材料科学基础_综合复习题

材料科学基础_综合复习题
材料科学基础_综合复习题

材料科学基础复习题

一、选择题

1. 原子结合键包括物理键和化学键, 下述结合键中属于化学键的是.

(A) 金属键(B) 离子键(C) 分子键(D) 共价键

2. 原子结合键包括物理键和化学键, 下述结合键中属于物理键的是.

(A) 氢键(B) 离子键(C) 分子键(D) 共价键

3. 工业用硅酸盐属于.

(A) 金属材料(B) 陶瓷材料(C) 复合材料(D) 高分子材料

4. 布拉菲点阵共有中.

(A) 8 (B) 10 (C) 12 (D) 14

5. BCC、FCC和HCP等三种典型晶体结构中, 单位晶胞的原子数分别为.

(A) 2, 4, 6 (B) 4, 2, 6 (C) 3, 4, 5 (D) 6, 2, 4

6. 晶面间距表示相邻两个平行晶面之间的垂直距离, 其大小反映了晶面上原子排列的紧密程度, 一般规律是.

(A) 在简单立方点阵中, 低指数的晶面间距较大

(B) 在简单立方点阵中, 高指数的晶面间距较大

(C) 晶面间距越大, 该晶面上原子排列越紧密

(D) 晶面间距越大, 该晶面上原子排列越稀疏

7. BCC、FCC和HCP等三种典型晶体结构中, 原子配位数依次为.

(A) 8, 12, 8 (B) 8, 12, 10 (C) 12, 8, 6 (D) 8, 12, 12

8. 密堆积结构的致密度为.

(A) 0.68 (B) 0.74 (C) 0.82 (D) 1.0

9. MgO陶瓷晶体具有NaCl型结构, 单位晶胞的离子数为.

(A) 4 (B) 6 (C) 8 (D) 10

10. SiC陶瓷晶体具有金刚石型结构, 该结构一般特征是.

(A) 原子结合键为共价键

(B) 原子配位数为4

(C) 单位晶胞包含8个原子

(D) 属于面心立方点阵, 为密堆积结构

11. 下述晶体缺陷中属于点缺陷的是.

(A) 空位(B) 位错(C) 相界面(D) 间隙原子

12. 下述晶体缺陷中属于线缺陷的是.

(A) 空位(B) 位错(C) 晶界(D) 间隙原子

13. 下述晶体缺陷中属于面缺陷的是.

(A) 表面(B) 位错(C) 相界面(D) 空位

14. 下述界面中界面能最小的是.

(A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面

15. 下述界面中界面能最大的是.

(A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面

16. 理想密排六方金属的c/a为.

(A) 1.6 (B)(C) (D) 1

17. 在晶体中形成空位的同时又产生间隙原子, 这样的缺陷称为.

(A) 肖脱基空位(B) 弗兰克尔空位(C) 线缺陷(D) 面缺陷

18. 面心立方晶体的挛晶面是.

(A) {112} (B) {110} (C) {111} (D) {123}

19. 体心立方晶体的挛晶面是.

(A) {112} (B) {110} (C) {111} (D) {123}

20. 铸铁与碳钢的区别在于有无.

(A) 莱氏体(B) 珠光体(C) 铁素体(D) 渗碳体

21. 在二元系合金相图中, 计算两相相对量的杠杆法则只能用于.

(A) 单相区中(B) 两相区中(C) 三相平衡水平线上(D) 无限制

22. Hume-Rothery提出有利于大量固熔的原子尺寸条件为两组元的原子半径差对熔剂原子半径的比不超过.

(A) 10% (B) 14% (C) 15% (D) 20%

23. 碳与钒结合形成金属化合物, 下述说法正确的是.

(A) 该化合物属于简单间隙化合物(B) 该化合物属于复杂间隙化合物

(C) 该化合物具有体心立方结构(D) 该化合物具有面心立方结构

24. 以下关于渗碳体的描述中, 正确的是.

(A) 渗碳体是钢中很重要的一种复杂间隙相

(B) 渗碳体晶体结构非常复杂, 属于正交晶系

(C) 渗碳体为铁与碳固熔形成的间隙固熔体

(D) 渗碳体为铁与碳固熔形成的置换固熔体

25. 下述关于Ni-Cu系二元合金的描述中, 正确的是.

(A) 室温下组织为单相组织

(B) 室温下组织为两相组织

(C) 凝固时发生匀晶转变

(D) 凝固时发生共晶转变

26. 凝固后是否形成晶体, 主要由液态物质的决定.

(A) 温度梯度(B) 粘度(C) 冷却速度(D) 压力

27. 金属结晶形核时, 临界晶核半径r K与过冷度ΔT及表面自由能σ之间的关系为.

(A) ΔT越大, r K越小(B) ΔT越大, r K越大

(C) σ越大, r K越小(D) σ越大, r K越大

28. 纯金属均匀形核, 形成临界晶核时体积自由能的减少只能补偿表面能的.

(A) 1

3

(B)

2

3

(C)

3

4

(D)

4

5

29. 原子扩散的驱动力是.

(A) 组元的浓度梯度(B) 组元的化学势梯度(C) 温度梯度(D) 表面张力

30. 菲克第一定律描述了稳态扩散的特征, 即浓度不随变化.

(A) 距离(B) 时间(C) 温度(D) 压力

31. 在置换固熔体中, 原子扩散的方式一般为.

(A) 原子互换机制(B) 间隙机制(C) 空位机制(D) 填隙机制

32. 在间隙固熔体中, 原子扩散的方式一般为.

(A) 原子互换机制(B) 间隙机制(C) 空位机制(D) 填隙机制

33. 在科肯道尔效应中, 惰性标记发生移动的主要原因是扩散偶中.

(A) 两组元的原子尺寸不同(B) 仅存在一组元的扩散

(C) 两组元的扩散速率不同(D) 两组元的温度不同

34. 晶体的类型与结构是影响固体材料中原子扩散的重要因素, 基本规律是.

(A) 与金属相比, 晶态化合物的扩散系数低

(B) 与金属相比, 晶态化合物的扩散系数高

(C) 非密堆结构的晶体比密堆结构的晶体具有更高的扩散系数

(D) 密堆结构的晶体比非密堆结构的晶体具有更高的扩散系数

35. D L, D B, D S分别表示晶内扩散、晶界扩散和表面扩散的扩散系数, 则在一般情况下, 三者的大小关系为.

(A) D L > D B > D S(B) D S > D B > D L(C) D B > D L > D S(D) D S > D L > D B

36. 合金凝固时极易得到树枝晶组织, 其主要原因是.

(A) 固-液界面前沿液相中存在正温度梯度

(B) 固-液界面前沿液相中存在负温度梯度

(C) 固-液界面前沿液相中存在成分过冷区

(D) 固-液界面前沿液相中存在难熔质点

37. 下述关于交滑移的描述中, 正确的是.

(A) 发生交滑移时会出现曲折或波纹状的滑移带

(B) 体心立方金属最容易发生交滑移

(C) 层错能低的金属易发生交滑移

(D) 交滑移必须通过刃型位错实现

38. 多晶体发生塑性变形时, 为了满足协调变形, 每个晶粒至少需要开动个独立的滑移系.

(A) 3 (B) 4 (C) 5 (D) 6

39. 再结晶后的晶粒长大是通过方式进行的.

(A) 大晶粒吞食小晶粒(B) 小晶粒蚕食大晶粒

(C) 晶界向曲率中心移动(D) 晶界背向曲率中心移动

40. w C低于0.014的碳钢发生马氏体转变时, 马氏体M与奥氏体A有K-S取向关系, 即.

(A) {110}M // {111}A, <111>M // <110>A(B) {111}M // {110}A, <111>M // <110>A

(C) {110}M // {111}A, <110>M // <111>A(D) {112}M // {111}A, <111>M // <110>A

41. 含Ni约30% 的Fe-Ni合金发生马氏体相变时, 马氏体与奥氏体之间的位向关系为西山关系, 即.

(A) {110}M // {111}A, <111>M // <110>A(B) {110}M // {111}A, <110>M // <112>A

(C) {110}M // {111}A, <110>M // <111>A(D) {112}M // {111}A, <111>M // <110>A

42. 以下关于马氏体相变的描述中, 正确的是.

(A) 马氏体相变为无扩散性相变

(B) 马氏体相变是通过形核-长大方式进行的

(C) 马氏体相变速率极低

(D) 马氏体相变速率极高

43. 固态相变的阻力一般包括.

(A) 新、旧相比体积差所增加的应变能

(B) 新、旧相为维持共格/半共格关系所增加的应变能

(C) 新、旧相界面增加的表面能

(D) 新、旧相之间的体积自由能差

44. 固态相变的驱动力是.

(A) 新、旧相比体积差所增加的应变能

(B) 新、旧相为维持共格/半共格关系所增加的应变能

(C) 新、旧相界面增加的表面能

(D) 新、旧相之间的体积自由能差

45. 固态相变时空位处易于形核的主要原因是.

(A) 空位促进熔质原子的扩散(B) 空位释放的能量可提供形核驱动力

(C) 空位阻碍熔质原子的扩散(D) 空位群凝聚成位错, 促进形核

46. 下述固态相变中属于扩散型相变的是.

(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变

47. 下述固态相变中属于无扩散型相变的是.

(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变

48. 下述固态相变中属于半扩散型相变的是.

(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变

49. 时效型合金发生脱熔转变期间容易产生过渡相, 其特征是.

(A) 过渡相与母相之间形成共格或半共格界面

(B) 过渡相与母相之间形成非共格界面

(C) 过渡相一般呈盘片状

(D) 过渡相一般呈球状

50. 调幅分解的特点是.

(A) 成分改变(B) 成分不变(C) 有核相变(D) 无核相变

选择题参考答案

1. ABD

2. AC

3. B

4. D

5. A

6. AC

7. D

8. B

9. C 10. ABC

11. AD 12. B 13. AC 14. A 15. C

16. B 17. B 18. C 19. A 20. A

21. B 22. C 23. AD 24. AB 25. AC

26. BC 27. AD 28. B 29. B 30. B

31. C 32. B 33. C 34. AC 35. B

36. C 37. ABC 38. C 39. AC 40. A

41. B 42. ABD 43. ABC 44. D 45. ABD

46. AD 47. B 48. C 49. AC 50. AD

二、简答题

1. 固态相变基本特点.

答: 固态相变的特点是:

(1) 相变阻力大. 固态相变时的阻力包括新、旧相之间的表面能以及新、旧相由于比体积差或新、旧相界面原子错配而额外增加的弹性应变能; 另外, 固相中原子扩散速率极低也

是造成固态相变阻力大的一个重要原因.

(2) 新相晶核与母相之间存在一定的晶体学位向关系. 固态相变时, 为了减少新、旧两相之间的界面能, 新相晶核与母相晶体之间往往存在一定的晶体学位向关系, 常以低指数、原子密度大且匹配较好的晶面和晶向互相平行; 并且, 新相往往在母相的某一特定晶面(惯习面)上形成.

(3) 母相晶体缺陷对相变起促进作用. 由于母相晶体中存在的各种缺陷(如晶界、相界、位错、空位等)周围晶格有畸变, 自由能较高, 因此容易在这些区域优先形核.

(4) 易于出现过渡相. 过渡相是为了克服相变阻力而形成的一种协调性中间转变产物. 通常首先在母相中形成成分与母相相近的过渡相, 然后在一定条件下由过渡相逐渐转变为稳定相.

2. 位错促进固态相变形核的主要原因.

答: 由于固态相变阻力大, 固相中的形核几乎总是非均匀的, 往往借助晶体中的结构缺陷(空位,位错,晶界等)形核.

新相在位错处形核有三种情况: 一是新相在位错线上形核, 新相形成处, 位错消失, 释放的能量使形核功降低而促进形核; 二是位错不消失, 而且依附在新相界面上, 成为半共格界面中的位错部分, 补偿了失配, 因而降低了能量, 使生成晶核时所消耗的能量减少而促进形核; 三是当新相与母相成分不同时, 由于熔质原子在位错线附近偏聚(形成柯氏气团)有利于新相沉淀析出, 也对形核起促进作用.

3. 非扩散型相变的基本特征.

答: 无扩散型相变的基本特点是:

(1) 存在由于均匀切变引起的形状改变, 使晶体发生形状改变.

(2) 由于相变过程无扩散, 新相与母相的化学成分相同.

(3) 新相与母相之间有一定的晶体学位向关系.

(4) 相界面移动速度极快, 可接近声速.

4. 说明Al-Cu等时效型合金脱熔过程出现过渡相的原因.

答: 时效处理时脱熔的一般顺序为:

偏聚区(或称G.P.区) →过渡相(亚稳相) →平衡相.

脱熔时不直接析出平衡相的原因, 是由于平衡相一般与基体形成新的非共格界面, 界面能大, 而亚稳定的脱熔产物往往与基体完全或部分共格, 界面能小. 在相变初期, 界面能起决定性作用, 界面能小的相, 形核功小, 容易形成. 所以首先形成形核功最小的过渡结构, 再演变成平衡稳定相.

5. 调幅分解的主要特征.

答: (1) 调幅分解过程的成分变化是通过上坡扩散实现的. 首先出现微区的成分起伏, 随后通过熔质原子从低浓度区向高浓度区扩散, 使成分起伏不断增幅, 直至分解为成分不同

的两平衡相为止.

(2) 调幅分解不经历形核阶段, 新、旧相结构相同, 不存在明显的相界面. 由于无需形核, 所以分解速度很快.

6. 脱熔相颗粒粗化机理.

答: 参见教材P292-293的“8.4.3.2 颗粒粗化”一节. (需要画图!!)

7. 零件热处理的作用.

答: 零件热处理的作用如下:

(1) 通过适当的热处理可以显著提高零件的力学性能, 延长机器零件的使用寿命.

(2) 恰当的热处理工艺可以消除铸、锻、焊等热加工工艺造成的各种缺陷, 细化晶粒, 消除偏析, 降低内应力, 使零件的组织和性能更加均匀.

(3) 热处理也是机器零件加工工艺过程中的重要工序.

(4) 此外, 通过热处理还可使工件表面具有抗磨损、耐腐蚀等特殊物理化学性能.

8. 过共析钢淬火时加热温度的选择依据.

答: 过共析钢的淬火加热温度限定在Ac1以上30~50℃是为了得到细小的奥氏体晶粒和保留少量渗碳体质点, 淬火后得到隐晶马氏体和其上均匀分布的粒状碳化物, 从而不但可以使钢具有更高的强度、硬度和耐磨性, 而且也具有较好的韧性. 如果过共析钢淬火加热温度超过Ac cm, 碳化物将全部熔入奥氏体中, 使奥氏体中的含碳量增加, 降低钢的M s和M f 点, 淬火后残留奥氏体量增多, 会降低钢的硬度和耐磨性; 淬火温度过高, 奥氏体晶粒粗化、含碳量又高, 淬火后易得到含有显微裂纹的粗片状马氏体, 使钢的脆性增大; 此外, 高温加热淬火应力大、氧化脱碳严重, 也增大钢件变形和开裂倾向.

9. 马氏体相变的基本特征.

答: (1) 无扩散性. 马氏体转变的过冷度很大, 转变温度低, 原子扩散无法进行, 因此是非扩散型相变.

(2) 切变共格性. 马氏体转变是新相在母相特定的晶面(惯习面)上形成, 并以母相的切变来保持共格关系的相变过程.

(3) 变温形成. 马氏体转变有其开始转变温度(M s点)与转变终了温度(M f点). 当过冷奥氏体冷到M s点, 便发生马氏体转变, 转变量随温度的下降而不断增加, 一旦冷却中断, 转变便很快停止.

(4) 高速长大. 马氏体转变没有孕育期, 形成速度很快, 瞬间形核, 瞬间长大.

(5) 不完全性. 一般来说, 奥氏体向马氏体的转变是不完全的, 即使冷却到M f点, 也不能获得100%的马氏体, 即总有一部分残余奥氏体.

10. 细晶强化/固熔强化/弥散强化/加工硬化机理.

答: (关于弥散强化机理)由塑性相与硬脆相组成的(两相)合金, 倘若硬脆的第二相呈弥散粒子均匀地分布在塑性相基体上, 则可显著提高合金的强度, 此即弥散强化. 这种强化的

主要原因是由于弥散细小的第二相粒子与位错的交互作用(位错绕过或切过第二相粒子), 阻碍了位错的运动, 从而提高了合金的塑性变形抗力.

(关于加工硬化机理)在塑性变形过程中, 随着金属内部组织的变化, 金属的力学性能也将产生明显的变化, 即随着变形程度的增加, 金属的强度、硬度增加, 而塑性、韧性下降, 这一现象即为加工硬化或形变强化.

关于加工硬化的原因, 目前普遍认为与位错的交互作用有关. 随着塑性变形的进行, 位错密度不断增加, 因此位错在运动时的相互交割加剧, 产生固定割阶、位错缠结等障碍, 使位错运动的阻力增大, 引起变形抗力的增加, 从而提高了金属的强度.

11. 孪生变形特点.

答: 孪生变形是金属塑性变形的基本方式之一, 是指在切应力的作用下, 晶体的一部分沿一定的晶面(孪生面)和一定的晶向(孪生方向)相对于另一部分晶体作均匀地切变, 在切变区域内, 与孪生面平行的每层原子的切变量与它距孪生面的距离成正比, 并且不是原子间距的整数倍. 其特点为:

(1) 孪生变形引起的切变不会改变晶体的点阵类型, 但可使变形部分的位向发生变化, 并且与未变形部分的晶体以挛晶界为分界面构成了镜面对称的位向关系.

(2) 一般说来, 孪生的临界分切应力要比滑移的临界分切应力大得多, 只有在滑移很难进行的条件下, 晶体才进行孪生变形.

(3) 孪生对塑性变形的贡献比滑移小得多, 例如镉单纯依靠孪生变形只能获得7.4% 的伸长率. 但是, 由于孪生变形后晶体位向发生变化, 可能使原来取向不利的滑移系转变为新的有利取向, 从而引发晶体的进一步滑移, 提高金属的塑性变形能力.

(4) 孪生变形的速度极快, 常引起冲击波, 发出音响.

12. 根据阿累尼乌斯(Arrhenius)公式: D = D0exp(-Q/RT), 分析影响扩散的主要因素.

答: 上述公式中, Q为原子扩散激活能, T为温度, 它们是影响扩散的主要因素. 很显然, Q 越小, 或扩散温度T 越高, 则D越大, 扩散越易进行. 而扩散激活能Q取决于材料的键能. 高熔点纯金属的键能高于低熔点的, 因此前者的激活能较高, 其自扩散系数较小; 通常致密度大的晶体结构中, 原子扩散激活能较高, 扩散系数较小; 不同类型的固熔体, 熔质原子的扩散激活能不同, 间隙原子的扩散激活能都比置换原子的小, 所以扩散速度比较大; 晶体缺陷处, 原子排列混乱, 能量较高, 激活能往往较低, 因此扩散容易. 对于一定的晶体结构来说, 表面扩散最快, 晶界次之, 亚晶界又次之, 晶内最慢; 在位错、.空位等缺陷处的原子比完整晶格处的原子扩散容易得多.

13. (扩散的微观机理)间隙/空位机制.

答: (1) 间隙机制: 晶体中存在的间隙原子通过晶格间隙之间的跃迁实现的扩散; 间隙固熔体中间隙原子(C,H,N,O等)的扩散就是这种机制; 为了实现这种扩散, 扩散原子必须具有越过能垒的自由能.

(2) 空位机制: 晶体中扩散原子离开自己的点阵位置去填充空位, 而原先的点阵位置形成了新的空位, 如此反复, 实现原子的扩散; 置换固熔体(或纯金属)中原子的扩散即为空位扩散; 在空位扩散中, 扩散原子除具有越过能垒的自由能外, 还必须具有空位形成能.

14. 简述Cu-Ni 扩散偶惰性标记移动规律及其原因.

答: Cu-Ni 扩散偶惰性标记会向Ni 棒一侧移动. 由于Ni 的熔点(1452℃)比Cu 的熔点(1083℃)高, 表明Ni 原子的结合能高于Cu 原子的, 因此, 扩散偶中Ni 原子进入Cu 晶体点阵要比Cu 原子进入Ni 晶体点阵容易, 即Ni 原子在Cu 棒中的扩散速度要快于Cu 原子在Ni 棒中的扩散速度, Ni 原子向Cu 棒一侧发生了物质的净输送, 其结果就是惰性标记往Ni 棒一侧移动.

15. 成分过冷条件及其影响因素.

16. 包晶反应速度慢的原因.

17. 正常凝固合金圆棒宏观偏析规律.

18. 纯金属晶体长大形态与温度梯度的关系.

19. 纯金属晶体长大机制.

20. 润湿角对异质形核功的影响规律.

21. 均匀形核率与过冷度的关系及其原因.

答: 均匀形核时, 形核率方程为

exp()exp()A Q N C kT kT

=-- 式中, A 为临界晶核的形核功; Q 为原子越过液-固界面的扩散激活能; T 为温度.

上式表明, 过冷度对形核率的影响受形核功和原子扩散激活能控制: 一方面, 当过冷度较小时, N 与exp(-A / kT ) 成正比, 故随着过冷度的增大, exp(-A / kT ) 数值也增大, 形核率就越大; 另一方面, 当过冷度足够大时, 随着过冷度的增大, 原子扩散速度要减慢, 此时, N 主要受exp(-Q / kT ) 数值影响, 而Q 值随温度改变很小, 故随着过冷度的增大, 形核率反而减小.

22. 金属结晶的热力学、动力学、结构和能量条件.

23. 间隙固熔体两组元不能无限互熔的原因.

24. 分析γ-Fe 熔碳量高于α-Fe 的原因.

三、作图/计算题类型

1. 晶面/晶向绘制(应掌握三轴系统的).

2. 典型结构金属滑移系表示及绘制.

3. 典型二元合金相图绘制(共晶型/包晶型).

4. 合金平衡凝固冷却曲线绘制.

5. 合金平衡结晶金相组织图绘制.

6. 根据点阵类型, 参数及原子量计算晶体材料的密度.

12、已知Cu的原子量为63.5,原子半径是0.1278 nm。( 20分)

(1)计算铜的密度、点阵常数和最大面间距。

(2)在立方晶胞(图1.)中标出下列晶面和晶向(要求用字母标出,如oa:[001],等等):

(011)、(11 )、( 221)、[102]、[ 110]、[11 ]

(3)以上哪些晶面和晶向互相垂直?

7. 原子面/线密度计算.

8. 单晶体塑性变形分切应力/屈服强度计算.

9. 单晶体滑移时位错线/柏氏矢量计算/表示(还包括位错线作用力计算).

10. 合金平衡凝固时, 相/组织组成物相对量计算.

11. 合金成分转化计算(摩尔分数与质量分数之间的相互转换).

12. 菲克第一定律的应用----扩散通量的计算.

4、已知碳在γ-Fe中扩散时,D0 =2.0×10-5m2/s,Q=1.4×105J/mol。当温度在927℃时,求其扩散系数为多少?(已知摩尔气体常数R=8.314J/mol?K)

13. 菲克第二定律的应用----钢件渗碳热处理时碳浓度的计算.

1、已知碳在r—Fe中的扩散常数D0=2.0×10-5m2/s,扩散激活能Q=1.4X105J/mol(R=8.31J/(molK))。碳势均为C

=1.1%C的条件下对20#钢在

P

880℃进行渗碳,为达到927℃渗碳5h同样的效果,渗碳时间应为多少?(12分)

14. 回复/再结晶转变动力学计算.

四、应用题范围

1. 根据金属凝固理论, 分析细化铸件晶粒组织的工艺措施.

答:根据金属结晶理论, 如果金属结晶时单位体积中晶粒数为Z v, 则Z v取决于两个主要的因素, 即形核率N和长大速度V g, 并满足

Z v = 0.9 (N / V g)3/4

显然, 欲得到细晶粒组织铸件, 则必须使Z v增大, 这主要从控制N和V g着手. 为此, 可采取下述工艺措施以得到细晶粒组织铸件:

(1) 增大过冷度: 金属结晶时的N和V g值均随着过冷度的增加而增大, 且N的增长率大于V g的增长率, 所以增加过冷度就会提高N与V g的比值, 使Z v值增大, 从而细化铸件晶粒; 在实际生产中增加过冷度的工艺措施主要有降低熔液的浇注温度、选择吸热能力和导热能力较大的铸型材料. 但此方法仅适用于小铸件.

(2) 变质处理: 熔液中添加合适的形核剂可以大大增大N, 从而使Z v值增大.

(3) 振动和搅拌: 采用机械振动、超声波振动和电磁搅拌等措施, 可以加大熔液的对流, 破碎已有晶枝, 增加结晶核心, 大大提高N, 从而使Z v值增大.

2. 根据合金相图预测合金的铸造工艺性(流动性,热裂/缩松缩孔倾向等)、冷/热变形能力及切削加工性.

3. 利用铁碳合金强/硬度及塑韧性与含碳量的关系, 比较不同成分铁碳合金的强/硬度及塑韧性.

4. 根据金属凝固理论, 分析铸锭组织的成因.

5. 冷变形的应用----加工硬化问题. (1) 加工硬化现象在金属材料生产过程中有重要的实际意义, 目前已广泛用来提高金属材料的强度. 对于用热处理方法不能强化的材料来说, 用加工硬化方法提高其强度就显得更加重要. 如塑性很好而强度较低的铝、铜及某些不锈钢等, 在生产上往往制成冷拔棒材或冷轧板材供应用户. (2) 加工硬化也是某些工件或半成品能够加工成形的重要因素. 金属件的冷冲成型和冷拔钢丝均利用了材料的加工硬化特性, 前者使塑性变形能够均匀地分布于整个工件, 不致集中在某些局部区域而引起破裂, 后者则是利用拉出的细丝强度显著提高, 不再变形来实现的, 否则, 钢丝在出模后便被拉断. (3) 加工硬化还可以提高零/构件在使用中的安全性. 零件在使用过程中往往会在局部出现应力集中和过载, 但由于加工硬化特性, 局部过载所产生的塑性变形会自行停止, 提高了零件的安全性. (4) 加工硬化的缺点显而易见, 增加动力和设备消耗, 变形量大时将严重降低材料的塑韧性, 因此, 对于连续冷变形工艺, 往往将再结晶退火作为中间工序.

6. 冷变形的应用----残余/内应力问题. 工件经过剧烈冷变形后会产生较大的内应力, 内应力会引起工件的变形或开裂, 降低其耐蚀性; 当残留应力为拉应力时, 会降低材料强度; 但如果表面残留压应力, 可显著提高其疲劳强度. 实际生产中, 往往用滚压或喷丸强化来使表层形成压应力就是这个道理.

7. 回复/去应力退火的应用: (1) 黄铜弹壳季裂的消除. 在第一次世界大战时, 经深冲成形的黄铜弹壳, 放置一段时间后自动发生晶间开裂(称为季裂). 经研究, 这是由于冷加工残留内应力和外界的腐蚀性气氛的联合作用而造成的应力腐蚀开裂. 要解决这一问题, 只需在深冲加工之后于260℃进行去应力退火, 消除弹壳中残留的第一类内应力, 这一问题即迎刃而解. (2) 又如用冷拉钢丝卷制弹簧, 在卷成之后, 要在250℃~300℃进行去应力退火, 以降低内应力并使之定形, 而硬度和强度则基本保持不变. (3) 此外, 对于铸件和焊接件都要及时进行去应力退火, 以防其变形和开裂; 对于精密零件, 如机床厂制造机床丝杠时, 在每次切削加工之后, 都要进行去应力退火处理, 防止变形和翘曲, 保持尺寸精度.

8. 再结晶退火的应用: 冷拉铜线退火处理制作花导线; 随炉冷拉钢丝绳出炉后断裂; 纯铝件高温短时退火与低温长时退火, 同样完成再结晶; 冷变形量与退火温度的关系; 临界变形度问题----晶粒粗化.

9. 再结晶后的晶粒长大: 弥散相微粒阻碍晶粒长大----细化晶粒. 如钢中加入少量的Al,Ti,V,Nb等元素, 可以形成适当数量及尺寸的AlN,TiN,VC,NbC等分散相粒子, 能有效阻碍高温下钢的晶粒长大, 使钢在焊接或热处理后仍具有较细小的晶粒, 保证良好的机械性能. 又如, 为防止钨丝高温下晶粒长大引起的脆断, 可在钨丝中加入适量的钍元素, 形成弥散的ThO2微粒, 从而大大提高钨丝的使用寿命.

材料科学基础期末考试历届考试试题复习资料

四川理工学院试卷(2009至2010学年第1学期) 课程名称:材料科学基础 命题教师:罗宏 适用班级:2007级材料科学与工程及高分子材料专业 考试(考查) 年 月 日 共 页 1、 满分100分。要求卷面整洁、字迹工整、无错别字。 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否 则视为废卷。 3、 考生必须在签到单上签到,若出现遗漏,后果自负。 4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷 分别一同交回,否则不给分。 试题答案及评分标准 得分 评阅教师 一、判断题:(10分,每题1分,正确的记错误的记“%” 1?因为晶体的排列是长程有序的,所以其物理性质是各向同性。 (% 2. 刃型位错线与滑移方向垂直。(话 3. 莱氏体是奥氏体和渗碳体的片层状混合物。(X ) 4?异类原子占据空位称为置换原子,不会引起晶格畸变。 (X 5. 电子化合物以金属键为主故有明显的金属特性。 (话 6. 冷拉后的钢条的硬度会增加。(话 7. 匀晶系是指二组元在液态、固态能完全互溶的系统。 (话 题号 -一- -二二 三 四 五 六 七 八 总分 评阅(统分”教师 得分 :题 * 冷 =要 密;

8.根据菲克定律,扩散驱动力是浓度梯度,因此扩散总是向浓度低的方向进行。(X

9. 细晶强化本质是晶粒越细,晶界越多,位错的塞积越严重,材料的强度也就 越高。(V ) 10. 体心立方的金属的致密度为 0.68。(V ) 、单一选择题:(10分,每空1分) (B) L+B — C+B (C ) L —A+B (D ) A+B^L 7. 对于冷变形小 的金属,再结晶核心形成的形核方式一般是( A ) (A ) 凸出形核亚 ( B )晶直接形核长大形核 (B ) 亚晶合并形核 (D )其他方式 8. 用圆形钢饼加工齿轮,下述哪种方法更为理想? ( C ) (A )由钢板切出圆饼(B )由合适的圆钢棒切下圆饼 (C ) 由较细的钢棒热镦成饼 (D )铸造成形的圆饼 1. 体心立方结构每个晶胞有(B ) 个原子。 2. 3. (A) 3 ( B) 2 (C) 6 固溶体的不平衡凝固可能造成 (A )晶内偏析 (C )集中缩孔 属于<100>晶向族的晶向是( (A) [011] (B) [110] (D) 1 (B) (D) (C) 晶间偏析 缩松 [001] (D) [101] 4.以下哪个工艺不是原子扩散理论的具体应用 (A )渗氮 (B )渗碳 (C )硅晶片掺杂 () (D )提拉单晶5.影响铸锭性能主要晶粒区是(C ) (A )表面细晶粒区 (B )中心等轴(C )柱状晶粒区 三个区影 响相同 6 ?属于包晶反应的是(A ) ( L 表示液相, A 、B 表示固相) (A) L+A — B

材料科学基础习题及参考答案复习过程

材料科学基础习题及 参考答案

材料科学基础参考答案 材料科学基础第一次作业 1.举例说明各种结合键的特点。 ⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。 ⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。 ⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。 ⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。结合较弱。 ⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。 2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213) (112) (102) [111] [110] [120] [321] 3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。 {1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶面: (1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112) 2110<>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011<>的等价晶向: [1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011] 4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为 晶格常数。该晶面的面法线与a ,b ,c 轴的夹角分别为119.0、43.3和60.9度。请据此确定晶面指数。 h:k:l=cos α:cos β:cos γ l k h d a 2 22hk l ++= 5. Cu 具有FCC 结构,其密度为8.9g/cm 3,相对原子质量为63.546,求铜的原子半径。

材料科学基础试题库

《材料科学基础》试题库 一、名词解释 1、铁素体、奥氏体、珠光体、马氏体、贝氏体、莱氏体 2、共晶转变、共析转变、包晶转变、包析转变 3、晶面族、晶向族 4、有限固溶体、无限固溶体 5、晶胞 6、二次渗碳体 7、回复、再结晶、二次再结晶 8、晶体结构、空间点阵 9、相、组织 10、伪共晶、离异共晶 11、临界变形度 12、淬透性、淬硬性 13、固溶体 14、均匀形核、非均匀形核 15、成分过冷 16、间隙固溶体 17、临界晶核 18、枝晶偏析 19、钢的退火,正火,淬火,回火 20、反应扩散 21、临界分切应力 22、调幅分解 23、二次硬化 24、上坡扩散 25、负温度梯度 26、正常价化合物 27、加聚反应 28、缩聚反应 四、简答 1、简述工程结构钢的强韧化方法。(20分) 2、简述Al-Cu二元合金的沉淀强化机制(20分) 3、为什么奥氏体不锈钢(18-8型不锈钢)在450℃~850℃保温时会产生晶间腐

蚀如何防止或减轻奥氏体不锈钢的晶间腐蚀 4、为什么大多数铸造合金的成分都选择在共晶合金附近 5、什么是交滑移为什么只有螺位错可以发生交滑移而刃位错却不能 6、根据溶质原子在点阵中的位置,举例说明固溶体相可分为几类固溶体在材料中有何意义 7、固溶体合金非平衡凝固时,有时会形成微观偏析,有时会形成宏观偏析,原因何在 8、应变硬化在生产中有何意义作为一种强化方法,它有什么局限性 9、一种合金能够产生析出硬化的必要条件是什么 10、比较说明不平衡共晶和离异共晶的特点。 11、枝晶偏析是怎么产生的如何消除 12、请简述影响扩散的主要因素有哪些。 13、请简述间隙固溶体、间隙相、间隙化合物的异同点 14、临界晶核的物理意义是什么形成临界晶核的充分条件是什么 15、请简述二元合金结晶的基本条件有哪些。 16、为什么钢的渗碳温度一般要选择在γ-Fe相区中进行若不在γ-Fe相区进行会有什么结果 17、一个楔形板坯经冷轧后得到相同厚度的板材,再结晶退火后发现板材两端的抗拉强度不同,请解释这个现象。 18、冷轧纯铜板,如果要求保持较高强度,应进行何种热处理若需要继续冷轧变薄时,又应进行何种热处理 19、位错密度有哪几种表征方式 20、淬透性与淬硬性的差别。 21、铁碳相图为例说明什么是包晶反应、共晶反应、共析反应。 22、马氏体相变的基本特征(12分) 23、加工硬化的原因(6分) 24、柏氏矢量的意义(6分) 25、如何解释低碳钢中有上下屈服点和屈服平台这种不连续的现象(8分) 26、已知916℃时,γ-Fe的点阵常数,(011)晶面间距是多少(5分) 27、画示意图说明包晶反应种类,写出转变反应式(4分) 28、影响成分过冷的因素是什么(9分) 29、单滑移、多滑移和交滑移的意义是什么(9分) 30、简要说明纯金属中晶粒细度和材料强度的关系,并解释原因。(6分) 31、某晶体的原子位于四方点阵的节点上,点阵的a=b,c=a/2,有一晶面在x,y,z轴的截距分别为6个原子间距、2个原子间距和4个原子间距,求该晶面的

材料科学基础复习题

第一章原子结构 一判断题 1.共价键是由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。 2. 范德华力既无方向性亦无饱和性,氢键有方向性但无饱和性。 3. 绝大多数金属均以金属键方式结合,它的基本特点是电子共有化。 4. 离子键这种结合方式的基本特点是以离子而不是以原子为结合单元。 5. 范德华力包括静电力、诱导力、但不包括色散力。 二、简答题 原子间的结合键对材料性能的影响 第二章晶体结构 一、填空 1.按晶体的对称性和周期性,晶体结构可分为7 空间点阵,14 晶系, 3 晶族。 2.晶胞是能代表晶体结构的最小单,描述晶胞的参数是 a ,b ,c ,α,β,γ。 3. 在立方,菱方,六方系中晶体之单位晶胞其三个轴方向中的两个会有相等的边长。 4. 方向族<111>的方向在铁的(101)平面上,方向族<110>的 方向在铁的(110)平面上。 5. 由hcp(六方最密堆积)到之同素异形的改变将不会产生体积的改变,而由体心最密堆积变成即会产生体积效应。 6. 晶体结构中最基本的结构单元为,在空间点阵中最基本的组元称之为。 7.某晶体属于立方晶系,一晶面截x轴于a/2、y轴于b/3、z轴于c/4,则该晶面的指标为 8. 硅酸盐材料最基本的结构单元是,常见的硅酸盐结构有、、、。 9. 根据离子晶体结构规则-鲍林规则,配位多面体之间尽可能和 连接。

二判断题 1.在所有晶体中只要(hkl)⊥(uvw)二指数必然相等。 2. 若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。 3. 所谓原子间的平衡距离或原子的平衡位置是吸引力与排斥力的合力最小的位置。 4.晶体物质的共同特点是都具有金属键。 5.若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。 6. 在立方晶系中若将三轴系变为四轴系时,(hkIl)之间必存在I=-(h+k)的关系与X1,X2,X3,X4间夹角无关。 7.亚晶界就是小角度晶界,这种晶界全部是由位错堆积而形成的。 8.面心立方与密排六晶体结构其致密度配位数间隙大小都是相同的,密排面上的堆垛顺序也是相同的。 9.柏氏矢量就是滑移矢量。 10.位错可定义为柏氏回路不闭合的一种缺陷,或说:柏氏矢量不为0的缺陷。 11.线缺陷通常指位错,层错和孪晶。 12实际金属中都存在着点缺陷,即使在热力学平衡状态下也是如此。 三选择题 1.经过1/2,1/2,1/2之[102]方向,也经过。 (a) 1,.0,2, (b) 1/2,0,1, (c) –1,0,-2, (d) 0, 0,0, (e) 以上均不是 2. 含有位置0,0,1之(112)平面也包含位置。 (a)1,0,0, (b)0,0,1/2, (c)1,0,1/2。 3.固体中晶体与玻璃体结构的最大区别在于。 (a)均匀性(b)周期性排列(c)各向异性(d)有对称性 4.晶体微观结构所特有的对称元素,除了滑移面外,还有 (a)回转轴(b)对称面(c)螺旋轴(d)回转-反映轴 5.按等径球体密堆积理论,最紧密的堆积形式是。 (a)bcc; (b)fcc; (c)hcp 6.在MgO离子化合物中,最可能取代化合物中Mg2+的正离子(已知各正离子半径 (nm)分别是:(Mg2+)0.066、(Ca2+)0.099、(Li+)0.066、(Fe2+)0.074)是_(c)____。 (a)Ca2+; (b)Li+; (c)Fe2+ 7.下对晶体与非晶体描述正确的是:

材料科学基础期末试题

材料科学基础考题 I卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷答: 单位位错:柏氏矢量等于单位点阵矢量的位错称为单位位错。 交滑移:两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移,称为交滑移。滑移系:一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系。 伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。 离异共晶:由于非平衡共晶体数量较少,通常共晶体中的a相依附于初生a相生长,将共晶体中另一相B推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特征消失,这种两相分离的共晶体称为离异共晶。 奥氏体:碳原子溶于丫-Fe形成的固溶体。 成分过冷:在合金的凝固过程中,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷称为成分过冷。 二、选择题(每题2分,共20分) 1. 在体心立方结构中,柏氏矢量为a[110]的位错(A )分解为a/2[111]+a/2[l11]. (A)不能(B)能(C)可能 2. 原子扩散的驱动力是:(B ) (A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度 3?凝固的热力学条件为:(D ) (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4?在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现(A) (A)氧离子空位(B)钛离子空位(C)阳离子空位 5?在三元系浓度三角形中,凡成分位于( A )上的合金,它们含有另两个顶角所代表的两 组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6?有效分配系数k e表示液相的混合程度,其值范围是(B ) (A)1vk e

材料科学基础习题

查看文本 习题 一、名词解释 金属键; 结构起伏; 固溶体; 枝晶偏析; 奥氏体; 加工硬化; 离异共晶; 成分过冷; 热加工; 反应扩散 二、画图 1在简单立方晶胞中绘出()、(210)晶面及[、[210]晶向。 2结合Fe-Fe3C相图,分别画出纯铁经930℃和800℃渗碳后,试棒的成分-距离曲线示意图。 3如下图所示,将一锲形铜片置于间距恒定的两轧辊间轧制。试画出轧制后铜片经再结晶后晶粒大小沿片长方向变化的示意图。 4画出简单立方晶体中(100)面上柏氏矢量为[010]的刃型位错与(001)面上柏氏矢量为[010]的刃型位错交割前后的示意图。 5画图说明成分过冷的形成。 三、Fe-Fe3C相图分析 1用组织组成物填写相图。 2指出在ECF和PSK水平线上发生何种反应并写出反应式。 3计算相图中二次渗碳体和三次渗碳体可能的最大含量。 四、简答题 1已知某铁碳合金,其组成相为铁素体和渗碳体,铁素体占82%,试求该合金的含碳量和组织组成物的相对量。 2什么是单滑移、多滑移、交滑移?三者的滑移线各有什么特征,如何解释?。 3设原子为刚球,在原子直径不变的情况下,试计算g-Fe转变为a-Fe时的体积膨胀率;如果测得910℃时g-Fe和a-Fe的点阵常数分别为0.3633nm和0.2892nm,试计算g-Fe转变为a-Fe的真实膨胀率。 4间隙固溶体与间隙化合物有何异同? 5可否说扩散定律实际上只有一个?为什么? 五、论述题 τC 结合右图所示的τC(晶体强度)—ρ位错密度 关系曲线,分析强化金属材料的方法及其机制。 晶须 冷塑变 六、拓展题 1 画出一个刃型位错环及其与柏士矢量的关系。 2用金相方法如何鉴别滑移和孪生变形? 3 固态相变为何易于在晶体缺陷处形核? 4 画出面心立方晶体中(225)晶面上的原子排列图。 综合题一:材料的结构 1 谈谈你对材料学科和材料科学的认识。 2 金属键与其它结合键有何不同,如何解释金属的某些特性? 3 说明空间点阵、晶体结构、晶胞三者之间的关系。 4 晶向指数和晶面指数的标定有何不同?其中有何须注意的问题? 5 画出三种典型晶胞结构示意图,其表示符号、原子数、配位数、致密度各是什么? 6 碳原子易进入a-铁,还是b-铁,如何解释? 7 研究晶体缺陷有何意义? 8 点缺陷主要有几种?为何说点缺陷是热力学平衡的缺陷?

《材料科学基础》期末考试试卷及参考答案,2019年6月

第1页(共11页) ########2018-2019学年第二学期 ########专业####级《材料科学基础》期末考试试卷 (后附参考答案及评分标准) 考试时间:120分钟 考试日期:2019年6月 题 号 一 二 三 四 五 六 总 分 得 分 评卷人 复查人 一、单项选择题(请将正确答案填入表中相应题号处,本题13小题,每小题2分,共26分) 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 答案 1. 在形核-生长机制的液-固相变过程中,其形核过程有非均匀形核和均匀形核之分,其形核势垒有如下关系( )。 A. 非均匀形核势垒 ≤ 均匀形核势垒 B. 非均匀形核势垒 ≥ 均匀形核势垒 C. 非均匀形核势垒 = 均匀形核势垒 D. 视具体情况而定,以上都有可能 2. 按热力学方法分类,相变可以分为一级相变和二级相变,一级相变是在相变时两相自由焓相等,其一阶偏导数不相等,因此一级相变( )。 A. 有相变潜热改变,无体积改变 B. 有相变潜热改变,并伴随有体积改变 C. 无相变潜热改变,但伴随有体积改变 D. 无相变潜热改变,无体积改变 得分 专业 年级 姓名 学号 装订线

3. 以下不是材料变形的是()。 A. 弹性变形 B. 塑性变形 C. 粘性变形 D. 刚性变形 4. 在固溶度限度以内,固溶体是几相?() A. 2 B. 3 C. 1 D. 4 5. 下列不属于点缺陷的主要类型是()。 A. 肖特基缺陷 B. 弗伦克尔缺陷 C. 螺位错 D. 色心 6. 由熔融态向玻璃态转变的过程是()的过程。 A. 可逆与突变 B. 不可逆与渐变 C. 可逆与渐变 D. 不可逆与突变 7. 下列说法错误的是()。 A. 晶界上原子与晶体内部的原子是不同的 B. 晶界上原子的堆积较晶体内部疏松 C. 晶界是原子、空位快速扩散的主要通道 D. 晶界易受腐蚀 8. 表面微裂纹是由于晶体缺陷或外力作用而产生,微裂纹同样会强烈地影响表面性质,对于脆性材料的强度这种影响尤为重要,微裂纹长度,断裂强度。() A. 越长;越低 B. 越长;越高 C. 越短;越低 D. 越长;不变 9. 下列说法正确的是()。 A. 再结晶期间,位错密度下降导致硬度上升 B. 再结晶期间,位错密度下降导致硬度下降 C. 再结晶期间,位错密度上升导致硬度上升 D. 再结晶期间,位错密度上升导致硬度下降 10. 下列材料中最难形成非晶态结构的是()。 A. 陶瓷 B. 金属 C. 玻璃 D. 聚合物 第2页(共11页)

材料科学基础上复习题库

简答题 1?空间点阵与晶体点阵有何区别?晶体点阵也称晶体结构,是指原子的具体排列;而空间点阵则是忽略了原子的体积,而把它们抽象为纯几何点。 2?金属的3种常见晶体结构中,不能作为一种空间点阵的是哪种结构?密排六方结构。 3?原子半径与晶体结构有关。当晶体结构的配位数降低时原子半径如何变化?原子半径发生 收缩。这是因为原子要尽量保持自己所占的体积不变或少变,原子所占体积2人=原子的体积(4/3 n3r间隙体积),当晶体结构的配位数减小时,即发生间隙体积的增加,若要维持上述方程的平衡,则原子半径必然发生收缩。 4?在晶体中插入柱状半原子面时能否形成位错环?不能。因为位错环是通过环内晶体发生滑 移、环外晶体不滑移才能形成。 5?计算位错运动受力的表达式为,其中是指什么?外力在滑移面的滑移方向上的分切应力。6?位错受力后运动方向处处垂直于位错线,在运动过程中是可变的,晶体作相对滑动的方向 应是什么方向?始终是柏氏矢量方向。 7. 位错线上的割阶一般如何形成?位错的交割。 8?界面能最低的界面是什么界面?共格界面。 9?小角度晶界都是由刃型位错排成墙而构成的”这种说法对吗?否,扭转晶界就由交叉的 同号螺型位错构成 10.为什么只有置换固熔体的两个组元之间才能无限互溶,而间隙固熔体则不能?这是因为形成固熔体时,熔质原子的熔入会使熔剂结构产生点阵畸变,从而使体系能量升高。熔质与熔剂原子尺寸相差越大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,熔解度越小。一般来说,间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互溶,只能有 限熔解。 综合题 1. 作图表示立方晶体的(123) ( 0 -1 -2) (421)晶面及卜102]卜211][346]晶向。 2. 写出立方晶体中晶向族<100>, <110>, <111>等所包括的等价晶向。 3. 写出立方晶体中晶面族{100}, {110}, {111}, {112}等所包括的等价晶面。 4. 总结3种典型的晶体结构的晶体学特征。 5. 在立方晶系中画出以[001]为晶带轴的所有晶面。 6. 面心立方晶体的(100),(110),(111)等晶面的面间距和面密度,并指出面间距最大的面。 7. Ni的晶体结构为面心立方结构,其原子半径为r =0.1243求Ni的晶格常数和密度。 8. Mo的晶体结构为体心立方结构,其晶格常数a=0.3147nm,试求Mo的原子半径r。 9. 在Fe中形成1mol空位的能量为104. 67kJ,试计算从20C升温至850C时空位数目增加多少倍? 10. 判断下列位错反应能否进行。 1) a/2[10-1]+a/6卜121]宀a/3[11-1] 2) a[100]宀a/2[101]+a/2[10-1] 3) a/3[112]+a/2[111] 宀a/6{1]1 4) a[100] a/2[111]+a/2[1-1-1] 11. 若面心立方晶体中有b=a/2[-101]的单位位错及b=a/6[12-1]的不全位错,此二位错相遇 产生位错反应。 1) 问此反应能否进行?为什么? 2) 写出合成位错的柏氏矢量,并说明合成位错的类型。 12. 已知柏氏矢量b=0.25nm,如果对称倾侧晶界的取向差=1及10°求晶界上位错之间的距 离。从计算结果可得到什么结论? 13. ①计算fee和bee晶体中四面体间隙及八面体间隙的大小(用原子半径尺表示),并注明间

材料科学基础试题库

材料科学基础试题库 材料科学基础》试题库 一、选择 1、在柯肯达尔效应中,标记漂移主要原因是扩散偶中________ 。 A、两组元的原子尺寸不同 B、仅一组元的扩散 C、两组元的扩散速率不同 2、在二元系合金相图中,计算两相相对量的杠杆法则只能用于________ 。 A、单相区中 B、两相区中 C、三相平衡水平线上 3、铸铁与碳钢的区别在于有无______ 。 A、莱氏体 B、珠光体 C、铁素体 4、原子扩散的驱动力是_____ 。 A、组元的浓度梯度 B、组元的化学势梯度 C、温度梯度 5、在置换型固溶体中,原子扩散的方式一般为_______ 。 A、原子互换机制 B、间隙机制 C、空位机制 6、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为________ 。 A、肖脱基缺陷 B、弗兰克尔缺陷 C、线缺陷 7、理想密排六方结构金属的 c/a 为_____ 。 A、1.6 B、2 XV (2/3) C、“ (2/3) 8、在三元系相图中,三相区的等温截面都是一个连接的三角形,其顶点触及 A、单相区 B、两相区 C、三相区 9、有效分配系数Ke表示液相的混合程度,其值范围是_________ o(其中Ko是平衡分配系数)

A、 1

材料科学基础练习题

练习题 第三章 晶体结构,习题与解答 3-1 名词解释 (a )萤石型和反萤石型 (b )类质同晶和同质多晶 (c )二八面体型与三八面体型 (d )同晶取代与阳离子交换 (e )尖晶石与反尖晶石 答:(a )萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c )二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d )同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e )正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a )在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四面体间隙位置数与氧离子数之比又为若干? (b )在氧离子面心立方密堆积结构中,对于获得稳定结构各需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a )参见2-5题解答。1:1和2:1 (b )对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO ; (2)填满所有的四面体空隙,1价阳离子,Li2O ; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO 。 3-3 MgO 晶体结构,Mg2+半径为0.072nm ,O2-半径为0.140nm ,计算MgO 晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO 的密度。并说明为什么其体积分数小于74.05%?

材料科学基础期末考试

期末总复习 一、名词解释 空间点阵:表示晶体中原子规则排列的抽象质点。 配位数:直接与中心原子连接的配体的原子数目或基团数目。 对称:物体经过一系列操作后,空间性质复原;这种操作称为对称操作。 超结构:长程有序固溶体的通称 固溶体:一种元素进入到另一种元素的晶格结构形成的结晶,其结构一般保持和母相一致。 致密度:晶体结构中原子的体积与晶胞体积的比值。 正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附; 晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能; 小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界; 晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。 肖脱基空位:脱位原子进入其他空位或者迁移至晶界或表面而形成的空位。 弗兰克耳空位:晶体中原子进入空隙形而形成的一对由空位和间隙原子组成的缺陷。 刃型位错:柏氏矢量与位错线垂直的位错。 螺型位错:柏氏矢量与位错线平行的位错。 柏氏矢量:用来表征晶体中位错区中原子的畸变程度和畸变方向的物理量。 单位位错:柏氏矢量等于单位点阵矢量的位错 派—纳力:位错滑动时需要克服的周围原子的阻力。 过冷:凝固过程开始结晶温度低于理论结晶温度的现象。 过冷度:实际结晶温度和理论结晶温度之间的差值。 均匀形核:在过冷的液态金属中,依靠金属本身的能量起伏获得成核驱动力的形核过程。 过冷度:实际结晶温度和理论结晶温度之间的差值。 形核功:形成临界晶核时,由外界提供的用于补偿表面自由能和体积自由能差值的能量。 马氏体转变:是一种无扩散型相变,通过切变方式由一种晶体结构转变另一种结构,转变过程中,表面有浮凸,新旧相之间保持严格的位向关系。或者:由奥氏体向马氏体转变的

完整版材料科学基础复习题

名词解释 1. 空间点阵:是表示晶体结构中质点周期性重复规律得几何图形. 2. 同素异构:是指某些元素在t和p变化时,晶体结构发生变化得特征. 3. 固溶体:当一种组分(溶剂)内溶解了其他组分(溶质)而形成的单一、均匀的晶态固体,其晶体结构保持溶剂组元的晶体结构时,这种相就称固溶体。 4. 电子浓度:固溶体中价电子数目e 与原子数目之比。 5. 间隙固溶体:溶质原子溶入溶剂间隙形成的固溶体 6. 晶胞: 能完全反映晶格特征得最小几何单元 7. 清洁表面:是指不存在任何吸附、催化反应、杂质扩散等物理化学效应得表面,这种表面的化学组成与体内相同,但周期结构可以不同于体内。 8. 润湿:是一种流体从固体表面置换另一种流体的过程。 9. 表面改性:是利用固体表面的吸附特性,通过各种表面处理来改变固体表面得结构和性质以适应各种预期要求。 10. 晶界:凡结构相同而取向不同的晶体相互接触,其接触面称为晶界。 11. 相平衡:一个多相系统中,在一定条件下,当每一相的生成速度与它的消失速度相等时,宏观上没有任何物质在相间传递,系统中每一个相的数量均不随时间而变化,这时系统便达到了相平衡。 12. 临界晶胚半径rk :新相可以长大而不消失的最小晶胚半径. 13.枝晶偏析: 固溶体非平衡凝固时不同时刻结晶的固相成分不同导致树枝晶内成分不均匀的现象(或树枝晶晶轴含高熔点组元较多,晶枝间低熔点组元较多的现象). 14. 扩散:由构成物质的微粒得热运动而产生得物质迁移现象。扩散的宏观表现为物质的定向输送。 15. 反应扩散: 在扩散中由于成分的变化,通过化学反应而伴随着新相的形成(或称有相变发生)的扩散过程称为“反应扩散”,也称为“相变扩散。 16. 泰曼温度:反应开始温度远低于反应物熔点或系统低共熔温度,通常相当于一种反应物开始呈现显著扩散作用的温度,此温度称为泰曼温度或烧结温度。 18. 相变:随自由能变化而发生的相的结构变化。 19. 什么是相律:表示材料系统相平衡得热力学表达式,具体表示系统自由能、组元数和相数之间得关系。 20. 二次再结晶:指少数巨大晶粒在细晶消耗时成核长大得过程,又称晶粒异常长大和晶粒不连续生长。 21. 均匀成核:组成一定,熔体均匀一相,在结晶温度下析晶,发生在整个熔体内部,析出物质组成与熔体一致。 22. 固溶强化:溶质原子加入到溶剂原子中形成固溶体,固溶体在 23. 相:化学成分相同,晶体结构相同并有界面与其他部分分开的均匀组成部分。 24. 过冷度: 实际开始结晶温度与理论结晶温度之间的差。 25. 固态相变:固态物质在温度、压力、电场等改变时,从一种组织结构转变成另一种组织结构。 26. 稳定分相:分相线和液相线相交(分相区在液相线上), 分相后两相均为热力学的稳定相。 27. 马氏体相变:一个晶体在外加应力的作用下通过晶体的一个分立体积的剪切作用以极迅速的速率而进行的相变。 28. 无扩散型固态相变:在相变过程中并不要求长程扩散,只需要原子作一些微量

最新材料科学基础-综合复习题

材料科学基础复习题 一、选择题 1. 原子结合键包括物理键和化学键, 下述结合键中属于化学键的是. (A) 金属键(B) 离子键(C) 分子键(D) 共价键 2. 原子结合键包括物理键和化学键, 下述结合键中属于物理键的是. (A) 氢键(B) 离子键(C) 分子键(D) 共价键 3. 工业用硅酸盐属于. (A) 金属材料(B) 陶瓷材料(C) 复合材料(D) 高分子材料 4. 布拉菲点阵共有中. (A) 8 (B) 10 (C) 12 (D) 14 5. BCC、FCC和HCP等三种典型晶体结构中, 单位晶胞的原子数分别为. (A) 2, 4, 6 (B) 4, 2, 6 (C) 3, 4, 5 (D) 6, 2, 4 6. 晶面间距表示相邻两个平行晶面之间的垂直距离, 其大小反映了晶面上原子排列的紧密程度, 一般规律是. (A) 在简单立方点阵中, 低指数的晶面间距较大 (B) 在简单立方点阵中, 高指数的晶面间距较大 (C) 晶面间距越大, 该晶面上原子排列越紧密 (D) 晶面间距越大, 该晶面上原子排列越稀疏 7. BCC、FCC和HCP等三种典型晶体结构中, 原子配位数依次为. (A) 8, 12, 8 (B) 8, 12, 10 (C) 12, 8, 6 (D) 8, 12, 12 8. 密堆积结构的致密度为. (A) 0.68 (B) 0.74 (C) 0.82 (D) 1.0 9. MgO陶瓷晶体具有NaCl型结构, 单位晶胞的离子数为. (A) 4 (B) 6 (C) 8 (D) 10 10. SiC陶瓷晶体具有金刚石型结构, 该结构一般特征是. (A) 原子结合键为共价键 (B) 原子配位数为4 (C) 单位晶胞包含8个原子 (D) 属于面心立方点阵, 为密堆积结构 11. 下述晶体缺陷中属于点缺陷的是. (A) 空位(B) 位错(C) 相界面(D) 间隙原子 12. 下述晶体缺陷中属于线缺陷的是. (A) 空位(B) 位错(C) 晶界(D) 间隙原子 13. 下述晶体缺陷中属于面缺陷的是. (A) 表面(B) 位错(C) 相界面(D) 空位 14. 下述界面中界面能最小的是. (A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面 15. 下述界面中界面能最大的是. (A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面 16. 理想密排六方金属的c/a为. (A) 1.6 (B)(C) (D) 1

材料科学基础期末试题

几种强化加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。 强化机制:金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力。 细晶强化:是由于晶粒减小,晶粒数量增多,尺寸减小,增大了位错连续滑移的阻力导致的强化;同时由于滑移分散,也使塑性增大。 弥散强化:又称时效强化。是由于细小弥散的第二相阻碍位错运动产生的强化。包括切过机制和绕过机制。(2 分) 复相强化:由于第二相的相对含量与基体处于同数量级是产生的强化机制。其强化程度取决于第二相的数量、尺寸、分布、形态等,且如果第二相强度低于基体则不一定能够起到强化作用。(2 分) 固溶强化:固溶体材料随溶质含量提高其强度、硬度提高而塑性、韧性下降的现象。。包括弹性交互作用、电交互作用和化学交互作用。 几种概念 1、滑移系:一个滑移面和该面上一个滑移方向的组合。 2、交滑移:螺型位错在两个相交的滑移面上运动,螺位错在一个滑移面上运动遇有障碍,会转动到另一滑移面上继续滑移,滑移方向不变。 3、屈服现象:低碳钢在上屈服点开始塑性变形,当应力达到上屈服点之后开始应力降落,在下屈服点发生连续变形而应力并不升高,即出现水平台(吕德斯带)原因:柯氏气团的存在、破坏和重新形成,位错的增殖。 4、应变时效:低碳钢经过少量的预变形可以不出现明显的屈服点,但是在变形后在室温下放置一段较长时间或在低温经过短时间加热,在进行拉伸试验,则屈服点又重复出现,且屈服应力提高。 5、形变织构:随塑性变形量增加,变形多晶体某一晶体学取向趋于一致的现象。滑移和孪晶的区别 滑移是指在切应力的作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动的一种运动状态。 孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的合金全部变成共晶组织,这种非共晶成分的共晶组织,称为伪共晶组合。 扩散驱动力:化学位梯度是扩散的根本驱动力。 一、填空题(20 分,每空格1 分) 1. 相律是在完全平衡状态下,系统的相数、组元数和温度压力之间的关系,是系统的平衡条件的数学表达式:f=C-P+2 2. 二元系相图是表示合金系中合金的相与温度、成分间关系的图解。 3?晶体的空间点阵分属于7大晶系,其中正方晶系点阵常数的特点为a=b M c,a = B =Y =90°,请列举除立方和正方晶系外其他任意三种晶系的名称三斜、单斜、六方、菱方、正交(任选三种)。 4. 合金铸锭的宏观组织包括表层细晶区、柱状晶区和中心等轴晶区三部分。 5.在常温和低温下,金属的塑性变形主要是通过滑移的方式进行的。此外还有孪生和扭

材料科学基础试题库答案 (1)

Test of Fundamentals of Materials Science 材料科学基础试题库 郑举功编 一、填空题 0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r与时

间t的关系分别是_____、_____、_____ 、_____。 0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、_____ 。 0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、_____ 、_____ 、_____ 。 0004.晶体有两种理想形态,分别是_____和_____。 0005.晶体是指内部质点排列的固体。 0006.以NaCl晶胞中(001)面心的一个球(Cl-离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。 0007.与非晶体比较晶体具有自限性、、、、和稳定性。 0008.一个立方晶系晶胞中,一晶面在晶轴X、Y、Z上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。 0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。 0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。当Na2O含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。 0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为。 0012.固体质点扩散的推动力是________。 0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。0014.析晶过程分两个阶段,先______后______。 0015.晶体产生Frankel缺陷时,晶体体积_________,晶体密度_________;而有Schtty缺陷时,晶体体积_________,晶体密度_________。一般说离子晶体中正、负离子半径相差不大时,_________是主要的;两种离子半径相差大时,_________是主要的。 0016.少量CaCl2在KCl中形成固溶体后,实测密度值随Ca2+离子数/K+离子数比值增加而减少,由此可判断其缺陷反应式为_________。 0017.Tg是_________,它与玻璃形成过程的冷却速率有关,同组分熔体快冷时Tg比慢冷时_________ ,淬冷玻璃比慢冷玻璃的密度_________,热膨胀系数_________。 0018.同温度下,组成分别为:(1) 0.2Na2O-0.8SiO2 ;(2) 0.1Na2O-0.1CaO-0.8SiO2 ;(3) 0.2CaO-0.8SiO2 的三种熔体,其粘度大小的顺序为_________。 0019.三T图中三个T代表_________, _________,和_________。 0020.粘滞活化能越_________ ,粘度越_________ 。硅酸盐熔体或玻璃的电导主要决定于_________ 。 0021.0.2Na2O-0.8SiO2组成的熔体,若保持Na2O含量不变,用CaO置换部分SiO2后,电导_________。0022.在Na2O-SiO2熔体中加入Al2O3(Na2O/Al2O3<1),熔体粘度_________。 0023.组成Na2O . 1/2Al2O3 . 2SiO2的玻璃中氧多面体平均非桥氧数为_________。 0024.在等大球体的最紧密堆积中,六方最紧密堆积与六方格子相对应,立方最紧密堆积与_______ 相对应。0025.在硅酸盐晶体中,硅氧四面体之间如果相连,只能是_________方式相连。 0026.离子晶体生成Schttky缺陷时,正离子空位和负离子空位是同时成对产生的,同时伴随_________的增加。0027.多种聚合物同时并存而不是一种独存这就是熔体结构_________的实质。在熔体组成不变时,各级聚合物的数量还与温度有关,温度升高,低聚物浓度增加。 0028.系统中每一个能单独分离出来并_________的化学均匀物质,称为物种或组元,即组份。例如,对于食盐的水溶液来说,NaCl与H2O都是组元。而Na+、Cl-、H+、OH-等离子却不能算是组元,因为它们都不能作为独立的物质存在。 0029.在弯曲表面效应中,附加压力ΔP总是指向曲面的_________,当曲面为凸面时,ΔP为正值。 0030.矿化剂在硅酸盐工业中使用普遍,其作用机理各异,例在硅砖中加入1-3%[Fe2O3+Ca2(OH)2]做矿化剂,能使大部分a-石英不断溶解同时不断析出a-磷石英,从而促进a-石英向磷石英的转化。水泥生产中

相关文档
最新文档