分别以邻接矩阵和邻接表作为图的存储结构

分别以邻接矩阵和邻接表作为图的存储结构
分别以邻接矩阵和邻接表作为图的存储结构

分别以邻接矩阵和邻接表作为图的存储结构,给出连通图的深度优先

遍历的递归算法

算法思想:

(1)访问出发点vi,并将其标记为已访问过。

(2)遍历vi的的每一个邻接点vj,若vi未曾访问过,则以vi为新的出发点继续进行深度优先遍历。

算法实现:

Boolean visited[max]; // 访问标志数

void DFS(Graph G, int v)

{ // 算法7.5从第v个顶点出发递归地深度优先遍历图G

int w;

visited[v] = TRUE; printf("%d ",v); // 访问第v个顶点for (w=FirstAdjVex(G, v); w>=0; w=NextAdjVex(G, v, w)) if (!visited[w]) // 对v的尚未访问的邻接顶点w递归调用DFS DFS(G, w);

}

/*****************************************************/ /*以邻接矩阵作为存储结构*/

DFS1(MGraph G,int i)

{int j;

visited[i]=1;

printf("%c",G.vexs[i]);

for(j=1;j<=G.vexnum;j++)

if(!visited[j]&&G.arcs[i][j]==1) DFS1(G,j);

}

/*以邻接表作为存储结构*/

DFS2(ALGraph G,int i)

{int j;

ArcPtr p;

visited[i]=1;

printf("%c",G.vertices[i].data);

for(p=G.vertices[i].firstarc;p!=NULL;p=p->nextarc)

{j=p->adjvex;

if(!visited[j]) DFS2(j);

}

}

数据结构第7章-答案

一、单选题 C01、在一个图中,所有顶点的度数之和等于图的边数的倍。 A)1/2 B)1 C)2 D)4 B02、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。 A)1/2 B)1 C)2 D)4 B03、有8个结点的无向图最多有条边。 A)14 B)28 C)56 D)112 C04、有8个结点的无向连通图最少有条边。 A)5 B)6 C)7 D)8 C05、有8个结点的有向完全图有条边。 A)14 B)28 C)56 D)112 B06、用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。 A)栈 B)队列 C)树 D)图 A07、用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。 A)栈 B)队列 C)树 D)图 A08、一个含n个顶点和e条弧的有向图以邻接矩阵表示法为存储结构,则计算该有向图中某个顶点出度的时间复杂度为。 A)O(n) B)O(e) C)O(n+e) D)O(n2) C09、已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是。 A)0 2 4 3 1 5 6 B)0 1 3 6 5 4 2 C)0 1 3 4 2 5 6 D)0 3 6 1 5 4 2 B10、已知图的邻接矩阵同上题,根据算法,则从顶点0出发,按广度优先遍历的结点序列是。 A)0 2 4 3 6 5 1 B)0 1 2 3 4 6 5 C)0 4 2 3 1 5 6 D)0 1 3 4 2 5 6 D11、已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是。 A)0 1 3 2 B)0 2 3 1 C)0 3 2 1 D)0 1 2 3 A12、已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是。 A)0 3 2 1 B)0 1 2 3 C)0 1 3 2 D)0 3 1 2 A13、图的深度优先遍历类似于二叉树的。 A)先序遍历 B)中序遍历 C)后序遍历 D)层次遍历 D14、图的广度优先遍历类似于二叉树的。 A)先序遍历 B)中序遍历 C)后序遍历 D)层次遍历 B15、任何一个无向连通图的最小生成树。 A)只有一棵 B)一棵或多棵 C)一定有多棵 D)可能不存在 A16、对于一个具有n个结点和e条边的无向图,若采用邻接表表示,则顶点表的大小为,所有边链表中边结点的总数为。 A)n、2e B)n、e C)n、n+e D)2n、2e C17、判断有向图是否存在回路,可以利用___算法。 A)关键路径 B)最短路径的Dijkstra C)拓扑排序 D)广度优先遍历 A18、若用邻接矩阵表示一个有向图,则其中每一列包含的“1”的个数为。 A)图中每个顶点的入度 B)图中每个顶点的出度 C)图中弧的条数 D)图中连通分量的数目

邻接表存储结构建立无向图

//算法功能:采用邻接表存储结构建立无向图 #include #include #define OK 1 #define NULL 0 #define MAX_VERTEX_NUM 20 // 最大顶点数 typedef int Status; //函数的类型,其值是函数结果状态代码 typedef char VertexType; typedef int VRType; typedef int InforType; typedef struct ArcNode { int adjvex; //该边所指的顶点的位置 struct ArcNode *nextarc; //指向下一条边的指针 int weight; //边的权 }ArcNode; //表的结点 typedef struct VNode { VertexType data; //顶点信息(如数据等) ArcNode *firstarc; //指向第一条依附该顶点的边的弧指针}VNode, AdjList[MAX_VERTEX_NUM]; //头结点 typedef struct ALGraph { AdjList vertices; int vexnum, arcnum; //图的当前顶点数和弧数 }ALGraph; //返回顶点v在顶点向量中的位置 int LocateVex(ALGraph G, char v) { int i; for(i = 0; v != G.vertices[i].data && i < G.vexnum; i++) ; if(i >= G.vexnum) return -1;

图的邻接矩阵和邻接表相互转换

图的邻接矩阵和邻接表相互转换 图的邻接矩阵存储方法具有如下几个特征:1)无向图的邻接矩阵一定是一个对称矩阵。 2)对于无向图的邻接矩阵的第i 行非零元素的个数正好是第i 个顶点的度()i v TD 。3)对于有向图,邻接矩阵的第i 行非零元素的个数正好是第i 个顶点的出度()i v OD (或入度 ()i v ID ) 。4)用邻接矩阵方法存储图,很容易确定图中任意两个顶点之间是否有边相连;但是,要确定图中有多少条边,则必须按行、按列对每个元素进行检测,所发费得时间代价大。 邻接表是图的一种顺序存储与链式存储相结合的存储方法。若无向图中有n 个顶点、e 条边,则它的邻接表需n 个头结点和2e 个表结点。显然,在边稀疏的情况下,用邻接表表示图比邻接矩阵存储空间。在无向图的邻接表中,顶点i v 的度恰好是第i 个链表中的结点数,而在有向图中,第i 个链表中结点个数是顶点i v 的出度。 在建立邻接表或邻逆接表时,若输入的顶点信息即为顶点的编号,则建立临接表的时间复杂度是)(e n O +;否则,需要通过查找才能得到顶点在图中位置,则时间复杂度为)*(e n O 。在邻接表上容易找到任意一顶点的第一个邻接点和下一个邻接点,但要判断任意两个顶点之间是否有边或弧,则需要搜索第i 个或第j 个链表,因此,不及邻接矩阵方便。 邻接矩阵和邻接表相互转换程序代码如下: #include #define MAX 20 //图的邻接表存储表示 typedef struct ArcNode{ int adjvex; //弧的邻接定点 char info; //邻接点值 struct ArcNode *nextarc; //指向下一条弧的指针 }ArcNode; typedef struct Vnode{ //节点信息 char data; ArcNode *link; }Vnode,AdjList[MAX]; typedef struct{ AdjList vertices; int vexnum; //节点数 int arcnum; //边数

图的邻接矩阵存储结构建立汇总

课程名称: 《数据结构》课程设计课程设计题目:图的邻接矩阵存储结构建立 姓名:XXX 院系:计算机学院 专业:计算机科学技术 年级:11级 学号:XXXXXXXX 指导教师:XXX 2013年9月28日

目录 1 课程设计的目的 (3) 2需求分析 (3) 3 课程设计报告内容 (3) 3.1 概要设计 (3) 3.2 详细设计 (4) 3.3 调试分析 (5) 3.4 用户手册 (5) 3.5 程序清单 (5) 3.6 测试结果 (10) 4 小结 (12) 5 参考文献 (12)

1.课程设计的目的 (1) 熟练使用 C 语言编写程序,解决实际问题; (2) 了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; (3) 初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; (4) 提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 2.需求分析 问题描述:建立图的邻接矩阵存储结构(图的类型可以是有向图或有向网、无向图或无向网,学生可以任选一种类型),能够输入图的顶点和边的信息,并存储到相应存储结构中,而后给出图的DFS,BFS次序。 要求: ①先任意创建一个图; ②图的DFS,BFS的递归和非递归算法的实现。 3.课程设计报告内容 3.1概要设计 1.函数 ①主函数:main( ) ②创建无向图:CreateGraph( )

③深度优先遍历图:DFS( ) ④广度优先遍历图:BFS( ) 3.2详细设计 1.使用邻接矩阵作为图的存储结构,程序中主要用到的抽象数据类型: typedef struct { char vexs[MAX]; //顶点向量 int arcs[MAX][MAX]; //邻接矩阵 int vexnum,arcnum; //图的当前顶点数和弧数}Graph; 2.程序流程图:

用邻接矩阵表示法创建有向图(数据结构)

#include #include #include #define MAX_VERTEX_NUM 20 //定义最多顶点个数 #define INFINITY32768 //定义无穷大 //描述图的类型,用枚举型类型来说明 typedef enum{DG,DN,UDG,UDN}GraphKind; //定义顶点数据类型 typedef char V ertexData; //定义邻接矩阵中元素值(即边信息)的数据类型 typedef int ArcNode; //定义图的邻接矩阵类型:一个顶点信息的一维数组,一个邻接矩阵、当前图中包含的顶点数、边数以及图类型(有向图、有向网、无向图、无向网) typedef struct { V ertexData vertex[MAX_VERTEX_NUM]; ArcNode arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; int vertexnum,arcnum; GraphKind kind; } AdjMatrix;//图的邻接矩阵表示类型 int LocateV ertex(AdjMatrix *G,V ertexData v) //求顶点位置函数 { int j=-1,k; for(k=0;kvertexnum;k++) { if(G->vertex[k]==v) { return k; } } return j; } int CreateDN(AdjMatrix *G) //创建一个又向网 { int i,j,k,weight; V ertexData v1,v2; printf("输入图的顶点数和弧数,以逗号分隔\n"); //输入图的顶点数和弧数 scanf("%d,%d",&G->vertexnum,&G->arcnum); for(i=0;ivertexnum;i++) //初始化邻接矩阵(主对角线元素全为零,其余元素为无穷大) {

以邻接矩阵存储的图类型构造n个城市连接的最小生成树

以邻接矩阵存储的图类型构造n个城市连接的最小生成树代码: #include #include #define MaxVextexNum 30 /* 最大顶点数为30 */ #define INFINITY 32767 /* 定义一个权值的最大值*/ typedef struct{ int vexs[MaxVextexNum] ; /* 顶点表*/ int arcs[MaxVextexNum][MaxVextexNum] ; /* 邻接矩阵,即边表*/ int n ,e ; /* 顶点数和边数*/ }MGraph ; /* MGragh是以邻接矩阵存储的图类型*/ typedef struct{ int adjvertex ; /* 某顶点与已构造好的部分生成树的顶点之间权值最小的顶点*/ int lowcost ; /* 某顶点与已构造好的部分生成树的顶点之间的最小权值*/ }ClosEdge[MaxVextexNum] ; /* 用prim算法求最小生成树时的辅助数组*/ void CreatGraph(MGraph *G) /* 建立有向图G的邻接矩阵存储*/ { int i, j, k, w ; printf("请输入顶点数和边数n e:") ; scanf("%d%d" ,&(G->n) ,&(G->e)) ;/* 输入顶点数和边数*/ printf("\n请输顶点字符信息(共%d个):", G->n) ; for (i=0 ;in ;i++) {

scanf("%d" ,&(G->vexs[i])) ; /* 输入顶点信息,建立顶点表*/ } for (i=0 ;in ;i++) for (j=0 ;jn ;j++) { if(i == j) { G->arcs[i][j] = 0 ; } else G->arcs[i][j] = INFINITY ; }/* 初始化邻接矩阵32767为无穷大*/ printf("\n请输入边对应的顶点序号(共%d对),以及权值:\n",G->e) ; for (k=0 ;ke ;k++) { scanf("%d%d%d" ,&i ,&j ,&w) ; /*输入e条边,建立邻接矩阵*/ G->arcs[i][j] = w ;/* 若加入G->edges[j][i]=1,则为无向图的邻接矩阵*/ G->arcs[j][i] = w ; } printf("此连邻接矩阵为(32767为无穷大):\n") ; for(i=0 ;in ;i++) { for(j=0 ;jn ;j++) printf("%8d", G->arcs[i][j]) ; printf("\n") ; } } void MiniSpanTree_PRIM(MGraph G,int u,ClosEdge closedge)

实验十三 图的基本操作—邻接表存储结构

浙江大学城市学院实验报告 课程名称数据结构基础 实验项目名称实验十三图的基本操作—邻接表存储结构 学生姓名专业班级学号 实验成绩指导老师(签名)日期2015-1-15 一.实验目的和要求 1、掌握图的存储结构:邻接表。 2、学会对图的存储结构进行基本操作。 二.实验内容 1、图的邻接表的定义及实现:建立头文件AdjLink.h,在该文件中定义图的邻接表存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。同时在主函数文件test5_2.cpp中调用这些函数进行验证。 2、选做:编写图的深度优先遍历函数与广度优先遍历函数,要求把这两个函数添加到头文件AdjLink.h中,并在主函数文件test5_2.cpp中添加相应语句进行测试。 3、填写实验报告,实验报告文件取名为report13.doc。 4、上传实验报告文件report13.doc及源程序文件test5_2.cpp、AdjLink.h到Ftp服务器上自己的文件夹下。 三. 函数的功能说明及算法思路 (包括每个函数的功能说明,及一些重要函数的算法实现思路) 邻接表表示法的C语言描述: typedef struct Node { int adjvex; // 邻接点的位置 WeightType weight; //权值域,根据需要设立 struct Node *next; // 指向下一条边(弧) } edgenode; // 边结点 typedef edgenode *adjlist[ MaxVertexNum ];//定义图的邻接表结构类型(没包含顶点信息) typedef struct{ vexlist vexs; //顶点数据元素

数据结构与算法-图的邻接矩阵

实验报告实验日期:数据结构与算法课程: 图的邻接矩阵实验名称: 一、实验目的掌握图的邻接矩阵 二、实验内容必做部分 、给出图的邻接矩阵存储结构的类型定义。1 -1。v,返回其在vexs数组中的下标,否则返回2、实现LocateVex(G,v)操作函数:若找到顶点。、实现算法7.2(构造无向网)3&G) Status CreateUDN(MGraph 设计并实现无向网的输出算法,要求能显示顶点以及顶点之间的邻接关系(方式自定)4、 并进行输出。要求给出至少两组测试数据。在主函数中调用CreateUDN创建一个无向网,5、 选做部分 类型)编写下述操作函数:基于图的邻接矩阵存储结构(即MGraph若找不到这样返回该邻接点在顶点数组中的下标;1个邻接点,1、求下标为v的顶点的第-1。的邻接点,返回int FirstAdjVex(MGraph G,int v) 的顶点的下一个邻接点,返回该邻接点的下标;若w求下标为v的顶点相对于下标为2、找不到这样的邻接点,返回-1。 int NextAdjVex(MGraph G,int v,int w) 在主函数调用上述函数,给出测试结果。 三、实验步骤 必做部分 给出图的邻接矩阵存储结构的类型定义。、 1.

2、实现LocateVex(G,v)操作函数:若找到顶点v,返回其在vexs数组中的下标,否则返回-1。 3、实现算法7.2(构造无向网)。 &G) CreateUDN(MGraph Status

设计并实现无向网的输出算法,要求能显示顶点以及顶点之间的邻接关系(方式自定)、

4. 要求给出至少两组测试数据。并进行输出。、在主函数中调用CreateUDN创建一个无向网,5

图的邻接表存储结构实验报告

《图的邻接表存储结构实验报告》1.需解决的的问题 利用邻接表存储结果,设计一种图。 2.数据结构的定义 typedef struct node {//边表结点 int adj;//边表结点数据域 struct node *next; }node; typedef struct vnode {//顶点表结点 char name[20]; node *fnext; }vnode,AList[M]; typedef struct{ AList List;//邻接表 int v,e;//顶点树和边数 }*Graph; 3.程序的结构图

4.函数的功能 1)建立无向邻接表 Graph Create1( )//建立无向邻接表{ Graph G; int i,j,k;

node *s; G=malloc(M*sizeof(vnode)); printf("输入图的顶点数和边数:"); scanf("%d%d",&G->v,&G->e);//读入顶点数和边数for(i=0;iv;i++)//建立顶点表 { printf("请输入图第%d个元素:",i+1); scanf("%s",&G->List[i].name);//读入顶点信息 G->List[i].fnext=NULL;//边表置为空表 } for(k=0;ke;k++)//建立边表--建立了2倍边的结点{ printf("请输入边的两顶点序号:(从0考试)"); scanf("%d%d",&i,&j);//读入边(Vi,Vj)的顶点对序号 s=(node *)malloc(sizeof(node));//生成边表结点 s->adj=j; s->next=G->List[i].fnext; G->List[i].fnext=s;//将新结点*s插入顶点Vi的边表头部s=(node *)malloc(sizeof(node)); s->adj=i;//邻接点序号为i s->next=G->List[j].fnext; G->List[j].fnext=s;// 将新结点*s插入顶点Vj的边表头部} return G;

图的邻接表存储方式.

图的邻接表存储方式——数组实现初探 焦作市外国语中学岳卫华在图论中,图的存储结构最常用的就是就是邻接表和邻接矩阵。一旦顶点的个数超过5000,邻接矩阵就会“爆掉”空间,那么就只能用邻接表来存储。比如noip09的第三题,如果想过掉全部数据,就必须用邻接表来存储。 但是,在平时的教学中,发现用动态的链表来实现邻接表实现时,跟踪调试很困难,一些学生于是就觉得邻接表的存储方式很困难。经过查找资料,发现,其实完全可以用静态的数组来实现邻接表。本文就是对这种方式进行探讨。 我们知道,邻接表是用一个一维数组来存储顶点,并由顶点来扩展和其相邻的边。具体表示如下图:

其相应的类型定义如下: type point=^node; node=record v:integer; //另一个顶点 next:point; //下一条边 end; var a:array[1..maxv]of point; 而用数组实现邻接表,则需要定义两个数组:一个是顶点数组,一个 是边集数组。

顶点编号结点相临边的总数s第一条邻接边next 此边的另一邻接点边权值下一个邻接边 对于上图来说,具体的邻接表就是: 由上图我们可以知道,和编号为1的顶点相邻的有3条边,第一条边在边集数组里的编号是5,而和编号为5同一个顶点的下条边的编号为3,再往下的边的编号是1,那么和顶点1相邻的3条边的编号分别就是5,3,1。同理和顶点3相邻的3条边的编号分别是11,8,4。如果理解数组表示邻接表的原理,那么实现就很容易了。 类型定义如下:

见图的代码和动态邻接表类似: 下面提供一道例题 邀请卡分发deliver.pas/c/cpp 【题目描述】

实现图的邻接矩阵和邻接表存储

实现图的邻接矩阵和邻接表存储 1.需求分析 对于下图所示的有向图G,编写一个程序完成如下功能: 1.建立G的邻接矩阵并输出之 2.由G的邻接矩阵产生邻接表并输出之 3.再由2的邻接表产生对应的邻接矩阵并输出之 2.系统设计 1.图的抽象数据类型定义: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集 数据关系R: R={VR} VR={|v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息} 基本操作P: CreatGraph(&G,V,VR) 初始条件:V是图的顶点集,VR是图中弧的集合 操作结果:按V和VR的定义构造图G DestroyGraph(&G) 初始条件:图G存在 操作结果:销毁图G InsertVex(&G,v) 初始条件:图G存在,v和图中顶点有相同特征 操作结果:在图G中增添新顶点v …… InsertArc(&G,v,w) 初始条件:图G存在,v和w是G中两个顶点 操作结果:在G中增添弧,若G是无向的则还增添对称弧 …… DFSTraverse(G,Visit()) 初始条件:图G存在,Visit是顶点的应用函数 操作结果:对图进行深度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。

一旦Visit()失败,则操作失败 BFSTraverse(G,Visit()) 初始条件:图G存在,Visit是顶点的应用函数 操作结果:对图进行广度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败 }ADT Graph 2.主程序的流程: 调用CreateMG函数创建邻接矩阵M; 调用PrintMatrix函数输出邻接矩阵M 调用CreateMGtoDN函数,由邻接矩阵M创建邻接表G 调用PrintDN函数输出邻接表G 调用CreateDNtoMG函数,由邻接表M创建邻接矩阵N 调用PrintMatrix函数输出邻接矩阵N 3.函数关系调用图: 3.调试分析 (1)在MGraph的定义中有枚举类型 typedef enum{DG,DN,UDG,UDN}GraphKind;//{有向图,有向网,无向图,无向网} 赋值语句G.kind(int)=M.kind(GraphKind);是正确的,而反过来M.kind=G.kind则是错误的,要加上那个强制转换M.kind=GraphKind(G.kind);枚举类型enum{DG,DN,UDG,UDN} 会自动赋值DG=0;DN=1,UDG=2,UDN=3;可以自动从GraphKind类型转换到int型,但不会自动从int型转换到GraphKind类型

数据结构实验3.2:以邻接矩阵为存储结构的图的深度、宽度优先遍历

题目:以实验3.1所示邻接矩阵为存储结构,编写程序,实现图的深度、宽度优先遍历。 部分代码: 邻接矩阵的单一顶点DFS: //邻接矩阵的单一顶点DFS void DFS(int v,int visited[],mGraph g){ int j; printf("%d ",v); //访问顶点v visited[v] = 1; //为顶点v打上访问标记 for(j = 0;j < g.n; j++){ //遍历v的邻接点 if(!visited[j] && g.a[v][j] > 0){ //当未被访问且有权值 DFS(j,visited,g); } } } 邻接矩阵的全图DFS: //邻接矩阵的全图DFS void DFSGraph(mGraph g){ int i; int *visited = (int*)malloc(g.n * sizeof(int)); //动态生成标记数组visted for(i = 0;i < g.n;i ++){ visited[i] = 0; //visted数组初始化 } //visted数组初始化 for(i = 0;i < g.n;i ++){ //逐一检查每个顶点,若未被访问,则调用DFS if(!visited[i]){ //当未被访问且有权值 DFS(i,visited,g); } } free(visited); //释放visted数组 } 邻接矩阵的单一顶点BFS: //邻接矩阵的单一顶点BFS void BFS(int v,int visited[],mGraph g){ Queue q; Create(&q,g.n); //初始化队列 visited[v] = 1; //为顶点v打上访问标记

图采用邻接矩阵存储结构

图采用邻接矩阵存储结构 #define TRUE 1 #define FALSE 0 #define MAXV 20 typedef int V ertexType; //用顶点编号表示顶点 typedef struct { // 图的定义 int edges[MAXV][MAXV] ; // 边数组 int n, e; //顶点数,弧数 V ertexType vexs[MAXV]; // 顶点信息 } MGraph; 1、创建具有n个顶点e条边的无向图 void CreateUDG(MGraph &G,int n,int e) { int i,j,u,v; G.n=n;G.e=e; /* printf("请输入%d个顶点的编号:\n",n); for(i=0;i

void CreateDG(MGraph &G,int n,int e) { int i,j,u,v; G.n=n;G.e=e; /* printf("请输入%d个顶点的编号:\n",n); for(i=0;i

邻接矩阵表示的带权有向图

实习报告——“邻接矩阵表示的带权有向图”演示程序 (一)、程序的功能和特点 主要实现的功能:1.使用邻接矩阵表示带权有向图; 2.查找指定顶点序号; 3.判断图是否为空; 4.判断图是否满; 5.取得顶点数、边数、一条边的权值; 6.插入一个顶点、边; 7.删除一个顶点、边; (二)、程序的算法设计 “邻接矩阵的表示”算法: 1.【逻辑结构与存储结构设计】 逻辑结构:非线性结构——网状结构 存储结构:内存中连续的存储结构,邻接矩阵 2.【基本操作设计】 按指定输入,生成图并打印该图 删除一个顶点并打印 删除一条边并打印 3. 【算法设计】 插入一个顶点的算法: 首先判断该图是否已满,若已满:插入失败; 否则进行插入:1.顶点表增加一个元素 2.邻接矩阵增加一行一列 删除一个顶点的算法: A F E D C B

判断要删除顶点的存在性,若不存在:出错; 否则:1.修改顶点表,即在顶点数组中删除 该点; 2.修改邻接矩阵,即需要统计与该顶 点相关联的边,并将这些边也删除4.【高级语言代码】 public class Graph { static int MaxEdges=50; static int MaxVertices=10; static int MaxValue=9999;//无穷大 //存放顶点的数组 private char VerticesList[]=new char[MaxVertices]; //邻接矩阵(存放两个顶点的权值) private int Edge[][]=new int[MaxVertices][MaxVertices]; private int CurrentEdges;//现有边数 private int CurrentVertices;//现有顶点数 //构造函数:建立空的邻接矩阵 public Graph(){ for(int i=0;i

邻接矩阵的应用1

目录 前言 (1) 1. 邻接矩阵发展简史 (3) 2.基本概念及记号 (4) 3. 无向图的邻接矩阵 (6) 3.1 无向图的邻接矩阵定义及表示 (6) 3.2 无向图的邻接矩阵的性质 (8) 4. 有向图的邻接矩阵 (9) 4.1 有向图的邻接矩阵的定义及表示 (9) 4.2 有向图的邻接矩阵的性质 (10) 5. 邻接矩阵的重要定理及应用 (11) 6. 邻接矩阵的应用 (13) 6.1 邻接矩阵生成图的遍历序列 (13) 6.2用邻接矩阵生成图的广度优先遍历序列 (15) 6.3 矩阵构造最小生成树 (16) 6.4 用邻接矩阵寻找关键路径 (19) 参考文献 (21) 致谢 (22)

平顶山学院本科毕业论文(设计) 前言 图论最早起源于一些数学游戏的难题研究,如欧拉所解决的哥尼斯堡七桥问题,以及在民间广泛流传的一些游戏难题.这些古老的难题,当时吸引了很多学者的注意.在这些问题研究的基础上又继续提出了著名的四色猜想和汉米尔顿(环游世界)数学难题. 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博奕论以及计算机科学等各个领域的问题时,发挥出越来越大的作用.在人们的社会实践中,图论已成为解决自然科学、工程技术、社会科学、生物技术以及经济、军事等领域中许多问题的有力工具之一,因此越来越受到数学家和实际工作者的喜爱.我们所学的这一章只是介绍一些基本概念、原理以及一些典型的应用实例,目的是在今后对工程技术有关学科的学习研究时,可以把图论的基本知识、方法作为工具[]1. “图论”是数学的一个分支,它以图为研究对象.图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系. 图论是一门极有兴趣的学问,其广阔的应用领域涵盖了人类学、计算机科学、化学、环境保护、电信领域等等.严格地讲,图论是组合数学的一个分支,例如,它交叉运用了拓扑学、群论和数论.图论就是研究一些事物及它们之间关系的学科,现实世界中的许多事物能用图来表示其拓扑结构,把实际问题的研究转化为图的研究,利用图论的相关结论 对这些问题作分析或判断[]1. 图论是近二十年来发展十分迅速、应用比较广泛的一个新兴的数学分支,在许多领域,诸如物理学、化学、运筹学、信息论、控制论、计算机等方面甚至在生产生活中都有广泛的应用.因此受到全世界越来越广泛的重视。图论的内容十分丰富,涉及面也比较广. 研究节点和边组成的图形的数学理论和方法,为运筹学的一个分支。图论的基本元素是节点和边(也称线、弧、枝),用节点表示所研究的对象,用 1

数据结构实验报告无向图邻接矩阵存储结构

数学与计算机学院 课程设计说明书 课程名称: 数据结构与算法课程设计 课程代码: 6014389 题目: 无向图的邻接矩阵存储结构 年级/专业/班: 2018级软件4班 学生姓名: 吴超 学号: 312018********* 开始时间: 2018年12月9日 完成时间: 2018年12月30日 课程设计成绩: 指导教师签名:年月日 数据结构课程设计任务书

学院名称:数学与计算机学院课程代码:__6014389______ 专业:软件工程年级: 2018 一、设计题目 无向图的邻接矩阵存储结构 二、主要内容 图是无向带权图,对下列各题,要求写一算法实现。 1)能从键盘上输入各条边和边上的权值; 2)构造图的邻接矩阵和顶点集。 3)输出图的各顶点和邻接矩阵 4)插入一条边 5)删除一条边 6)求出各顶点的度 7)判断该图是否是连通图,若是,返回1;否则返回0. 8)使用深度遍历算法,输出遍历序列。 三、具体要求及应提交的材料 用C/C++语言编程实现上述内容,对每个问题写出一个算法实现,并按数学与计算机学院对课程设计说明书规范化要求,写出课程设计说明书,并提交下列材料: 1>课程设计说明书打印稿一份 2>课程设计说明书电子稿一份; 3>源程序电子文档一份。 四、主要技术路线提示 用一维数组存放图的顶点信息,二维数组存放各边信息。 五、进度安排 按教案计划规定,数据结构课程设计为2周,其进度及时间大致分配如下:

[1] 严蔚敏,吴伟民.数据结构.清华大学出版社出版。 [2] 严蔚敏,吴伟民. 数据结构题集(C语言版> .清华大学出版社.2003年5月。 [3]唐策善,李龙澎.数据结构(作C语言描述> .高等教育出版社.2001年9月 [4] 朱战立.数据结构(C++语言描述><第二版本).高等出版社出版.2004年4月 [5]胡学钢.数据结构(C语言版> .高等教育出版社.2004年8月 指导教师签名日期年月日 系主任审核日期年月日 目录

实验六 图的邻接表存储及遍历

实验六图的邻接表存储及遍历 一、实验学时 2学时 二、背景知识 1.图的邻接表存储结构 在图的邻接表中,图中每个顶点都建立一个单链表,第i个单链表中的结点数为顶点i的出度。(逆邻接表中,第i个单链表中的结点数为顶点i的入度) 邻接表的数据结构描述为: struct node { int vertex; struct node *nextnode; }; typedef struct node *graph; struct node head[vertexnum]; 2.图的遍历 深度优先遍历(DFS)法: 算法步骤: 1)初始化: (1)置所有顶点“未访问”标志; (2)打印起始顶点; (3)置起始顶点“已访问”标志; (4)起始顶点进栈。 2)当栈非空时重复做: (1)取栈顶点; (2)如栈顶顶点存在未被访问过的邻接顶点,则选择第一个顶点做: ①打印该顶点; ②置顶点为“已访问”标志; ③该顶点进栈; 否则,当前栈顶顶点退栈。 3)结束。 广度优先遍历(BFS)法: 算法步骤: 1) 初始化: (1)置所有顶点“未访问”标志; (2)打印起始顶点; (3)置起始顶点“已访问”标志; (4)起始顶点入队。 2)当队列非空时重复做: (1)取队首顶点; (2)对与队首顶点邻接的所有未被访问的顶点依次做: ①打印该顶点; ②置顶点为“已访问”标志; ③该顶点入队; 否则,当前队首顶点出队。 3) 结束。

三、目的要求 1.掌握图的基本存储方法; 2.掌握有关图的操作算法并用高级语言实现; 3.熟练掌握图的两种搜索路径的遍历方法。 四、实验内容 1.编写程序实现下图的邻接表表示及其基础上的深度和广度优先遍历。 五、程序实例 图的邻接表表示法的C语言描述: #include #include struct node /* 图形顶点结构定义 */ { int vertex; /* 顶点 */ struct node *nextnode; /* 指下一顶点的指针 */ }; typedef struct node *graph; /* 图形的结构重定义 */ struct node head[6]; /* 图形顶点结构数组 */ /*----------建立图形--------*/ void creategraph(int *node,int num) { graph newnode; /* 新顶点指针 */ graph ptr; int from; /* 边线的起点 */ int to; /* 边线的终点 */ int i; for ( i = 0; i < num; i++ ) /* 读取边线的回路 */ { from = node[i*2]; /* 边线的起点 */ to = node[i*2+1]; /* 边线的终点 */ /* 申请存储新顶点的内存空间 */ newnode = ( graph ) malloc(sizeof(struct node)); newnode->vertex = to; /* 建立顶点内容 */ newnode->nextnode = NULL; /* 设定指针初值 */ ptr = &(head[from]); /* 顶点位置 */ while ( ptr->nextnode != NULL ) /* 遍历至链表尾 */ ptr = ptr->nextnode; /* 下一个顶点 */ ptr->nextnode = newnode; /* 插入结尾 */ } }

数据结构 第六章 图 练习题及答案详细解析(精华版)

图 1. 填空题 ⑴ 设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。 【解答】0,n(n-1)/2,0,n(n-1) 【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。 ⑵ 任何连通图的连通分量只有一个,即是()。 【解答】其自身 ⑶ 图的存储结构主要有两种,分别是()和()。 【解答】邻接矩阵,邻接表 【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。 ⑷ 已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。 【解答】O(n+e) 【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。 ⑸ 已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。 【解答】求第j列的所有元素之和 ⑹ 有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。 【解答】出度

⑺ 图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。 【解答】前序,栈,层序,队列 ⑻ 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。 【解答】O(n2),O(elog2e) 【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。 ⑼ 如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。 【解答】回路 ⑽ 在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。 【解答】vi, vj, vk 【分析】对由顶点vi, vj, vk组成的图进行拓扑排序。 2. 选择题 ⑴ 在一个无向图中,所有顶点的度数之和等于所有边数的()倍。 A 1/2 B 1 C 2 D 4 【解答】C 【分析】设无向图中含有n个顶点e条边,则。

分别以邻接矩阵和邻接表作为图的存储结构

分别以邻接矩阵和邻接表作为图的存储结构,给出连通图的深度优先 遍历的递归算法 算法思想: (1)访问出发点vi,并将其标记为已访问过。 (2)遍历vi的的每一个邻接点vj,若vi未曾访问过,则以vi为新的出发点继续进行深度优先遍历。 算法实现: Boolean visited[max]; // 访问标志数 void DFS(Graph G, int v) { // 算法7.5从第v个顶点出发递归地深度优先遍历图G int w; visited[v] = TRUE; printf("%d ",v); // 访问第v个顶点for (w=FirstAdjVex(G, v); w>=0; w=NextAdjVex(G, v, w)) if (!visited[w]) // 对v的尚未访问的邻接顶点w递归调用DFS DFS(G, w); } /*****************************************************/ /*以邻接矩阵作为存储结构*/ DFS1(MGraph G,int i) {int j; visited[i]=1; printf("%c",G.vexs[i]); for(j=1;j<=G.vexnum;j++) if(!visited[j]&&G.arcs[i][j]==1) DFS1(G,j); } /*以邻接表作为存储结构*/ DFS2(ALGraph G,int i) {int j; ArcPtr p; visited[i]=1; printf("%c",G.vertices[i].data); for(p=G.vertices[i].firstarc;p!=NULL;p=p->nextarc) {j=p->adjvex; if(!visited[j]) DFS2(j); } }

相关文档
最新文档