准系统的通频带,才能将被校准系统的模态充分被激励起来。矩形脉冲的通频带2s ω对应于()ωA =0.707,此时(τω/2)=0.443π,则()1/886.03.02.0s ωπτ-=,也就是说,当被校准系统的通频带为1s ω时,

矩形脉冲宽度,应按上式选择。为了充分保证激励信号的频带足够宽,方波脉冲宽度应为理论计算值的1/3~1/5.例如,被校准系统的通频带为A=1kHz ,则激励信号矩形脉冲的宽度为88.6~132.9μs 。

4.3.2.2 阶跃信号

数学上阶跃信号的上升时间为零,为了与实际上具有一定上升时间的阶跃信号相区别,将数学上定义的阶跃信号称为理想阶跃信号,后者称为带斜波的阶跃信号。

(1)理想阶跃信号

理想阶跃信号的频谱为

ωωπδωj j X 1)()(+

= (4-30) 幅频为: []221

)()(ωωπδω+=j X (4-31)

由此式可绘出幅频特性曲线。

(2)带斜坡的阶跃信号

???≥<=ττπ

t t t t x 1/)( (4-32)

其拉氏变换为: ()

s e s

s X ττ--=11)(2 (4-33) 幅频特性为: 2sin 2

)(2τωτωω=j X (4-34) (3)半正弦信号

)(sin )(sin )(ττπττπ--+=t t t t x (4-35)

其拉氏变换式为 ())1(22s e s s X ττπτ

π-+??? ??+= (4-36)

幅频特性为:

()()22/2cos )/2(ωτπτωτπω-?=j X (4-37) 归一化幅频为: ()()()()222/2c o s )/(0ωτπτωτπωω-?==j X j X j X (4-38)

由此式可绘出归一化幅频特性曲线。 当0=ω时,()π

τ20=j X ;随着ω增加,()ωj X 逐渐下降。选用半正弦信号作为系统的激励信号时,要选择适当的τ,使系统的主要模态频率能够被()ωj X 所覆盖。

4.4两种典型的动态标定系统

为了进一步说明测试系统的动态标定,在这一节介绍两种典型的动态标定系统。一是采用激波管作激励源的激波管法,它是典型的瞬态信号激励系统,二是采用电磁振动台进行正弦信号扫描的频率响应标定系统,它是稳态频率激励的系统。

4.4.1典型瞬态信号激励--激波管法

4.4.1.1 激波管法标定原理

激波管系统标定动态压力传感器的原理是,在激波管内产生一个阶跃压力,传至装在激波管侧壁或末端的被标定动态压力传感器,并用适当的记录设备记录在这一阶跃压力作用下被标定压力传感器所产生的过渡过程,然后根据这一过渡过程,应用适当的计算方法求得被标定压力传感器的传递函数(即幅频特性和相频特性)。

4.4.1.2 激波与激波管

考察图4.6的活塞筒,当筒内气体因活塞高速运动而压缩时,形成如图4.6(a)所示的压力波。由于靠近活塞处的压力高,这里的高压力波比远处低压力波具有更高的速度向右传播。于是在压力波传播过程中,它的前沿越来越陡,如图 4.6(b)所示。经过一定时间之后,就在活塞的前方形成了图4.6(c)所示的具有陡峭前沿的压力波——激波。在激波的前沿上不但压力产生跳变,而且气体的温度和密度也发生跳变。当激波强度足够大时,就可以获得高温高压和高速的气体流动。

图4.6激波的形成

激波的传播速度大小随压力变化的强弱而定,压力变化愈大,则激波的传播速度愈大。激波后的气体压力、温度和密度都比激波前的

高。在激波的影响下,气体的粒子也朝着激波运动方向流动,但粒子的流动速度低于激波传播速度。激波的厚度非常薄,一般近似等于分子平均自由程的距离,而空气中激波的厚度约为其值的四倍,所以,一般为简化计算,可认为激波没有厚度。

为了使产生的激波能人为地加以控制,用来模拟某种特殊的环境,人们研制了各种激波管。激波管是产生激波的核心部分。

图4.7 激波管标定系统示意图

激波管是一个理想的阶跃压力(阶跃函数)发生器。它是一根中间用膜片分隔成两段的内璧光滑两端封闭的圆管,激波管标定系统如图4.7。管径大小可根据需要确定,一般在20~500mm之间。管壁材料一般为铜或合金钢。膜片前面往往充以高压气体,称为高压段,而膜片后不加压,或抽空到一定负压,称为低压段。低压段在不抽空时,其末端是开口的,而当抽空到一定负压时,其末端是不开口的。所用膜片的材料和厚度,决定于所要求的破膜压力。膜片应保证高低压段的压力差,并保持在规定条件下不破裂。一旦膜片破裂,就会在低压段产生激波。破膜的方式分两种,一种是自然破膜,即在高低的压力差超过膜片强度时,膜片自行破裂;另一种是当高压段和低压段的压力差控制到所需要的值时,使撞针机构(一种机械装置)的针尖突然扎

破膜片中心而使膜片破裂。在高压段,一般充以氢、氦等轻气体,而低压段充以空气、六氟化硫等较重的气体。

这个装置除激波管本身外,可分成气源,测速和记录及数据处理三部分。

气源部分供给激波管高压段以高压气体以及低压段的初始压力。高压气体可由气瓶或其他装置供给,经减压器和控制阀至激波管高压段内。减压器用来控制所加高压的上限。以免出现损害被标定压力传感器的现象,或造成其他事故。控制阀用来控制进入激波管高压段的气量,膜片破裂后应立即关闭控制阀。减压器和控制阀均装在控制台上。在控制台上还装有放气阀和压力表。压力表用来读取膜片破裂时高压段和低压段内的压力值,而放气阀用于每次标定完后将激波管内的气体放掉。

测速部分由测速传感器,放大器,限幅器和电子计数器组成。在低压室的右端侧璧上安装两个用于测定激波速度的传感器,当激波通过时,通过温度或压力效应使传感器产生两个电脉冲,输给计时仪测出激波通过已知距离的两个传感器的时间间隔。传感器的中心距除以测出的这个时间便得到激波的速度。

记录及数据处理部分由测量电路,放大器,示波器和频谱分析仪等组成。这部分用来对被标定压力传感器接收激波后的响应进行记录及数据处理。

激波管标定装置的工作过程简介于下。

半导体器件综合参数测试

研究生《电子技术综合实验》课程报告 题目:半导体器件综合参数测试 学号 姓名 专业 指导教师 院(系、所) 年月日

一、实验目的: (1)了解、熟悉半导体器件测试仪器,半导体器件的特性,并测得器件的特性参数。掌握半导体管特性图示仪的使用方法,掌握测量晶体管输入输出特性的测量方法。 (2)测量不同材料的霍尔元件在常温下的不同条件下(磁场、霍尔电流)下的霍尔电压,并根据实验结果全面分析、讨论。 二、实验内容: (1)测试3AX31B、3DG6D的放大、饱和、击穿等特性曲线,根据图示曲线计算晶体管的放大倍数; (2)测量霍尔元件不等位电势,测霍尔电压,在电磁铁励磁电流下测霍尔电压。 三、实验仪器: XJ4810图示仪、示波器、三极管、霍尔效应实验装置 四、实验原理: 1.三极管的主要参数: (1)直流放大系数h FE:h FE=(I C-I CEO)/I B≈I C/I B。其中I C为集电极电流,I B为基极电流。 基极开路时I C值,此值反映了三极管热稳定性。 (2)穿透电流I CEO : (3)交流放大系数β:β=ΔI C/ΔI B (4)反向击穿电压BV CEO:基极开路时,C、E之间击穿电压。 2.图示仪的工作原理: 晶体管特性图示仪主要由阶梯波信号源、集电极扫描电压发生器、工作于X-Y方式的示波器、测试转换开关及一些附属电路组成。晶体管特性图示仪根据器件特性测量的工作原理,将上述单元组合,实现各种测试电路。阶梯波信号源产生阶梯电压或阶梯电流,为被测晶体管提

供偏置;集电极扫描电压发生器用以供给所需的集电极扫描电压,可根据不同的测试要求,改变扫描电压的极性和大小;示波器工作在X-Y状态,用于显示晶体管特性曲线;测试开关可根据不同晶体管不同特性曲线的测试要求改变测试电路。(原理如图1) 上图中,R B、E B构成基极偏置电路。当E B》V BE时,I B=(E B-V BE)/R B基本恒定。晶体管C-E之间加入锯齿波扫描电压,并引入小取样电阻RC,加到示波器上X轴Y轴电压分别为:V X=V CE=V CA+V AC=V CA-I C R C≈V CA V Y=-I C·R C∝-I C I B恒定时,示波器屏幕上可以看到一根。I C-V CE的特征曲线,即晶体管共发射极输出特性曲线。为了显示一组在不同I B的特征曲线簇I CI=φ应该在X轴锯齿波扫描电压每变化一个周期时,使I B也有一个相应的变化。应将E B改为能随X轴的锯齿波扫描电压变化的阶梯电压。每一个阶梯电压能为被测管的基极提供一定的基极电流,这样不同变化的电压V B1、V B2、V B3…就可以对应不同的基极注入电流I B1、I B2、I B3….只要能使没一个阶梯电压所维持的时间等于集电极回路的锯齿波扫描电压周期。如此,绘出I CO=φ(I BO,V CE)曲线与I C1=φ(I B1,V CE)曲线。 3.直流电流放大系数h FE与工作点I,V的关系 h FE是晶体三极管共发射极连接时的放大系数,h FE=I C/I B。以n-p-n晶体管为例,发射区的载流子(电子)流入基区。这些载流子形成电流I E,当流经基区时被基区空穴复合掉一部分,这复合电流形成IB,复合后剩下的电子流入集电区形成电流为IC,则I E=IB+IC。因IC>>IB 所以一般h FE=IC/IB都很大。

Testbed静态测试使用指南V1.1

目录 1Testbed功能介绍 (1) 1.1编程规则验证 (1) 1.2数据流分析 (1) 1.3控制流分析 (1) 1.4表达式分析 (2) 1.5接口分析 (2) 1.6软件质量度量分析 (2) 2使用Testbed 进行编码规则的定制和检查 (3) 2.1确定测试需求 (3) 2.2建立测试工程 (3) 2.3定制代码分析规则 (6) 2.4配置Report选项 (7) 2.5分析执行及结果查看 (8) 3结果分析及测试报告编写 (9) 3.1质量度量信息的获取 (9) 3.2程序质量度量报告单 (11) 3.3静态分析质量报告单 (12) 附录A:静态分析推荐规则使用说明 (1)

1Testbed功能介绍 1.1编程规则验证 编程标准验证是高可靠性软件开发不可缺少的软件质量保证方法,使用LDRA Testbed 自动地验证应用软件是否遵循了所选择的编程规则。编程规则由软件项目管理者根据自身项目的特点并参考现有的成熟的软件编程标准制定,如DERA(欧洲防务标准),MISRA(汽车软件标准),LDRA Testbed依据此规则搜索应用程序,并判断代码是否违反所制定的编程规则。LDRA Testbed报告所有违反编程规则的代码并以文本方式或图形反标注的方式显示。测试人员或编程人员可根据显示的信息对违反编程规则的代码进行修改。 1.2数据流分析 LDRA Testbed分析软件中全局变量、局域变量及过程参数的使用状况,并以图形显示、HTML或ASCII文本报告方式表示,清晰地识别出变量使用引起的软件错误,此种方法既可使用于单元级,亦可使用于集成级、系统级。 通过Testbed数据流分析功能,可方便地分析出软件中一些可能的程序欠缺,如: 1.没使用的函数参数; 2.不匹配的参数; 3.变量未赋初值就引用; 4.代码中有多余变量; 5.给值传递参数赋值; 6.无返回值的函数路径; 7.函数的实参是全局变量。 1.3控制流分析 控制流分析检查以下内容: 1.不可达代码; 2.不合理的循环结构; 3.存在浮点相等比较; 4.函数存在多个出口; 5.函数存在多个入口。

FLUKE测试报告参数详解

Fluke DTX系列六类双绞线测试参数说明: 1、插入损耗:是指发射机与接收机之间,插入电缆或元件产生的信号损耗,通常指衰减。插入损耗以接收信号电平的对应分贝(db)来表示。对于光纤来说插入损耗是指光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的比率的分贝数。 2、NEXT(近端串扰):是指在与发送端处于同一边的接收端处所感应到的从发送线对感应过来的串扰信号。在串扰信号过大时,接收器将无法判别信号是远端传送来的微弱信号还是串扰杂讯。 3、PSNEXT(综合近端串扰):实际上是一个计算值,而不是直接的测量结果。PSNEXT 是在每对线受到的单独来自其他三对线的NEXT 影响的基础上通过公式计算出来的。PSNEXT 和FEXT(随后介绍)是非常重要的参数,用于确保布线系统的性能能够支持象千兆以太网那样四对线同时传输的应用。 4、ACR(衰减串扰比):表示的是链路中有效信号与噪声的比值。简单地将ACR 就是衰减与NEXT 的比值,测量的是来自远端经过衰减的信号与串扰噪声间的比值。例如有一位讲师在教师的前面讲课。讲师的目标是要学员能够听清楚他的发言。讲师的音量是一个重要的因素,但是更重要的是讲师的音量和背景噪声间的差别。如果讲师实在安静的图书馆中发言,即使是低声细语也能听到。想象一下,如果同一个讲师以同样的音量在热闹的足球场内发言会是怎样的情况。讲师

将不得不提高他的音量,这样他的声音(所需信号)与人群的欢呼声(背景噪声)的差别才能大到被听见。这就是ACR。ACR=衰减的信号-近端串扰的噪音 5、PSACR(综合衰减串扰比):反映了三对线同时进行信号传输时对另一对线所造成的综合影响。它只要用于保证布线系统的高速数据传输,即多线对传输协议。 6、ELFEXT(等效远端串扰):是远端串扰损耗与线路传输衰减的差值,以db 为单位。是信噪比的另一种方式,即两个以上的信号朝同一方向传输时的情况。 7、PSELFEXT(综合平衡等级远端串扰):表明三对线缆处于通信状态时,对另一对线缆在远端所造成的干扰。 8、RL(回波损耗):电信号在遇到端接点阻抗不匹配时,部分能量会反射回传送端。回波损耗表征了因阻抗不匹配反射回来的能量的大小,回波损耗对于全双工传输的应用非常重要。

时间综合参数测试仪

时间综合测试仪 随着目前电力系统统一时钟的推广应用,以及行业标准对时间同步系统提出的各项新技术要求,验证一个时间同步系统的输出信号以及被对时设备的同步情况是否符合设计指标成为一个不可忽视的问题。同时在PTN网络工程开局时,为了精确地测量路径的不对称,需要精确的仪表进行测量,在3G网络的运行过程中,为了随时掌握基站之间的同步状况,需要精确的仪表进行测量。 虽然目前市面上有各类时频方面的测试仪,但是功能和接口都相对比较单一,性能指标也达不到计量仪表的标准。SYN5104型时间综合测试仪是一款便携式时间频率综合测试设备。内装OCXO恒温晶体振荡器,接收GPS(全球定位系统)以及北斗二代卫星定时信号,驯服恒温晶振,使其输出频率同步于卫星铯原子钟信号上,产生极其准确的时间信号及频率信号。以此为参照,实时精确测量多种输入时间频率信号的精度,为时间同步装置及时统设备的现场检测、校验、验收提供了有效而便捷的解决方案。 产品功能 1)在结构设计上,将时间标准源、时差测量和测试结果显示三块功能实现一体 化, 从而可以在一台便携式智能仪表中方便而准确地完成测试项目; 2)测试功能齐全:时间准确度、频率准确度、报文准确度,周波测量,温湿度 测量,时间记录; 3)采用GPS/北斗二代卫星定时信号控制内置振荡器提供高精度时间频率标准, 测量精度100 ns; 4)能直接测量,在前面板上直接显示被测时钟和标准时间的时差,测量方式直 观方便; 5)可便携移动,既可用于现场,又可用于检测机构; 6)可以输出时间信号与更高级的标准时间源进行比对,以标定本测试仪的精度 等级。也可用于给现场有需求的设备提供高精度的时间信号; 7)测量结果数据自动导出到计算机中; 8)具有7AH电池供电。 产品特点 a)精度高、高性价比; b)功能齐全、性能可靠;

DAC静态参数测试

第四章 DAC 静态电参数测试 本文要点: DAC 电参数义的定 DAC 规静态电参数测试计常方法及算公式 DAC 测试统系的典型硬件配置 DAC 数规据范(Data Sheet)样例 选择输码减如何入代以少DAC 测试时间的 如何提高DAC 电参数测试的精度及稳定性 关键词释解 调误失差Eo(Offset Error)转换线实际值与值值:特性曲的起始理想起始(零)的偏差。 误增益差E G (Gain Error)转换线实际与资:特性曲的斜率理想斜率的偏差。(在有些料误称为满误上增益差又刻度差) 线误性差Er(Linearity Error)转换线与拟线间:特性曲最佳合直的最大偏差。(NS 公司义定)或者用:准确度E A (Accuracy 转换线与转换线):特性曲理想特性曲的最大偏差(AD 义公司定)。 线误微分性差E DL (Differential Linearity Error)值满值围内邻输:在起始到刻度的范相入数码对应拟输电压实际值与的模出之差的1LS 值简单说个理想得最大偏差。的,就是在整转换围内范每一步距(1LSB)的最大偏差。 满围刻度范(FSR):DAC 输电压围的出范。 最小有效位(LSB):DAC 输变时输电压变入化一位,出的化量。 单调性(Monotonic):DAC 输号个变时输个变的入信朝一方向化,出也向一方向化或保持常量 分辨率(Resolution):DAC 总的输数义为入位,定2 n 一、 DAC 静态电参数义测试简定及介 在图4.1中,Summing Junction 和 I out 连没电过电端接在一起,如果有流流阻R∑输,电压出Vout 为电压当零刻度;DAC 电过电的最大流流阻R∑输电压,出Vout 为满电压刻度。

线路参数测试方法

高感应电压下用SM501测试线路参数的方法 湖南省送变电建设公司调试所邓辉邓克炎 0引言 超高压输电线路工频参数测试时,经常遇到感应电压很高的情况,不能用仪器直接测试, 否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 1SM501的介绍: SM501线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D同步交流采样及数字信号处理技术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 1.1SM501的主要功能与特点: (1)可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。 (2)全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。

(3)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电流互感器。 (4)可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。 1.2主要技术指标; (1)基本测量精度:电流、电压、阻抗0.2级,功率0.5级 (2)电压测量范围:AC 0-450V 电流测量范围:AC 0-50A 2为什么要对输电线路进行参数测试: 输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。 以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保定市超人电子有限公司研制了一种比较智能的参数测试仪那就是SM501。 3几种典型的参数测试: 3.1 输电线路正序阻抗的测试: 将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图1接法测量。当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器,按图2接法测量。在仪器测试项目菜单中

机械传动性能综合测试实验

机械传动性能综合测试实验指导书 一、实验目的 1.了解机械传动效率测试的工程试验方法及常用测试设备及其精度; 2. 分析传动系统效率损失的主要原因,掌握常用传动系统的特点及其效率范围; 3. .认识智能化机械设计综合实验台的工作原理,掌握计算机辅助实验的新方法, 培养进行设计性实验与创新性实验的能力。 二、实验原理及设备 .本实验台采用模块化结构,由不同种类的机械传动装置、联轴器、变频电机、加载装置和工控机等模块组成,学生可以根据选择或设计的实验类型、方案和内容,自己动手进行传动连接、安装调试和测试,进行设计性实验、综合性实验或创新性实验。 机械设计综合实验台的工作原理如图1所示。 图1 实验台的工作原理 机械设计综合实验台各硬件组成部件的结构布局如图2所示。 1-变频调速电机2-联轴器3-转矩转速传感器4-试件 5-加载与制动装置6-工控机7-变频器8电器控制柜9-台座

实验台组成部件的主要技术参数如表1所示。 机械设计综合实验台采用自动控制测试技术设计,所有电机程控起停,转速程控调节,负载程控调节,用扭矩测量卡替代扭矩测量仪,整台设备能够自动进行数据采集处理,自动输出实验结果。其控制系统主界面如图2所示,软件操作指南见附件二。 图2 实验台控制系统主界面 运用“机械设计综合实验台”能完成多类实验项目(表2),可根据专业特点和实验教学改革需要指定,也可以让学生自主选择设计实验类型与实验内容。 表2

线的测试, 来分析机械传动的性能特点; 实验利用实验台的自动控制测试技术,能自动测试出机械传动的性能参数, 如转速n (r/min)、扭矩T (N.m)、功率P (K.w)。并按照以下关系自动绘制参数曲线: 传功比i=n1/n2 扭矩T=9550 P/n (Nm) 传功效率η=P2/P1= T2 n2/ T1n1 四、实验步骤

MOSFET参数及其测试方法

参数类别(物理特征): 1、漏源电压系列 1.1、V(BR)DSS:漏源击穿电压 1.2、dV(BR)DSS/dTJ:漏源击穿电压的温度系数1.3、VSD:二极管正向(源漏)电压 1.4、dV/dt:二极管恢复电压上升速率 2、栅源电压系列 2.1、VGS(TH):开启电压 2.2、dVGS(TH)/dTJ:开启电压的温度系数 2.3、V(BR)GSS:漏源短路时栅源击穿电压 2.4、VGSR:反向栅源电压 3、其它电压系列 3.1、Vn:噪声电压 3.2、VGD:栅漏电压 3.3、Vsu:源衬底电压 3.4、Vdu:漏衬底电压 3.5、Vgu:栅衬底电压 二、电流类参数 1、漏源电流系列 1.1、ID:最大DS电流 1.2、IDM:最大单脉冲DS电流 1.3、IAR:最大雪崩电流 1.4、IS:最大连续续流电流 1.5、ISM:最大单脉冲续流电流 1.6、IDSS:漏源漏电流 2、栅极电流系列 2.1、IGSS:栅极驱动(漏)电流 2.2、IGM:栅极脉冲电流 2.3、IGP:栅极峰值电流

三、电荷类参数 1、Qg:栅极总充电电量 2、Qgs:栅源充电电量 3、Qgd:栅漏充电电量 4、Qrr:反向恢复充电电量 5、Ciss:输入电容=Cgs+Cgd 6、Coss:输出电容=Cds+Cgd 7、Crss:反向传输电容=Cgd 四、时间类参数 1、tr:漏源电流上升时间 2、tf:漏源电流下降时间 3、td-on:漏源导通延时时间 4、td-off:漏源关断延时时间 5、trr:反向恢复时间 五、能量类参数 1、PD:最大耗散功率 2、dPD/dTJ:最大耗散功率温度系数 3、EAR:重复雪崩能量 4、EAS:单脉冲雪崩能量 六、温度类参数 1、RJC:结到封装的热阻 2、RCS:封装到散热片的热阻 3、RJA:结到环境的热阻 4、dV(BR)DSS/dTJ:漏源击穿电压的温度系数 5、dVGS(TH)/dTJ:开启电压的温度系数 七、等效参数 1、RDSON:导通电阻 2、Gfs:跨导=dID/dVGS 3、LD:漏极引线电感 4、LS:源极引线电感

第四章 动态参数测试及动态标定

4 动态参数测试及动态标定 测试系统中的某些元件的性能会因使用程度和随时间而有所变化。因此测试系统在使用中经常要对其性能指标、参数进行标定。除了在产品研制中对各个指标进行逐项的校准标定外,在使用过程中还应定期校准,另外,针对某项测试任务,还经常要设计由各种类型的传感器、放大器和记录设备组成的特定的测试系统,这时测试系统的各项指标就需要进行系统标定。由于测振系统的种类很多,使用的场合也不相同,因此标定试验也有各种类型,本章主要叙述测试系统的动态标定和试验。 在某些特定场合测试系统只需测量不变或变化缓慢的量,这时,测试系统的性能指标不必用微分方程就能正确地描述测量工作的品质,这些标准称为测试系统的静特性。 通常情况下必须用微分方程来描述的确定测试系统输入和输出之间的动态关系的标准,称为系统的动特性。 上一章的理论分析对于了解测试系统的性能参数之间的基本关系是非常重要的,但实际上很难精确计算出测试系统的各项参数,因此对测试系统进行标定是必不可少的。测试系统的标定分为静态标定和动态标定两种。 静态标定的目的是确定测试系统静态特性指标,如线性度、灵敏度、滞后和重复性等。 动态标定的目的是确定测试系统的动态特性参数如频率响应、时间常数、固有频率和阻尼比等,以建立测试系统的动态数学模型。

4.1 测试系统的静态标定 4.1.1 静态标定的概念 静态标定是指这样一种标定情况,在这种情况下除一个输入量可变外,所有其它输入量(可以是有用输入量、干扰输入量或修改输入量)将保持为某一常数。然后,在某一固定范围内改变所研究的输入量,这就使输出量也在某一固定范围内变化。用这种方法所建立的输入—输出关系构成了对一个输入量的静态标定特性,它只有在其它所有的输入量都处于所规定的恒定情况下才有效。通过轮流改变每个所研究的输入量来重复进行静态标定过程,便得到一组输入—输出关系的静态标定特性。这一组标定特性就可以描述系统总的静态性能。 4.1.2 静态标定的系统组成 测试系统静态标定系统的一般组成为: (1)被测物理量标准发生器。如产生恒定加速度的离心机,静重式活塞压力计等; (2)被测物理量标准测试系统。如标准力传感器、压力传感器、标准长度、量块; (3)被标定传感器所配套的测试设备。 4.1.3 静态标定的步骤 (1)检查系统构造和原理,识别并列出一切可能的输入信号;(2)确定测试系统的使用场合、使用环境和主要的输入信号;(3)选择或设计标定系统,使之能在必要的范围(应覆盖可能的使用范围)内,依次改变所有的主要输入信号;

汽车综合性能检测站能力的通用要求精编版

汽车综合性能检测站能力的通用要求 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

汽车综合性能检测站能力的通用要求1 范围 本标准规定了汽车综合性能检测站开展汽车综合性能检测工作应具备的服务功能、管理、技术能力以及场地和设施的要求。 本标准适用于汽车综合性能检测站建设、运行管理以及对汽车综合性能检测站能力认定、委托检测和监督管理。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 1589?道路车辆外廓尺寸、轴荷及质量限值 GB 7258?机动车运行安全技术条件 GB/T 11798.9平板制动试验台检定技术条件 GB/T 12480客车防雨密封性试验方法 GB/T 12534?汽车道路试验方法通则 GB/T 13563?滚筒式汽车车速表检验台 GB/T 13564滚筒反力式汽车制动检验台

GB/T 15481?检测和校准实验室能力的通用要求 GB/T 15746.1~15746.3?汽车修理质量检查评定标准GB/T 18344?汽车维护、检测、诊断技术规范 GB 18565?营运车辆综合性能要求和检验方法 GB/T 50033?建筑采光设计标准 GB 50034?工业企业照明设计标准 GB 50055?通用用电设备配电设计规范 GB 50057?建筑物防雷设施规范 GBZ1?工业企业设计卫生标准 GA 468?机动车安全检验项目和方法 JT/T 198?营运车辆技术等级划分和评定要求 JT/T 386?汽车排气分析仪 JT/T 445?汽车底盘测功机 JT/T 448?汽车悬架装置检测台 JT/T 478?汽车检测站计算机控制系统技术规范 JT/T 503?汽车发动机综合检测仪 JT/T 504?前轮定位仪 JT/T 505?四轮定位仪 JT/T 506?不透光烟度计 JT/T 507?汽车侧滑检验台 JT/T 508?机动车前照灯检测仪 JT/T 510?汽车防抱制动系统检测技术条件

Y-火工品动态参数测试

火工品燃气输出动态参数特性的分析与测试 付永杰!"#"严楠! $!%北京理工大学爆炸灾害预防与控制国家重点实验室"北京!&&&’!( #%)#*)+部队’)分队"辽宁葫芦岛!#,&&&- 摘要.在查阅国内外有关火工品手册和对使用单位调研的基础上"综合分析现有火工品表征燃气输出威力参量的压力/推力/加速度/温度/位移/速度等的信号特征"给出了输出威力测量值的参数类型/量值大小和频率响应的特性范围0针对各类火工品的输出信号特征"选择相应的传感器/信号调理器和动态分析仪"建立了一套火工品试验动态多参数测试系统"可以实现在一次试验中多物理量同时测量"获取更多的输出参数性能信息"并可以分析各参数之间的相互关系"为火工品输出性能的设计和测试系统的建立提供参考0 关键词.物理化学(火工品(动态测试(燃气输出(信号 中图分类号.12*,&%3文献标志码.4文章编号.!&&565’!#$#&&5-&+6&&5,6&3 789:;<=<98>?@<.o v c p\u_l u v]w\p a f c(\Y\a\_a\Y Z]n o l X p\i]j]i\u]p(j c Y_w\u a]p a.u X w e t p a\e l]Z_p X t a o t a(p\Z Y_l 引言 火工品作为起爆/引燃元件和动力源装置"是武器装备/航空航天飞行系统中不可缺少的组成部分"广泛用于各种枪炮的弹药/火箭/导弹/卫星姿态调整/紧急救生装置等0在火工品的设计和验收中"其燃气输出威力性能的考核主要是通过测试密闭爆发器内燃气压力"时间曲线"一般只做单项性能考核"个别产品进行推力/行程考核0最有效的研究方法是对其输出特性参数进行多参数测量或同时测量"包括燃烧压力/推力/速度/加速度/位移/温度等参数0这样可以在一次试验中获得输出性能的多个参数信息"极大地丰富了产品性能设计和作用机理研究所需要的信息量"对提高火工品设计质量和降低研制成本具有重要的参考价值0 为了更好地构建火工品输出性能多参数测试系统的性能指标"需要了解代表火工品燃气输出性能的各种物理参数类型/量值范围/频率响应特性等技术指标0本研究通过对现有火工品手册/火工品生产 收稿日期.#&&56&#(修回日期.#&&56&*6&# 作者简介.付永杰$!)5,"-"女"工程师"硕士研究生"从事计量测试技术研究0 , 5 第+&卷第+期#&&5年3月 火炸药学报 C#=8@<@$B F M89:B O R S I:B<=T@<%L M B I@::98A<火 炸 药 学 报 w w w . h z y x b . c n

ADC测试参数定义、分析及策略之动态测试

ADC测试参数定义、分析及策略之动态测试2007-11-08 10:50:21 分类: 前言 混合信号技术给当今的半导体制造商们带来了很多新挑战,以前一些对数字电路只有很小影响的缺陷如今在嵌入式器件中却可能大大改变模拟电路的功能,导致器件无法使用。为确保这些新型半导体器件达到“无缺陷”水平,需要开发新的测试策略、方法与技术。本文将结合一个简单的混合信号器件——模数转换器(ADC)来对这些策略、技术与方法进行讨论,说明混合信号器件测试的步骤和方法。有了这些基本认识后,就可将其扩展并应用到当前先进的嵌入式半导体器件中,如数字滤波器、音频/视频信号处理器及数字电位计等。 传统半导体器件测试包括基本参数测试(连续性、泄漏、增益等)和功能测试(将器件输出与给定输入相比较),混合信号测试还要再另外增加两个测试,即动态测试和线性测试。动态参数描述的是器件对一个特定频率或多频率时序变化信号的采样(从模拟信号中建立数字波形)和重现(利用数字输入建立模拟信号)能力。线性参数则相反,描述的是器件在特性,主要关注数字和模拟电路之间的关系。下面将对这两种特性分别作详细说明。 动态测试 模数转换器的动态特性有时也称作传输参数,代表器件模拟信号采样和输入波形的数字再现能力,信噪比(SNR)、总谐波失真(THD)及有效位数(ENOB)等指标可使制造商对器件输出的“纯度”和数字信息精度进行量化。新型动态测试技术产生于上世纪80年代,主要围绕数字信号处理和傅立叶变换,将时域波形和信号分别转换为频谱成分。这种技术可以同时对多个测试频率进行采样,效率和重复性非常高。图1是对一个普通ADC器件进行快速傅立叶变换(F FT)测试的示意图,图中可以看到模拟信号在时域转换成数字代码,然后用傅立叶变换转换成频谱。对ADC输出进行傅立叶分析可提供宝贵的性能信息,但如果测试时条件设置不当得到的信息也会毫无意义。为了从器件输出信号的傅立叶分析中提取有意义的性能参数,在讨论FFT结果之前首先需要考虑测试条件,其中包括输入信号完整性、采样频率、一致性及系统测量误差(假频、量化及采样抖动误差)。

实验一 单级放大电路静态参数的测试

实验一 单级放大电路静态参数的测试 (验证性实验) 一、实验目的 1. 熟悉模拟电子技术实验箱的结构,学习电子线路的搭接方法。 2. 学习测量和调整放大电路的静态工作点,观察静态工作点设置对输出波形的影响。 二、实验仪器 1. 低频信号发生器 SG1026 1台 2. 双踪示波器 SS7802或COS5020BF 1台 3. 万用表 VC9802A 1块 三、实验说明 图1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui 后,在放大器的输出端便可得到一个与ui 相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。 图1 共射极单管放大器实验电路 在图1电路中,旁路电容CE 是使RE 对交流短路,而不致于影响放大倍数,耦合电容C1和 C2 起隔直和传递交流的作用。当流过偏置电阻RB1和RB2 的电流远大于晶体管T 的基极电流IB 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R E ) C E BE B E I R U U I ≈-≈

电压放大倍数 be L C V r R R β A // -= 输入电阻 R i =R B1 / R B2 / r be 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号ui =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流IC 以及各电极对地的电位UB 、UC 和UE 。一般实验中,为了避免断开集电极,所以采用测量电压UE 或UC ,然后算出IC 的方法,例如,只要测出UE ,即可用 E E E C R U I I =≈算出IC (也可根据C C CC C R U U I -=,由UC 确定IC ), 同时也能算出UBE =UB -UE ,UCE =UC -UE 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流IC (或UCE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时uO 的负半周将被削底,如图2(a)所示;如工作点偏低则易产生截止失真,即uO 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压ui ,检查输出电压uO 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2 静态工作点对uO 波形失真的影响 改变电路参数UCC 、RC 、RB (RB1、RB2)都会引起静态工作点的变化,如图3所示。但通常多采用调节偏置电阻RB2的方法来改变静态工作点,如减小RB2,则可使静态工作点提高等。

线材检验标准

线材检验标准 线材检验标准文件编号版本/修订发出部门生效日期页码总页数 本作业指导书为线材检验标准,为检验者提供检验方法、抽样方法、缺陷判定标准和所需仪器等。 一、所需仪器: 1、卡尺/卷尺; 2、线材综合测试仪; 3、耐压测试仪(CH332); 二、检验依据:样品、图纸、其它相关文件如:内部联络单、异常单等; 三、抽样标准:MIL-STD-105E(II)正常水准单次抽样,AQL:CR=0 MA=0.25 MI=1.0 四、检验步骤: 1、当检验员收到货仓开出的《入库验收单》后,先填写《IQC来料检验报告》表头部份; 2、根据《入库验收单》上所注的待检物料,到物料待检区找到相应的物料,并核对物料外包装标识的内 容是否正确,包括来料名称、规格、型号、料号、数量、日期等; 3、检验来料所有包装是否整齐、无破损、变形,并评估外包装是否能对产品起到防护作用; 4、按照AQL表要求抽取相应数量的样本,采取分层抽样法或对角抽样法抽样; 5、抽完样本后,准备好样品; 6、上述工作完成后,开始用目视法检查物料外观是否符合要求,利用卡尺和卷尺测试材料重点尺寸。再

利用测试架和仪器测试线材的性能。最后取样按规格书要求进行试验(拉力、摇摆、盐雾、高压)。所 有检验项目完成后,填写完整《IQC来料检验报告》,对综合结果进行判定,如合格则在《IQC来料检 验报告》上签名,交IQC组长确认,并在《入库验收单》上的合格项打?,然后在物料外箱上盖IQC PASS 章。如检验结果不合格则填写《物料收货/验货不合格报告表》与《纠正预防措施-8D报告》,交于IQC 组长上报做MRB处理,并在不良品上做好标示,隔离。根据MRB结果,在物料外箱上贴上特采、筛选、 加工、退货标贴,将结果填写于《入库验收单》。 7、检验完成后,做好桌面6S工作,并将物料归于原处封好。 五、检验方法: 1、外观检查:目视法,采用60W日光灯,双眼距离被检物,45?5CM,呈45度角左右,主要观察线材外被 不可有破皮、刮伤,塑胶部份不可能变形、缺胶,五金部份不可有氧化生锈,线材颜色与要求一致,表 面文字清晰可识别且内容与要求一致; 2、拆除线材外被确认内部芯线是否符合要求(所需芯线材质、数量及芯线线径符合图线要求),此时目视 检查内部芯线不可有断线及氧化现象; 3、依据产品图纸测试线材尺寸,重点测试插头部份长度和直径(可宽度)、线材焊接部份剥线长度,浸锡 长度和浸锡后线材直径、扎线部份、线材外径和长度;

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

综合布线测试参数

综合布线测试参数 测试内容及特性参数 系统的特性参数主要分为两大类:一类是电缆、接插件的物理特性,例如导体的金属材料强度、柔韧性、防水性和温度特性,电缆的物理特性在出厂时已经确定,对于使用者在购买进行选择时不能采用一般的方法进行测试;第二类是系统的电气特性,这些特性对于用户而言是最主要的,所以用户应该了解这些特性参数。 系统测试主要指工程电气性能和光纤特性,包括(1)连接图,(2)线缆敷设长度,(3)衰减,(4)近端串扰,(5)反射(光纤)等。 1.接线图(Wire Map) 有二种不同的接线标准,一为T568A,一为T568B。 线缆必须正确端接于信息端口,不允许有任何形式的错接。从水平配线区至信息端口之间的双绞线必须保证连通,线对间不能短路。 2.链路长度(Length) 根据TIA—568标准,布线系统基本链路(Basic Link)的最大长度为90米,通道(Channel)的最大长度为100米。链路的长度可以用电子长度测量来故事估算,电子长度测量是基于链路的传输延时和电缆的NVP值(Nominal Velocity of Propagation:表示电信号在电缆中的传输速度与光在真空中的传输速度的比值),当我们测量一个信号在链路中一来一回的时间,又知道电缆的NVP值,就可以计算出链路的电子长度。 (a)端——端连通性(End—to –end connectivity)

这一测试是确认链路的连接。它不仅是一个简单的逻辑关系连接测试,而且要确认链路一端的每一根针和另一端相应针的连接是否符合相关标准,对于UTP来说,内部由4对双绞线组成,两端用RJ45水晶头连接,线与接头的连接(严格的对应关系)要符合网络的标准,而且还确认是否存在开路、短路等现象。 (b)链路长度 根据TIA—568标准,布线系统基本链路(Basic Link)的最大长度为90米,通道(Channel)的最大长度为100米。链路的长度可以用电子长度测量来故事估算,电子长度测量是基于链路的传输延时和电缆的NVP值(Nominal Velocity of Propagation:表示电信号在电缆中的传输速度与光在真空中的传输速度的比值),当我们测量一个信号在链路中一来一回的时间,又知道电缆的NVP值,就可以计算出链路的电子长度。 3.近端串扰( NEXT—Next Crosstalk) 近端串扰指电缆在同一侧的接收端收到发送端发送的信号,即链路中通常一对线用来发送信号而另一对线用来接受信号。在理想情况下,发送对和接受对应有良好的隔离,即在接受到来自发送端的信号,但是电缆是紧挨在一起的,因此这些线对之间肯定会有信号的耦合,显然这种耦合信号越小越好,或被衰减的越多越好。NEXT是众多指标中最为主要的一项,特别对高速局域网来说,其影响是非常大的。布线施工不规范、安装错误、连接不当都会引起严重的NEXT。 本系统超五类线缆所用测试标准为 TIA/EIA-568-A五类国际标

相关文档
最新文档