同步发电机常见故障及对策

同步发电机常见故障及对策
同步发电机常见故障及对策

同步发电机常见故障及对策

发电机在运行中会不断受到振动、发热、电晕等各种机械力和电磁力的作用,加之由于设计、制造、运行管理以及系统故障等原因,常常引起发电机温度升高、转子绕组接地、定子绕组绝缘损坏、励磁机碳刷打火、发电机过负载等故障,同步发电机运行中常见的一些故障分析如下。

发电机常见故障及措施

2.1 发电机非同期并列

发电机用准同期法并列时,应满足电压、周波、相位相同这3个条件,如果由于操作不当或其它原因,并列时没有满足这3个条件,发电机就会非同期并列,它可能使发电机损坏,并对系统造成强烈的冲击,因此应注意防止此类故障的发生。当待并发电机与系统的电压不相同,其间存有电压差,在并列时就会产生一定的冲击电流。一般当电压相差在±10%以内时,冲击电流不太大,对发电机也没有什么危险。如果并列时电压相差较多,特别是大容量电机并列时,如果其电压远低于系统电压,那么在并列时除了产生很大的电流冲击外,还会使系统电压下降,可能使事故扩大。一般在并列时,应使待并发电机的电压稍高于系统电压。如果待并发电机电压与系统电压的相位不同,并列时引起的冲击电流将产生同期力矩,使待并发电机立刻牵入同步。如果相位差在土300以内时,产生的冲击电流和同期力矩不会造成严重影响。如果相位差很大时,冲击电流和同期力矩将很大,可能达到三相短路电流的2倍,它将使定子线棒和转轴受到一个很大的冲击应力,可能造成定子端部绕组严重变形,联轴器螺栓被剪断等严重后果。为防止非同期并列,有些厂在手动准同期装置中加装了电压差检查装置和相角闭锁装置,以保证在并列时电差、相角差不超过允许值。

2.2 发电机温度升高

(1)定子线圈温度和进风温度正常,而转子温度异常升高,这时可能是转子温度表失灵,应作检查。发电机三相负荷不平衡超过允许值时,也会使转子温度升高,此时应立即降低负荷,并设法调整系统已减少三相负荷的不平衡度,使转子温度降到允许范围之内。

(2)转子温度和进风温度正常,而定子温度异常升高,可能是定子温度表失灵。测量定子温度用的电阻式测温元件的电阻值有时会在运行中逐步增大,甚至开路,这时就会出现某一点温度突然上升的现象。

(3)当进风温度和定子、转子温度都升高,就可以判定是冷却水系统发生了故障,这时应立即检查空气冷却器是否断水或水压太低。

(4)当进风温度正常而出风温度异常升高,这就表明通风系统失灵,这时必须停机进行检查。有些发电机组通风道内装有导流挡板,如因操作不当就会使风路受阻,这时应检查挡板的位置并纠正之。

2.3 发电机定子绕组损坏

发电机由于定子线棒绝缘击穿,接头开焊等情况将会引起接地或相间短路故障。当发电机发生相间短路事故或在中性点接地系统运行的发电机发生接地时,由于在故障点通过大量电流,将引起系统突然波动,同时在发电机旁往往可以听到强烈的响声,视察窗外可以看见电弧的火光,这时发电机的继电保护装置将立即动作,使主开关、灭磁开关和危急遮断器跳闸,发电机停止运行。

如果发电机内部起火,对于空冷机组则应在确知开关均已跳闸后,开启消防水管,用水进行灭火,同时保持发电机在200r/min左右的低速盘车。火势熄灭后,仍应保持一段时间的低速运转,待其完全冷却以后再将发电机停转,以免转子由于局部受热而造成大轴弯曲。氢冷和水冷发电机一般不会引起端部起火。对于在中性点不接地的系统中运行的发电机,发生定子绕组接地故障时,只有发电机的接地保护装置动作报警。运行人员应立即查明接地点,如接地点在发电机内部,则应立即采取措施,迅速将其切断。如接地点在发电机外部,则应迅速查明原因,并将其消除。对于容量15MW及以下的汽轮机,当接地电容电流小于5A 时,在未消除前允许发电机在电网一点接地情况下短时间运行,但至多不超过2h,对容量或接地电容电流大于上述规定的发电机,当定子回路单相接地时,应立即将发电机从电网中解列,并断开励磁。发电机在运行中,有时运行人员没有发现系统的突然波动,汽机司机也没有发来危急信号,但发电机因差动保护动作使主断路器跳闸,这时值班人员应检查灭磁开关是否也已跳闸,若由于操作机构失灵没有跳闸时,应立即手动将其跳闸,并把磁场变阻器调回到阻值最大位置,将自动励磁调解装置停用,然后对差动保护范围内的设备进行检查,当发现设备有烧损、闪烙等故障时应立即进行检修。发现任何不正常情况时,应用2500V 摇表测量一次回路的绝缘电阻,如测得的绝缘电阻值换算到标准温度下的阻值与以往测量的数值比较时,已下降1/5以下,就必须查明原因,并设法消除。如测得的绝缘电阻值正常,则发电机可经零起升压后并网运行。

2.4 发电机转子绕组接地

发电机转子因绝缘损坏,绕组变形,端部严重积灰时,将会引起发电机转子接地故障。转子绕组接地分为一点接地和两点接地。转子一点接地时,线匝与地之间尚未形成电气回路,因此在故障点没有电流通过,各种表计指示正常,励磁回路仍能保持正常状态,只是继保信号装置发出“转子一点接地”信号,其发电机可以继续进行。但转子绕组一点接地后,如果转子绕组或励磁系统中任一处再发生接地,就会造成两点接地。

转子绕组发生两点接地故障后,部分转子绕组被短路,因为绕组直流电阻减小,所以励磁电流将会增大。如果绕组被短路的匝数较多,就会使主磁通大量减少,发电机向电网输送的无功出力显著降低,发电机功率因数增高,甚至变为进相运行,定子电流也可能增大,同时由于部分转子绕组被短路,发电机磁路的对称性被破坏,它将引起发电机产生剧烈的振动,这时凸极式发电机更为显著。转子线圈短路时,因励磁电流大大超过额定值,如不及时停机,切断励磁回路,转子绕组将会烧损。为了防止发电机转子绕组接地,运行中要求每个班值班人员均应通过绝缘监视表计测量一次励磁回路绝缘电阻,若绝缘电阻低于0.5MΩ时,值班人员必须采取措施。对运行中励磁回路可能清扫到的部分进行吹扫,使绝缘电阻恢复到0.5MΩ以上,当转子绝缘电阻下降到0.01MΩ时,就应视作已经发生了一点接地故障。当转子发生一点接地故障后,就应立即设法消除,以防发展成两点接地。如果是稳定的金属性接地故障,而一时没有条件安排检修时,就应投入转子两点接地保护装置,以防止发生两点接地故障后,烧损转子,使事故扩大。转子绕组发生匝间短路事故时,情况与转子两点接地相同,但一般这时短路的匝数不多,影响没有两点接地严重。如果转子两点接地保护装置投入时,则它的继电器也将动作,此时应立即切断发电机主断路器,使发电机与系统解列

并停机,同时切断灭磁开关,把磁场变阻器放在电阻最大位置,待停机后对转子和励磁系统进行检查。

2.5 发电机失磁

(1)发电机失磁原因。运行中的发电机,由于灭磁开关受振动或误动而跳闸,磁场变阻器接触不良,励磁机磁场线圈断线或整流子严重打火,自动电压调整器故障等原因,造成励磁回路断路时,将使发电机失磁。

(2)失磁后表计上反映情况。发电机失磁后转子励磁电流突然降为零或接近于零,励磁电压也接近为零,且有等于转差率的摆动,发电机电压及母线电压均较原来降低,定子电流表指示升高,功率因数表指示进相,无功功率表指示为负,表示发电机从系统中吸取无功功率,各表计的指针都摆动,摆动的频率为转差率的1倍。

(3)失磁后产生的影响。发电机失磁后,就从同步运行变成异步运行,从原来向系统输出无功功率变成从系统吸取大量的无功功率,发电机的转速将高于系统的同步转速。这时由定子电流所产生的旋转磁场将在转子表面感应出频率等于转差率交流感应电动势,它在转子表面产生感应电流,使转子表面发热。发电机所带的有功负荷越大,则转差率越大,感应电势越大,电流也越大,转子表面的损失也越大。在发电机失磁瞬间,转子绕组两端将有过电压产生,转子绕组与灭磁电阻并联时,过电压数值与灭磁电阻值有关,灭磁电阻值大,转子绕组的过电压值也大。试验表明,如果灭磁电阻值选择为转子热态电阻值的5倍时,则转子的过电压值为转子额定电压值的2~4倍。

(4)失磁后允许运行时间及所带负荷。发电机失磁后,是否可以继续运行,与失磁运行的发电机容量和系统容量的大小有关。大容量的发电机失磁后,应立即从电网中切除,停机处理。发电机容量较小,电网容量较大,一般允许发电机在短时间内,低负荷下失磁运行,以待处理失磁故障。对于允许励磁运行的发电机,发生失磁故障后,应立即减小发电机负荷,使定子电流的平均值降低到规定的允许值以下,然后检查灭磁开关是否跳闸。如已跳闸就应立即合上,如灭磁开关未跳闸或合上后失磁现象仍未消失,则应将自动调节励磁装置停用,并转动磁场变阻器手轮,试行增加励磁电流。此时若仍未能恢复励磁,可以再试行换用备用励磁机供给励磁。经过这些操作后,如果仍不能使失磁现象消失,就可以判断为发电机转子发生故障,必须在30min以内安排停机处理。

2.6 发电机升不起电压

此类故障多发生在自激式同轴直流励磁机励磁的发电机上。

(1)故障现象。发电机升速到额定转速后,给发电机励磁时,励磁电压和发电机定子电压升不上去或励磁电压有,而发电机电压升不到额定值。

(2)故障原因。

①励磁机剩磁消失;

②励磁机并励线圈接线不正确;

③励磁回路断线;

④励磁机换向器片间有短路故障,励磁机碳刷接触不好或安装位置不正确;

⑤发电机定子电压测量回路故障。

(3)一般处理。当发电机起动到额定转速后升压时,如励磁机电压和发电机电压升不起来,就应检查励磁回路接线是否正确,有否断线或接触不良,电刷位置是否正确,接触是否良好等。如以上各项都正常,而励磁机电压表有很小指示时,表示励磁机磁场线圈极性接反,应把它的正、负两根连线对换。如果励磁机电压表没有指示,则表明剩磁消失,应该对励磁机进行充磁。

2.7 发电机过负荷运行

运行中的发电机应在规定的额定负荷或以下运行,否则发电机定、转子温度将超过其允许数值,使发电机定、转子绝缘很快老化而损坏,所以当发电机过负荷时,应进行调整,减低负荷。

当系统发生事故,使电力不足或因系统运行情况突变而威胁到系统的静态稳定时,允许发电机在短时间内过负荷运行,此时值班人员应密切监视定转子绕组温度,其数值不得超过正常允许的最高监视温度。转子绕组也允许在事故情况有相应的过负荷。但是对任何发电机,都禁止在正常情况下使用这些过负荷裕量。

结束语

总结同步发电机运行中的常见故障及处理方法,有利于提高发电机运行中的日常维护水平,也可供同行参考借鉴。

论大型发电机定子铁心常见故障及处理措施

论大型发电机定子铁心常见故障及处理措施 发表时间:2016-05-23T11:59:01.650Z 来源:《电力设备》2016年第2期作者:巩宇 [导读] (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040)定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。 (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040) 摘要:定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。发动机在运行多年后,由于种种原因,定子铁心的压紧力会逐渐减小,甚至发生松动。它的产生给发电机的安全运行带来隐患,有的甚至造成了机组被迫停运。而这种情况一旦出现,不但会造成严重的经济损失,还会影响发动机的寿命。因此,有必要对此问题进行探讨和重视。现代大型汽轮发电机更注重选用有方向或无方向性的优质冷轧硅钢片,以降低铁心损耗,提高发电机效率。本文主要探讨大型发电机定子铁心常见故障及处理措施。 关键词:发电机;定子铁心;故障 发电机在人们生活中占到很大的比重,维护发电机的正常运转,对于维护正常的经济生活非常重要。而定子铁心的相关问题在发动机故障中经常出现,影响到发电机定子铁心的因素很复杂,定子铁心常见故障一般分为定子铁心与机座的振动异常、定子铁心压装变松等多种。对于这些故障,在机组进行修整期间,应该使用探测仪对定子铁心进行以下检查,密切关注相关部位振动值和噪声、齿部和轭部、铁损试验。为了获得要求的磁、电特性和机械强度,减少磁滞和涡流损耗,定子铁心选择了磁导率高、损耗小,能达到一定工艺要求。 1 大型发电机定子铁心常见的故障 1.1 定子铁心与机座的振动异常 发电机运行后,轴系、定子铁心及机座的振动是不可避免的。采用端盖式轴承的发电机,定子铁心及机座的振源来自两方面:一是来自转子传来的机械振动;二是电机电磁场产生的电磁振动。由于转子的平衡精度不可能达到理想程度,转子旋转后,由于质量不平衡引起的振动通过轴承和端盖传到定子机座,产生工频(50Hz)振动;而由于转子磁极(大齿)与小齿呈现的相互垂直的刚度的差异,则对定子产生二倍工频(100Hz)的振动[1]。由电机电磁场产生的电磁振动力为:(1)因定子铁心有交变磁通通过所产生的交变电动力导致的工频振动。在铁心未压紧或铁心局部过热时即产生强烈的振动和噪声。(2)旋转的转子加励磁后,相当于旋转的电磁铁,对定子铁心产生使其变形的磁拉力,由此产生二倍频振动力,即椭圆振动--这也是定子铁心振动的主要振源。发电机带负载后将使铁心的倍频振动力加强,且由于定子端部漏磁场的轴向分量影响产生轴向的倍频振动力。当发电机发生三相短路时,将使定子铁心的椭圆振动与形加剧。两相短路时,定子铁心还会发生扭转振动。为将这些危害发电机安全运行的振动减至最小,除在设计和制造工艺方面提高定子铁心的刚度和弹性模量,使其固有频率避开工频和二倍频外,对大型汽轮发电机的定子铁心还采用弹性固定的办法即弹性定位筋或弹簧板隔振结构固定在定子机座上,以减小铁心振动直接传至机座上。 1.2 定子铁心压装变松 国产及进口200MW及以上容量的大型汽轮发电机曾多次发生过定子铁心硅钢片压装变松故障,轻微者仅对松弛部位加塞涂绝缘漆的硅钢片等塞紧,或扭紧定位筋及穿心螺母进行局部处理;严重者则需将定子绕组全部抬出,相关的紧固件全部拆除,以更换已损坏的整段铁心,对铁心进行整体压装,造成极大损失。从历次对铁心松弛故障原因分析的结果来看,老旧机组大多因为运行年久,在交变电磁振动力及铁心自身重力的影响下,破坏了铁心叠片间绝缘漆膜形成的阻滞力,导致铁心叠片变松,片间绝缘被破坏,形成片间短路和局部过热。新投入的发电机定子铁心叠片变松的原因则是多方面的。 2 大型发电机定子铁心常见故障及处理措施 排除接地故障时,应认真观察绕组的损坏情况,除了由于绝缘老化、机械强度降低造成绕组接地故障,需要更换绕组外,若绕组绝缘尚好,仅个别绕组接地,只需局部修复。(1)槽口部位接地。如果查明接地点在槽口或槽底线圈出口处,且只有一根导线绝缘损坏,可把绕组加热至130℃左右使绝缘软化后,用划线板或竹板撬开接地点处的槽绝缘。把接地处烧焦的绝缘清理干净,插入适当大小的新绝缘纸板,再用绝缘电阻表测量绝缘电阻。绕组绝缘恢复后,趁热在修补处涂上白干绝缘清漆即可。若接地点有两根以上导线绝缘损伤,应将槽绝缘和导线绝缘同时修补好,避免引起匝间短路。(2)双层绕组上层边槽内部接地。先把绕组加热到130℃左右使绝缘软化,取出接地线圈上的槽楔,再把接地线圈的上层边起出槽口清理损伤的槽绝缘,并用新绝缘纸板把损坏的槽绝缘处垫好。同时检查接地点有无匝间绝缘损伤,然后把上层边再嵌入槽内,折合槽绝缘,打入槽楔并做好绝缘处理。在打入槽楔前,应用绝缘电阻表测量故障绕组的绝缘电阻,使绝缘电阻恢复正常。对于双层绕组下层边槽内部对地击穿,可采用局部换线法和穿线修复法进行修复。(3)若接地点在端部槽口附近,损伤不严重,在导线与铁心之间垫好绝缘后,涂刷绝缘清漆即可。(4)若接地点在槽的里边,可轻轻抽出槽楔,用划线板和线匝一根一根地取出,直到取出故障导线为止,用绝缘带将绝缘损坏处包好,再把导线仔细嵌回线槽。(5)绕组受潮引起接地的应先进行烘干,当冷却到60~70℃左右时,浇上绝缘漆后再烘干。(6)若由于铁心凸出,划破绝缘,应将凸出的硅钢片敲下,在绝缘破损处重新包好绝缘。 定子铁心故障探测仪的应用。发电机定子铁心故障检查试验的目的是查找运行时的过热点隐患,防止扩大为发电机事故。上节提到的铁心试验方法是传统的试验方法,是通过临时安装的励磁绕组,在定子铁心上产生周向环绕磁通,试验时要抽出转子,大型发电机通常要用承载约300A电流的电缆,穿过定子内膛至定子机壳外部绕若干匝。对于500MW的发电机,要在铁心中产生的磁通密度达到发电机额定工作磁密的80%,大约需要3MVA的试验电源。试验时用红外热像仪测量定子内膛铁心表面的温度分布查找铁心故障点,以确定铁心表面的局部缺陷。这一电压是由穿过ABCD回路的磁通感应产生的,随着该回路尺寸的不同,电压数值可能达到几十甚至几百伏,后者是指轴向通风的发电机,在这些发电机中温度计导线沿着槽由定子端部引出。显然,这个电阻温度计对汽轮发电机机壳的任意第二点短路,都会形成电流回路。假如,定子机壳的E点是第二个短路点,在ABC-DE回路中就有电流,电流数值与回路电阻及短路点之间的感应电压数值有关。通常,电阻温度计的引线沿槽布设,从临近的铁心段间的径向通风沟引出。如运行经验指出,由于AB-CDE的面积小,故回路的感应电势和感应电流也小,未曾发现铁心损坏。具有轴向通风系统的汽轮发电机,当电阻温度计本身或它的引线绝缘损坏时,可能损坏有效铁

6发电机常见故障及处理方法

6.发电机常见故障及处理方法 6.1 发电机不发电或电压<100V 故障原因诊断分析: 1. 发电机运转至正常转速后电压为0,一般发生于长时间停用的发电机组,大多是发电机缺少剩磁造成的。在静止状态下用6V~12V蓄电池接在励磁绕组接线端子F1、F2上,F1接电源的正极,F2接电源的负极,短时间接通一下电源即可。 2. 若充磁后电压不能恢复,说明电机绕组存在短路故障,具体测量可用直流电阻电桥测量电机绕组的直流电阻。 3. 充磁后,如果试验空载电压恢复正常,但是,带载后电压下降厉害,应重点检查静止整流模块、旋转整流模块、电流互感器、整流变压器。 4. 如果U≠0 ,在30V~50V左右,进行它励试验,若电压不能恢复正常,应检查旋转整流模块是否损坏,励磁机绕组、主机绕组是否存在短路、断路。 5. 若进行它励试验时正常,一般故障出现在励磁系统,重点检查静止整流模块 V4、电流互感器T1、T2、T3,电抗器L1、整流变压器T6,检查绕组有无断路,插套有无松动,静止整流模块是否损坏。

6.2 发电机有电压,但电压在300多伏 故障原因诊断分析: 1. 发电机的电压调整范围一般为360V~440V,电压整定电位器调整至最大时,发电机电压应440V左右。若调整无效,电压保持在360V左右,可能是电压整定电位器阻值为零或电压整定电位器至AVR板上X2插头的1、3端子的两根线出现短路。应检查电压整定电位器是否完好,可用万用表测量电位器的直流电阻,阻值应在0~4.7kΩ内均匀变化。或者检查电位器是否接入AVR板。 2. 如检查电压整定电位器完好,检测弯板上的可控硅是否损坏,可控硅损坏严重(完全导通)可能导致分流电阻完全分流且分出电流大小不可调,从而使励磁电流较小,发电机电压始终处于低压状态。 3. 如果发电机电压在350以下,最大可能性是三块旋转整流模块中有一块出现故障,导致励磁机转子三相电流只有两相通过整流供给主机转子。 4.电抗器气隙太小,可适当加大电抗器气隙。

横河压力变送器常见故障处理方法

2、典型故障的处理方法 2.1 对测量超限的处理方法通过研究分析,发现此类故障通常与以下因素有关:① 仪表操作使用不当以抚顺石油一厂酮苯装置 C-101液位控制系统(LICA-1201)为例,如图1所示,由于仪表始终在高液位(100%以上)运行,或仪表始终在低液位(5%以下)运行,都有可能使仪表指示为超限。因此,要求工艺操作人员应能根据工艺流程及工艺控制要求正确判断出是仪表故障还是工艺操作不当。所以,需要工艺人员和仪表维护人员密切配合,保证工艺介质在仪表所能测量范围内,避免使操作人员误认为仪表故障。 图1 C-101 液位控制系统工艺图②仪表量程选择不当在对该厂酮苯装置中EJA 智能双法兰变送器测量量程检查时,均发现变送器量程存在设计计算错误,如对LICA-1201等变送器在DCS工程师站上检查它们的量程时,发现双法兰量程无迁移,这是造成仪表测量不准及超限的重要原因,如图2所示。 图2 塔101 量程计算参数图原设计采用量程为0~19.71kPa,无量程迁移,因此测量结果在仪表量程之外,出现测量超限情况。实际上对此台仪表应按下面的方法进行量程计算:已知:仪表可测范围,介质比重,毛细管硅油比重。求仪表量程。求解方法:仪表的量程是指当液位由最低升到最高时,液面计上所受的压力,故量程为:当液面最低时,液面计正、负压室的受力为:液面计迁移量为: =-2.65=-2.65×1.07×9.81 =-27.82kPa P+>P-,故为负迁移。按上述计算修改量程后,仪表运行即正常。因此,只有按正确的计算方法及引用迁移量来进行计算才能保证仪表量程的准确。 2.2 安全柵不配套造成仪表无输出及测量不准由于智能变送器要求使用与之配套的安全柵,当用了未取得与智能变送器配套许可证的安全柵后,大部分都会出现这样那样的问题,其主要故障有:①安全柵电

康明斯系列柴油发电机的常见故障俭修原因分析

一、 康明斯柴油机的常见故障原因 (一)柴油机冒黑烟 1)涡轮增压器工作失郊; 2)气门组件密封不良; 3)喷油器或高压油泵精密偶件工作失郊; 4)凸轮轴组件磨损过度; 5)中冷器过脏、入气量不足; 6)喷油器胶圈密封不良; 7)气缸组件拉缸; 8)柴油质量不良。 (二)柴油机冒白烟 1)喷油器或高压油泵精密偶件失郊; 2)柴油机烧机油(即增压器烧机油); 3)气门导管及气门磨损过度,机油漏入气缸; 4)柴油中有水; 5)喷油气缸套漏水入气缸; 6)活塞环磨损过度或油环装反,气缸烧机油。 (三)在高负载时,排烟管及增压器发红 1)喷油器或高压油泵精密偶件工作失郊; 2)凸轮轴、随动臂组件、摇臂组件磨损过度; 3)中冷器过脏、入气量不足; 4)增压器工作失郊; 5)气门组件密封不良。 (四)柴油机工作时功率亏损较大 1)气缸组件磨损过大; 2)喷油器或高压油泵精密偶件工作失郊; 3)PT油泵工作失郊; 4)正时机构工作不良; 5)增压器工作失郊; 6)中冷器过脏; 7)气门组件密封不良; 8)柴油格、空气格过脏。 (五)柴油机机油压力过低 1)轴瓦和曲轴的配合间隙过大,即轴瓦和曲轴磨损过大; 2)各种衬套和轴系磨损过大; 3)冷却喷咀或机油管漏油; 4)机油泵工作失郊; 5)油压传感器失郊; 6)机油冷却器过脏导致油温过高; 7)机油品质不良。 (六)柴油机水温过高 1)水泵损坏; 2)节温器损坏;

3)风扇皮带,水泵皮带过松; 4)水箱过脏。(内部或外部) (七)柴油机出现烧瓦现象 1)机油泵工作失郊; 2)轴瓦间隙过大,引起油压过低; 3)柴油机缺水而出现高温; 4)机油格堵塞; 5)机油品质不良。 (八)柴油机下浊气大现象或有白烟从下浊气管排出 1)气缸组件磨损过大; 2)油底壳有水;(缸盖破裂,喷油器铜套水,缸套烂穿,缸套胶圈漏水,缸体漏水) 3)有拉缸现象。 (九)柴油机转速不稳 1)柴油机有功率亏损过大的故障; 2)PT泵的电子执行器磨损过度以及PT泵内部机件故障; 3)EFC电子调速板工作失郊; 4)测速磁头损坏; 5)柴油格过脏; 6)柴油管道漏气。 (十)油底壳有水 1)缸套破裂或缸套胶圈破损; 2)缸体破裂; 3)缸盖破裂; 4)喷油器铜套漏水。 (十一)油底壳有柴油 1)喷油器O形形圈损坏; 2)喷油器雾化不良,滴油; 3)喷油器安装不当; 4)喷油器得新安装时没有换新的O形圈。 (十二)柴油机异响 1)气门和活塞碰撞; 2)连杆螺钉松动,活塞和缸盖碰撞; 3)EFC板故障; 4)PT油泵故障而引起供油不稳; 5)喷油器滴油爆缸; 6)柴油机轴瓦间隙过大; 7)柴油管道漏气。 (十三)柴油机震动过大 1)柴油机轴瓦间隙过大或轴向间隙超标; 2)喷油器雾化不良而敲缸; 3)柴油机和电球的连接变形; 4)飞轮组件安装不当; 5)曲轴,连杆各种紧固螺钉松动; 6)增压器工作失郊。

智能电磁流量计常见故障分析及解决

智能电磁流量计常见故障分析及解决智能电磁流量计是一种速度式仪表。除可测量一般导电液体的体积流量外,还可用于测量强酸强碱等强腐蚀液体和泥浆、矿浆、纸浆等均匀的液固两相悬浮液体的体积流量。广泛应用于石油、化工、冶金、轻纺、造纸、环保、食品等工业部门及市政管理,水利建设、河流疏浚等领域的流量计量。常见故障,有的是由于仪表本身元器件损坏引起的故障,有的是由于选用不当、安装不妥、环境条件、流体特性等因素造成的故障,如显示波动、精度下降甚至仪表损坏等。它一般可以分为两种类型:安装调试时出现的故障(调试期故障)和正常运行时出现故障(运行期故障)。 (1)调试期故障调试期待故障一般出现在仪表安装调试阶段,一经排除,在以后相同条件下一般不会再出现。常见的调试期故障一般由安装不妥、环境干扰以及流体特性影响等原因引起。 1)安装方面通常是智能电磁流量计传感器安装位置不正确引起的故障,常见的如将传感器安装在易积聚气体的管系最高点;或安装在自上而下的垂直管上,可能出现排空;或传感器后无背压,流体直接排入大气而形成测量管内非满管。 2)环境方面通常主要是管道杂散电流干扰,空间强电磁波干扰,大型电机磁场干扰等。管道杂散电流干扰通常采取良好的单独接地保护就可获得满意结果,但如遇到强大的杂散电流如电解车间管道,有时在两电极上感应的交流电势峰值可高达尚需采取另外措施和流量传感器与管道绝缘等。空间电磁波干扰一般经信号电缆引入,通常采

用单层或多层屏蔽予以保护。 3)流体方面被测液体中含有均匀分布的微小气泡通常不影响电磁流量计的正常工作,但随着气泡的增大,仪表输出信号会出现波动,若气泡大到足以遮盖整个电极表面时,随着气泡流过电极会使电极回路瞬间断路而使输出信号出现更大的波动。 低频方波励磁的电磁流量计测量固体含量过多浆液时,也将产生浆液噪声,使输出信号产生波动。 测量混合介质时,如果在混合未均匀前就进入流量传感进行测量,也将使输出信号产生波动。 电极材料与被测介质选配不当,也将由于化学作用或极化现象而影响正常测量。应根据仪表选用https://www.360docs.net/doc/64192869.html,或有关手册正确选配电极材料。 (2)运行期故障运行期故障是智能电磁流量计经调试并正常运行一段时期后出现的故障,常见的运行期故障一般由流量传感器内壁附着层、雷电打击以及环境条件变化等因素引起。 1)传感器内壁附着层由于电磁流量计常用来测量脏污流体,运行一段时间后,常会在传感器内壁积聚附着层而产生故障。这些故障往往是由于附着层的电导率太大或太小造成的。若附着物为绝缘层,则电极回路将出现断路,仪表不能正常工作;若附着层电导率显著高于流体电导率,则电极回路将出现短路,仪表也不能正常工作。所以,应及时清除电磁流量计测量管内的附着结垢层。 2)雷电打击雷击容易在仪表线路中感应出高电压和浪涌电流,使

风力发电机常见故障及其分析概要

茂名职业技术学院 毕业设计 题目:风力发电组轴承的常见失效形式及故障分析系别:机电信息系专业:机械制造与自动化班别:13机械一班姓名:何进生指导老师:张浩川日期:2015年7月1日至2016年5月1日

内容摘要 随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词 风力发电机;故障模式;齿轮箱;故障诊断

Common Faults And Their Analysis Of The Wind Turbine Abstract With the global economic development and population growth, humanity is facing with the pressure from two sides of the energy use and environmental protection, the energy problem and environmental pollution has become an increasingly prominent issue. Wind power as a abundant reserves of natural resources, because of its convenient use, renewable, low cost, no pollution, has been more widely used and rapid development in the world. Wind power has been taken as one of the priority development energy sources in the world.The increase of wind power capacity and complicated system structure will not only cause power outage,but also raise serious accidents when the set is at fault. In the beginning, the dissertation introduces the practical significance of project and the common failure mode of wind turbines, then researches and describes the failure of gearbox in detail, including the cause of failure, how to identify and how to improve the design. Based on the analysis of common failures, not only provide assistance for fault diagnosis to the technical

常见仪表常见故障及处理办法

仪表常见故障检查及分析处理 一、磁翻板液位计: 1、故障现象:a、中控远传液位和现场液位对不上或者进液排液时液位无变化;b、现场液位计和中控远传均没有问题的情况下,中控和现场液位对不上; 2、故障分析:a、在确定远传液位准确的情况下,一般怀疑为液位计液相堵塞造成磁浮子卡住,b、现场液位变送器不是线性; 3、处理办法:a、关闭气相和液相一次阀,打开排液阀把内部液体和气体全部排干净,然后再慢慢打开液相一次阀和气相一次阀,如果液位还是对不上,就进行多次重复的冲洗,直到液位恢复正常为止;b、对液位计变送器进行线性校验。 二、3051压力变送器:压力变送器的常见故障及排除 1)3051压力变送器输出信号不稳 出现这种情况应考虑A.压力源本身是一个不稳定的压力B.仪表或压力传感器抗干扰能力不强C.传感器接线不牢D.传感器本身振动很厉害E.传感器故障 2)加压变送器输出不变化,再加压变送器输出突然变化,泄压变送器零位回不去,检查传感器器密封圈,一般是因为密封圈规格原因(太软或太厚),传感器拧紧时,密封圈被压缩到传感器引压口里面堵塞传感器,加压时压力介质进不去,但是压力很大时突然冲开密封圈,压力传感器受到压力而变化,而压力再次降低时,密封圈又回位堵住引压口,残存的压力释放不出,因此传感器零位又下不来。排除此原

因方法是将传感器卸下看零位是否正常,如果正常更换密封圈再试。 3)3051压力变送器接电无输出 a)接错线(仪表和传感器都要检查) b)导线本身的断路或短路 c)电源无输出或电源不匹配 d)仪表损坏或仪表不匹配 e)传感器损坏 总体来说对3051压力变送器在使用过程中出现的一些故障分析和处理主要由以下几种方法。 a)替换法:准备一块正常使用的3051压力变送器直接替换怀疑有故障的这样可以简单快捷的判定是3051压力变送器本身的故障还是管路或其他设备的故障。 b)断路法:将怀疑有故障的部分与其它部分分开来,查看故障是否消失,如果消失,则确定故障所在,否则可进行下一步查找,如:智能差压变送器不能正常Hart远程通讯,可将电源从仪表本体上断开,用现场另加电源的方法为变送器通电进行通讯,以查看是否电缆是否叠加约2kHz的电磁信号而干扰通讯。 c)短路检测:在保证安全的情况下,将相关部分回路直接短接,如:差变送器输出值偏小,可将导压管断开,从一次取压阀外直接将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路的堵、漏的连通性 三、雷达液位计:

电厂发电机常见故障原因分析及预防分析 郝天通

电厂发电机常见故障原因分析及预防分析郝天通 发表时间:2018-05-30T09:00:26.640Z 来源:《电力设备》2018年第2期作者:郝天通[导读] 摘要:国家电力工程事业的不断进步与发展,极大地促进了电厂发电机应用技术的飞跃。 (身份证号码:13020319850621xxxx 河北省唐山市开平区大唐国际发电股份有限公司陡河发电厂河北唐山 063000)摘要:国家电力工程事业的不断进步与发展,极大地促进了电厂发电机应用技术的飞跃。研究电厂发电机常见故障原因及预防问题,对于提升故障应对效率,优化发电机应用效果有着重要意义。文章介绍了电厂发电机的常见故障,分析了其故障产生的多方面原因,并立足实际提出了发电机故障的预防措施,望对相关工作的开展有所裨益。 关键词:电厂;发电机;故障;预防 1前言 随着电厂发电机应用条件的不断变化,对其故障原因的分析及预防提出了新的要求,因此有必要对其相关课题展开深入研究与探讨,以期用以指导相关工作的开展与实践,并取得理想效果。基于此,本文从概述相关内容着手本课题的研究。 2电厂发电机的常见故障通常情况下,火电厂的发电机故障可以分为线圈故障、电气故障、液压系统故障等三大部分。 2.1线圈故障 线圈是发电机内部的重要部件,同时也是使用最频繁的部件,因此线圈故障是电厂发电机最常见的故障之一。常见的线圈故障主要包括线圈的老化、转子线圈的磨损、定子线圈的高温等。 2.2电气故障 随着时代科技的进步,电气设备结构越来越复杂,并且越来越现代化、智能化,这给电气设备的故障检测与维修带来了很大困难。一般情况下,发电机经常出现的电气故障主要有线套管温度过高、发电机大轴磁化、转子连接故障以及励磁回路故障等。 2.3液压系统故障 随着火力发电的快速发展,大型汽轮机组得到了广泛的应用,而液压系统作为大型汽轮机组的主要组成系统之一,一旦其发生故障就会严重的影响到机组的正常工作。目前常见的液压系统故障主要有汽轮机控制零件故障、液压控制系统故障、汽轮机高压控制油泄露故障等。 总之,电厂发电机组的故障多种多样,并且造成故障的原因也各不相同,因此在分析发电机故障原因时,要针对不同故障分别展开分析。 3电厂发电机故障产生的原因 3.1线圈故障原因分析 线圈故障有多种,因此本文针对不同种类的线圈故障,分析了故障产生的原因。 3.1.1线圈绝缘老化。这类故障是指线圈的绝缘层出现老化,使得绝缘层的耐压能力低于最低标准,从而很容易出现电压击穿故障。造成线圈绝缘老化的原因主要有以下几个:其一,线圈长时间的使用,导致线圈绝缘层出现自然老化。由于长时间使用而造成的绝缘层老化占到线圈绝缘层老化故障的大多数,是一种比较常见的线圈事故;其二,线圈质量不合格,浸胶不良,使用过程中出现绝缘侧脱落现象。质量差的线圈导线在使用过程中,经常会出现绝缘层松动,绝缘效果变差的问题。 3.1.2转子线圈磨损。在正常的发电生产中,发电机一般保持高速运转,甚至在某些时候要高负荷运转,因此发电机转子的转动速度很快,从而使得转子线圈的磨损十分严重,进而加速了绝缘层的老化,出现短路故障,造成发电机的严重损毁,甚至产生很大的生产事故。 3.1.3定子线圈磨损。定子与转子之间会产生摩擦,因此转子速度越快,定子受到的摩擦越严重,定子线圈的磨损就越严重,从而加速了定子线圈绝缘层的破坏,产生电压击穿事故。另外,外界灰尘、水、油等物质会浸入绝缘层中,影响绝缘效果,造成电压击穿事故。 3.2发电机的电气故障原因分析 由于发电机电气设备结构十分复杂,元部件众多,因此造成电气故障的原因有很多,从而给电气故障的诊断和预防带来很大困难。本文针对几种典型的电气故障,分析了造成电气故障的具体原因。 3.2.1线套管温度过高的原因。当发电机的无功负荷过高时,发电机底部的漏磁就会增多,从而产生电流,造成线套管温度升高。另外,发电机组中存在磁场,其产生的涡流会产生过多的热量,从而造成线套管温度升高。 3.2.2大轴磁化与退磁原因。发电机的大轴一般由含有铬镍等金属的钢材制成,因此大轴在长期工作中会被磁化,当发电机停机后,大轴内的磁场会因摩擦或者接触而产生电流,从而烧毁轴瓦,影响发电机的正常工作。 3.2.3转子连接部位故障原因。发电机在长时间使用后,发电机与转子连接部位的接触片会发生松动,从而增大了连接部位的摩擦,造成接触片的变形,严重的会导致发电机的停机。 3.2.4由于变阻器、晶闸管、云母片等部件引起的电刷抖动,会导致接触不良,从而造成励磁回路短路。 3.3发电机的液压系统故障原因分析 3.3.1发电机零部件故障原因。造成发电机零部件故障的原因主要有施工安装质量不合格以及零部件本身质量不合格。这些会造成控制电缆的老化以及接头松动等问题,从而影响机组的正常运行。 3.3.2控制系统故障原因。当系统的油压存在较大波动时,就会影响液压控制系统,而造成油压波动的原因主要是稳定控制油压的蓄能器出现损坏,无法起到蓄能作用,从而造成油压波动,影响控制系统,进而产生故障。 3.3.3高压控制油泄露原因。造成高压控制油泄露的原因主要是因为系统的密闭功能失效。一般液压系统的密闭件都要求耐腐蚀、耐高温,然而因橡胶密闭件质量不合格而造成的密闭功能失效的现象还时有发生,这就成为高压控制油泄露的主要原因。 4电厂发电机故障的预防措施发电机故障的诊断与预防是发电机维护工作的重要内容,因此采取合适的发电机故障预防措施至关重要。本文对预防线圈故障、电气故障、液压故障应该采取的措施分别进行了分析。 4.1线圈故障预防措施

发电机常见故障及解决方案汇总

双馈发电机简介及常见故障 一:双馈电机简介及工作原理 (1)简介: 双馈异步风力发电机(DFIG,Double-Fed Induction Generator)是一种绕线式感应发电机,是变速恒频风力发电机组的核心部件,也是风力发电机组国产化的关键部件之一。该发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构. 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变流器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 (2)工作原理: 双馈感应发电机由定子绕组直连定频三相电网的绕线型感应发 电机和安装在转子绕组上的双向背靠背IGBT电压源变流器组成。“双馈”的含义是定子电压由电网提供,转子电压由变流器提供。该系统允许在限定的大范围内变速运行。通过注入变流器的转子电流,变流器对机械频率和电频率之差进行补偿。在正常运行和故障期间,发电机的运转状态由变流器及其控制器管理。

变流器由两部分组成:转子侧变流器和电网侧变流器,它们是彼此独立控制的。电力电子变流器的主要原理是转子侧变流器通过控制转子电流分量控制有功功率和无功功率,而电网侧变流器控制直流母线电压并确保变流器运行在统一功率因数(即零无功功率)。 功率是馈入转子还是从转子提取取决于传动链的运行条件:在超同步状态,功率从转子通过变流器馈入电网;而在欠同步状态,功率反方向传送。在两种情况(超同步和欠同步)下,定子都向电网馈电。(3)优点: 首先,它能控制无功功率,并通过独立控制转子励磁电流解耦有功功率和无功功率控制。其次,双馈感应发电机无需从电网励磁,而从转子电路中励磁。最后,它还能产生无功功率,并可以通过电网侧变流器传送给定子。但是,电网侧变流器正常工作在单位功率因数,并不包含风力机与电网的无功功率交换。 二:电机常见故障及解决办法 1:电机轴电流电流? 电机的轴--轴承座--底座回路中的电流称为轴电流 轴电流产生的原因: (1)磁场不对称; (2)供电电流中有谐波; (3)制造、安装不好,由于转子偏心造成气隙不匀; (4)可拆式定子铁心两个半圆间有缝隙; (5)有扇形叠成的定子铁心的拼片数目选择不合适。

汽油发电机常见故障汇总及解决方法

汽油机点火不着的原因具体有哪些方面? 汽油机要实现正常启动,必须具备三个条件:一、配气系统正常;二、供油系统正常;三、点火系统正常;这三个条件缺一不可。分析发动机不能启动故障,就从这三个方面进行逐一排查,定能事半功倍。当然在判断正常与非正常时,需要有一定经验积淀。工作过程中,发动机自行熄火后,不能启动。检查步骤是:1、握住起动手柄,慢慢拉转轴,感受压缩行程时的阻碍力,若阻力大则汽缸压缩力正常,初定配气系统正常,2、拆下火花塞后,重新装入火花塞冒中,并使火花塞搭铁,打开,迅速拉动起动手柄,观察火花塞跳火(俗称跳火试验)情况,若火花正常,则初定点火系统正常。问题可能出现在燃油供给系统,燃油供给系统故障有二种情况:其一:油流不畅或无油。主要原因有:①、油箱中无油;②、油箱盖小孔堵塞;③、油箱底部滤网堵塞;④、化油器开关油道堵塞;⑤、浮子室卡滞;⑥、主量孔堵塞。其二:油流通畅。主要原因有:①、燃油中有水;②、气缸内燃油过多;③、混合汽通道漏气。需要特别提醒的是,搁置较长时间的起动时,除作上述检查外,还要注意检查开关位置和风门的开度,以及燃油质量问题。安装有机油传感器的发动机首先检查箱内机油是否足够,传感器是否搭铁或损坏。若燃油供给系正常,气缸压缩正常,则故障在点火系。故障原因有:①、电极度脏污、积炭;②、火花塞绝缘体损坏;③、火花塞间隙不对;④、高压线漏电;⑤、火花塞损坏;⑥、点火线圈损坏;⑦、不够。点火系故障判断方法是:做火花塞跳火试验,观察有无火花或火花强弱,若无火花,拆下火花塞冒,用高压线直接跳火试验,若火花正常,故障在火花塞及火花塞冒。再将火花塞放置机体上,用高压线接触火花塞尾部进行跳火试验,若跳火正常,则火花塞冒损坏;若跳火微弱,或不跳火,则火花塞可能:①、火花塞积炭;②、火花塞电极间隙过大或过小;③、火花塞绝缘损坏;若高压线无电火花,断开点火器与点火开关的联接线,再作跳火试验,若跳火正常,则点火开关搭铁,清除搭铁点即可正常启动。若仍不跳火,可拆点火器上的熄火搭铁线,再跳火试验,若跳火正常,则熄火搭铁线有搭铁现象;若跳火微弱或不跳火则点火器损坏或磁场变弱。若燃油供给正常,点火系正常。则故障在配气系统。配气系统故障有两种现象:其一,气缸无压缩拉动曲轴无转动阻力。压缩过程漏气,可能产生的原因有:①、汽门密封不严漏气;②、气门发卡;③、汽缸垫损坏;④、气缸头螺丝松动;⑤、花塞松动;⑥、活塞环焦结;⑦、活塞环磨损;⑧、磨损;⑨、活塞磨损;⑩、过小或无间隙。其二,压缩正常。可能产生的原因有:①、启动负荷大,启动转速不够;②、进气或排气门推杆脱出;③进排气道堵塞;④、气门间隙过大。还应注意别人拆装过曲轴箱盖的发动机,应检查配气正时,确保万无一失。自行熄火的发动机,当检查确认配气正时、压缩良好、无进排气堵塞。然油供给正常,化油器雾化可靠。火共塞跳火也正常,但仍不能启动时,这时唯一应检查的部位是--飞轮键,若飞轮键被剪切就会使飞轮与曲轴正常装配位置发生改变,使飞轮上的相对曲轴的定位发生改变,最终造成点火不正时,故发动机不能启动,这一故障须拆卸飞轮才能检查。本人在工作中遇到二例。发动机工作中自行熄火,手拉起动盘不能

柴油发电机常见问题及解决措施

柴油发电机常见问题及解决措施 人类的生活越来越离不开电力支持,随着科技进步,出现了越来越多的供电方式。按其能量来源大致分为核能发电、水力势能发电、火力发电、风力发电和太阳能发电。在大型发电站的支持下,城市才能正常运作。但是城市对电的供应需求也越来越大,尤其是在夏季,用电高峰期经常会出现供电不足的现象。而医院、政府机关等单位一旦断电将产生极大的负面后果。除此之外,断电对大型企业会造成非常大的经济损失。所以现在越来越多的单位都拥有自己的备用电源。作为最常用的备用电力设备,柴油发电机组的维护和运行问题逐渐得到人们的重视。本文就多年使用柴油发电机设备的经验,对其进行维护、故障诊断及管理进行阐述。 柴油发电机组共有六大系统,分别是机油润滑系统、燃油系统、控制保护系统、冷却散热系统、排气系统和起动系统。其中问题主要集中在启动系统、冷却系统和燃油系统。 一、启动系统问题 由于柴油发电机是一般情况下是备用电源,因此柴油发电机常处于待机状态,运行状态较短暂。但正是由于是应急电源,其应急启动能力尤为关键,这就要求启动系统不能有问题。而启动的关键在于蓄电池,蓄电池是发动机启动时的唯一电源,对蓄电池要进行悉心的维护。要让蓄电池达到额定电压,就要求在平时对蓄电池的电压进行监控,对蓄电池进行充电时,到达额定电压后停止充电,若电压低于额定电压则自动进行充电。这需要带蓄电池电压监控功能的自动充电设备。 维护保养蓄电池要关注蓄电池内部成分比例,如果内部水、酸损失没有得到及时补充,或电解液量达不到规定液面高度,就会使蓄电池的性能大幅降低。若补充电解液时过量,则多于的电解液易腐蚀接线柱,处理的方法是打磨掉腐蚀,重新加固螺丝,以降低电阻。

发电机常见故障原因及对策分析

发电机常见故障原因及对策分析 [摘要]近年来,随着我国社会经济的快速发展,科技技术、自动化技术等都有了进一步的发展。目前,发电机广泛应用于各行各业,若发电机出现故障,将严重影响着企业的正常运营,甚至给企业带来巨大的经济损失与社会损失。文中就常见的发电机故障展开分析,重点探讨其故障原因,针对其原因所在,有针对性的提出了相应的解决对策,避免发电机事故的发生。 [关键词]发电机常见故障故障原因对策 作为大型动力设备的发电机,不仅具备体积小的优点,而且具有功率大、转速高、运行平稳、安全性高的优势。但其运行过程中难免会出现一些故障,如何才能更好的防治、解决发电机运行中的常见故障,这对真正提高发电机的运行效率及运行安全性能具有重要的意义,下面将就此展开分析、论述。 1发电机常见故障及其原因分析 1.1绝缘电阻低于标准或产品技术条件规定的数值 出现绝缘电阻低于标准或产品技术条件规定的数值故障的原因:(1)原动机转速过低;或是由于二极管被击穿。(2)励磁回路中的电阻高于正常规定值;或是励磁电刷偏离中性线。(3)运输、存放、长时间停机或有水滴入电机内使线圈受潮或变形。(4)电机刷压力过小,接触面积过小,使其发生接触不良的现象。 1.2发电机电压过低 出现发电机电压过低的故障原因:(1)原动机转速太低,励磁回路电阻过大。(2)定子绕组或励磁绕组中有短路或接地故障。 1.3发电机电压过高 出现发电机电压过高的故障原因:(1)转速过高,分流电抗器铁心气隙过大。(2)磁场变阻器短路,发电机事故飞车。 1.4发电机线圈损坏故障 (1)一般使用年限较久的发电机极为容易出现线圈损坏的故障,即发电机的线圈绝缘出现局部损坏的现象,或是由于其线圈绝缘被击穿而出现故障。(2)若定子线圈处的绝缘层与绝缘线圈常年受外部环境中的土尘、水泥等颗粒性物质及水和油污等物质浸湿,而且在槽口拐弯部位浸漆的不完全,都容易损坏定子线圈的绝缘层,进而引发电压击穿或接地烧毁等故障,严重影响发电机的对正常及安全运行。(3)此外,在使用发电机的过程中,由于发电机在其运转工作的过程中其轴承会产生一定的磨损,若未定期对其进行必要的检测、维修与保养,当其

关于发电机参数、常见故障及故障处理概要

关于发电机参数、常见故障及故障处理的基本知识 1. 什么叫有功?什么叫无功? 答:在交流电能的发、输、用过程中,用于转换成非电、磁形式的那部分能量叫有功;用于电路内电、磁交换的那部分能量叫无功。 2. 什么叫同步发电机的额定容量、额定电压、额定电流? 答:额定容量是指该台发电机长期安全运行的最大输出功率。 额定电压是该台发电机长期安全工作的最高电压,发电机的额定电压指的是线电压。 额定电流是该台发电机正常连续运行时的最大工作电流。 3. 什么叫力率?力率的进相和迟相是怎么回事? 答:交流电机的功率因数也叫力率,它等于有功功率与视在功率的比值。 所谓力率的进相就是送出有功吸收无功的运行状态;力率的迟相就是既发有功又发无功的运行。 4. 调节有功的物理过程怎样?调节有功负荷时要注意什么? 答:根据电机的功角来谈谈调节有功的过程,这时假定发电机的励磁电流不变,系统的电压也不变。 (1)增负荷过程:当开大汽门时,发电机转子轴上的主力矩增大,此时由于电功率还没开始变,即阻力矩的大小没有变,故转子要加速,使转子和定子间的夹角就拉开一些,根据电机本身的功角特性,功角一增大,电机的输出功率就增大,也即多带负荷,转子会不会一个劲儿地加速呢?正常时是不会的,因为电机多带了负荷,阻力矩就增大,当阻力矩大到和主力矩平衡时,转子的转速就稳定下来,此时,发电机的出力便升到一个新数值。 (2)减负荷过程:当关小汽门时,发电机转子轴上的主力矩减小,于是转子减速,功角变小,当功角变小时,电磁功率减少,其相应的阻力矩也变小,当阻力矩减小到和新的主力矩一样大时,又达到新的平衡,此时电机便少带了负荷。 调节有功负荷时注意两点: (1)应使力度尽量保持在规程规定的范围内,不要大于迟相的0。95,因为力率高说明与该时有功相对应的励磁电流小,即发电机定、转子磁极间用以拉住的磁力线少,这就容易失去稳定,从功角特性来看,送出的有功增大,功角就会接近90度,这样也就容易失去稳定。 (2)应注意调负荷时要缓慢,当机组提高出力后,一般其过载能力是要降低的。 5. 发电机并列方法有种?各有什么优缺点? 答:发电机并列方法分两类:准同期法和自同期法 准同期法并列的优点: (1) 合闸时发电机没有冲击电流; (2) 对电力系统也没有什么影响; 准同期法并列的缺点:

电气仪表基本类型及常见故障的维修技术

电气仪表基本类型及常见故障的维修技术 摘要:随着科学技术的不断发展,自动化特征已经愈加明显,电气仪表作为实 现自动化的基础,提升其工作效率,加强故障维修工作十分重要。要发挥电气仪 表的作用,要从了解电气仪表的基本类型开始,只有对电气仪表进行充分的了解,才能够明确仪表出现故障的原因,能够在最短的时间内对故障进行排查并且解决。本文对电气仪表的基本类型进行了阐述,并且对常见故障的维修技术进行了讨论。 关键词:电气仪表;仪表类型;故障;维修技术 引言:在工业自动化生产过程中,电气仪表既是基础组成部分,也是自动化 过程中的重要组成部分。由于在其工作过程中经常会受到许多外力的影响,在发 生故障后,很难排查出引起故障的因素,所以,也就会延长技术人员排查故障的 时间,可能会影响到工业生产的进度。因此,只有利用合理的方式明确电气仪表 的基础类型和运行原理,才能够精准的排查出产生故障的因素,能够将排查故障 和维修故障的时间尽可能的缩小,进而实现工业生产的经济效益。 一、电气仪表的基本类型 电气仪表的类型有很多,但是现今应用范围最广的集中仪表主要有:流量仪表、压力仪表、液位仪表、温度仪表等,本文就其中的几种仪表进行了分析,压 力仪表的主要作用是对具体的环境指标做出测量,并且根据不同的压力仪表数据 来确定出不同种类压力仪表的工作原理,其测量对象主要包括粉状材料和高温材 料等等,压力仪表又可以被细分为液柱压力测量仪、活塞压力测量仪以及弹性压 力测量仪。 根据测量原理的不同,流量仪表可以分为体积、质量流量仪两种类型,前者 是对材料通过速度进行监测,对于流量的推导采用容积法进行;后者采用直接测 量方法,通过对材料通过质量的计量进行推导。温度仪表的元件一般采用热电阻、热电偶等对热敏感度相对稳定的材料,以便使对生产环境温度的测量结果更加准确。 液位仪表的作用是对材料液位进行监测,工作原理包括磁致伸缩、矩阵涡流、雷达、浮力等,采用不同工作原理的液位仪表,其具体的工作方式也往往存在一 定程度的差异。在线过程分析仪的作用是对生产过程进行分析和控制,是一种完 全实现了自动化和智能化的电气仪表,一般需要其它类型精密仪器的辅助,如液 相色谱仪、质谱仪等。 二、电气仪表常见故障的诊断与维修 1.故障诊断的基本方法 受电气仪表种类繁多的影响,故障诊断的方式方法也不尽相同,但也有一些 基本性的检查步骤。下面,我们就从仪表工作状态、非工作状态两个方面。对一 般性的检查步骤进行介绍和讨论。工作状态下的故障诊断:首先,对各部件电源 指示灯进行检查,并查看是否存在异响、异味或非正常高温问题。其次,对仪表 机械传动部位的运行情况进行检查,了解是否存在传动失灵、变形、磨损、卡死 等问题。最后,检查仪表电路,了解是否存在元器件功能损坏或短路问题。非工 作状态下的故障诊断:首先检查仪表外观,如表盘、外壳是否破损,同时查看开关、重要部件、指针等是否能够正常工作。其次,对各功能部件的连线是否牢靠 进行检查,若无问题,则检查元件焊点、保险丝、接触器、继电器是否正常。最后,对线路是否存在故障、各部件排列是否合理进行检查。 2.常见故障的排除

相关文档
最新文档