2人脸识别发展历史

2人脸识别发展历史
2人脸识别发展历史

人脸识别发展历史

1 引言

在我们生存的这个地球上,居住着近65亿人。每个人的面孔都由额头、眉毛、眼睛、鼻子、嘴巴、双颊等少数几个区域组合而成,它们之间的大体位置

关系也是固定的,并且每张脸的大小不过七八寸见方。然而,它们居然就形成

了那么复杂的模式,即使是面容极其相似的双胞胎,其家人通常也能够非常容

易地根据他们面孔上的细微差异将他们区分开来。这使得我们不得不承认这个

世界上找不出两张完全相同的人脸!那么,区分如此众多的不同人脸的“特征”到底是什么?能否设计出具有与人类一样的人脸识别能力的自动机器?这种自动

机器的人脸识别能力是否能够超越人类自身?对这些问题的分析和解答无疑具有重要的理论和应用价值,这正是众多从事自动人脸识别研究的研究人员所面临

的挑战。

本文首先给出了人脸识别的一个一般计算模型,然后简单回顾自动人脸识

别的研究历史,接下来阐述人脸识别的研究现状并介绍几种主流的技术方法,

简单介绍计算所人脸识别研究组的研究进展,最后对上述哲学层面的问题作了

一些简单的探讨。

2 人脸识别发展历史人脸识别是一个被广泛研究着的热门问题,大量的研

究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术方法

等方面的特点大体划分为三个时间阶段,如表1所示。该表格概括了人脸识别

研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三

个阶段的研究进展情况作简单介绍:

第一阶段(1964年~1990年)

这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采

用的主要技术方案是基于人脸几何结构特征(Geometric feature based)的方法。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于

人脸识别问题中。较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈

登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于1973年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。

第二阶段(1991年~1997年)

这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET 人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的Visionics(现为Identix)的FaceIt系统。美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特兰德(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(Normalized Correlation)方法一道成为人脸识别的性能测试基准算法。

这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥(Poggio)于1992年左右做的一个对比实验,他们对比了基于结构特征的方法与基于模板匹配的方法的识别性能,并给出了一个比较确定的结论:模板匹配的方法优于基于特征的方法。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别方法研究,并在很大程度上促进了基于表观(Appearance-based)的线性子空间建模和基于统计模式识别技术的人脸识别方法的发展,使其逐渐成为主流的人脸识别技术。

麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别方法。该方法通过“作差法”,将两幅人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的方法来进行人脸识别。

局部特征分析技术是由洛克菲勒大学(Rockefeller University)的艾提克(Atick)等人提出的。LFA在本质上是一种基于统计的低维对象描述方法,与只

能提取全局特征而且不能保留局部拓扑结构的PCA相比,LFA在全局PCA描述

的基础上提取的特征是局部的,并能够同时保留全局拓扑信息,从而具有更佳

的描述和判别能力。LFA技术已商业化为著名的FaceIt系统,因此后期没有发

表新的学术进展。

由美国国防部反毒品技术发展计划办公室资助的FERET项目无疑是该阶段

内的一个至关重要的事件。FERET项目的目标是要开发能够为安全、情报和执

法部门使用的AFR技术。该项目包括三部分内容:资助若干项人脸识别研究、

创建FERET人脸图像数据库、组织FERET人脸识别性能评测。该项目分别于

1994年,1995年和1996年组织了3次人脸识别评测,几种最知名的人脸识别

算法都参加了测试,极大地促进了这些算法的改进和实用化。该测试的另一个

重要贡献是给出了人脸识别的进一步发展方向:光照、姿态等非理想采集条件

下的人脸识别问题逐渐成为热点的研究方向。

总体而言,这一阶段的人脸识别技术发展非常迅速,所提出的算法在较理

想图像采集条件、对象配合、中小规模正面人脸数据库上达到了非常好的性能,也因此出现了若干知名的人脸识别商业公司。从技术方案上看, 2D人脸图像

线性子空间判别分析、统计表观模型、统计模式识别方法是这一阶段内的主流

技术。第三阶段(1998年~现在)

沙苏哈(Shashua)等于2001年提出了一种基于商图像[13]的人脸图像识别

与绘制技术。该技术是一种基于特定对象类图像集合学习的绘制技术,能够根

据训练集合中的少量不同光照的图像,合成任意输入人脸图像在各种光照条件

下的合成图像。基于此,沙苏哈等还给出了对各种光照条件不变的人脸签名(Signature)图像的定义,可以用于光照不变的人脸识别,实验表明了其有效性。

巴斯里(Basri)和雅各布(Jacobs)则利用球面谐波(Spherical Harmonics)

表示光照、用卷积过程描述朗博反射的方法解析地证明了一个重要的结论:由

任意远点光源获得的所有朗博反射函数的集合形成一个线性子空间。这意味着

一个凸的朗博表面物体在各种光照条件下的图像集合可以用一个低维的线性子

空间来近似。这不仅与先前的光照统计建模方法的经验实验结果相吻合,更进

一步从理论上促进了线性子空间对象识别方法的发展。而且,这使得用凸优化

方法来强制光照函数非负成为可能,为光照问题的解决提供了重要思路。

总体而言,目前非理想成像条件下(尤其是光照和姿态)、对象不配合、大规模人脸数据库上的人脸识别问题逐渐成为研究的热点问题。而非线性建模方法、统计学习理论、基于Boosting[15]的学习技术、基于3D模型的人脸建模与识别方法等逐渐成为备受重视的技术发展趋势。

3 结束语

人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用。这些成果更加深了我们对于自动人脸识别这个问题的理解,尤其是对其挑战性的认识。

人脸识别发展历史介绍

人脸识别发展历史介绍 1 引言 在我们生存的这个地球上,居住着近65亿人。每个人的面孔都由额头、眉毛、眼睛、鼻子、嘴巴、双颊等少数几个区域组合而成,它们之间的大体位置关系也是固定的,并且每张脸的大小不过七八寸见方。然而,它们居然就形成了那么复杂的模式,即使是面容极其相似的双胞胎,其家人通常也能够非常容易地根据他们面孔上的细微差异将他们区分开来。这使得我们不得不承认这个世界上找不出两张完全相同的人脸!那么,区分如此众多的不同人脸的“特征”到底是什么?能否设计出具有与人类一样的人脸识别能力的自动机器?这种自动机器的人脸识别能力是否能够超越人类自身?对这些问题的分析和解答无疑具有重要的理论和应用价值,这正是众多从事自动人脸识别研究的研究人员所面临的挑战。 然而,对这些问题的回答并不像看起来那么容易。即使在大量来自模式识别、计算机视觉、神经计算、生理学等领域的研究人员对自动人脸识别艰苦工作40余年之后,这些最基本的科学问题仍然困惑着研究人员。而退一步讲,即使对我们自己,尽管我们每天都在根据面孔区分着亲人、同学、朋友、同事等,大多数人却很难准确地描述出自己到底是如何区分他们的,甚至描述不出自己熟悉的人有什么具体的特征。即使专门从事相关的生理学、心理学、神经科学研究的一些专家,也很难描述清楚人类人脸识别的生理学过程。这意味着基于仿生学的人脸识别研究路线在实践上是难以操作的。当然,飞机的翅膀并不需要像鸟儿的翅膀一样煽动,自动人脸识别的计算模型也未必需要模拟“人脑”。我们也许可以通过另外的途径,例如建立人脸识别的计算模型,这种计算模型可能是基于仿生神经网络的,也可能是纯粹基于统计的,或者是这二者之外的第三只眼睛,并通过构建实用的自动人脸识别系统来验证这些计算模型,从而找出对上述基本科学问题的解答。 本文首先给出了人脸识别的一个一般计算模型,然后简单回顾自动人脸识别的研究历史,接下来阐述人脸识别的研究现状并介绍几种主流的技术方法,简单介绍计算所人脸识别研究组的研究进展,最后对上述哲学层面的问题作了一些简单的探讨。

人脸识别系统

人脸识别解决方案 浙江大华技术股份 有限公司 解决方案部大华人脸识别解决方案

目录 1 人脸识别技术 (3) 2 人脸识别解决方案 (4) 3 第二章. 方案概述 (5) 3.1 项目概况 (5) —

1人脸识别技术 随着平安城市基础建设的不断完善和加强前端摄像机采集到的数据呈现一种爆炸式的增长。对于公安行业来说数据总量不断充实的情况下如何从非结构化数据中挖掘结构化信息是平安城市建设的二期目标。另一方面公安行业对车辆的结构化信息采集已逐渐趋于成熟化、普遍化但对人员信息采集和认证技术一直使用传统技侦方式。人脸识别技术在以上情况下解决视频录像、图片等非结构化信息到人员照片、身份信息等结构化的转变。人脸识别技术相对于其他生物识别技术如指纹、指静脉、虹膜等同属于四大生物识别技术具有生物特征唯一性、可测量性、可识别性、终身不变性等特点。但相较其他识别技术具有本质的区别 1.非强制性用户不需要专门配合人脸采集设备几乎可以在无意识的状态下就可获取人脸图像这样的取样方式没有“强制性” 2. 非接触性用户不需要和设备直接接触就能获取人脸图像 3. 并发性在实际应用场景下可以进行多个人脸的分拣、判断及识别人脸识别技术流程主要包括四个组成部分分别为人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及人脸特征数据匹配与识别。人脸图像采集及检测基于人的脸部特征对输入的人脸图像或视频流,首先判断是否存在人脸如果存在人脸则进一步的给出每个脸的位置、大小和各个面部器官的位置信息。人脸图像预处理 对于人脸的图像预处理是基于人脸采集及检测结果通过人脸智能算

法对选择出来的人脸图片进行优化和择优选择挑选当前环境下最优人脸并最终服务于特征提取的过程。其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。 人脸图像特征提取人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取的方法归纳起来分为两大类一种是基于知识的表征方法另外一种是基于代数特征或统计学习的表征方法。基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成 对这些局部和它们之间结构关系的几何描述可作为识别人脸的重要特征这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。 1.1人脸识别解决方案 人脸特征比对识别通过采集到的人脸图片形成人脸特征数据与后端人脸库中的人脸特征数据模板进行搜索匹配通过设定一个阙值相似度超过这一阈值则把匹配得到的结果输出。这一过程又分为两类一类是确认是一对一进行图像比较的过程另一类是辨认是一对多进行图像匹配对比的过程。

人脸识别技术综述

人脸识别研究综述 摘要:论文首先介绍了人脸识别技术概念与发展历史,解释人脸识别技术的过程与优缺点;随后对近几年人脸识别技术的研究情况与一些经典的方法进行详细的阐述,最后提出人脸识别技术在生活中的应用与展望。 关键词:人脸识别研究现状应用与展望 一、概念 人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流。首先判断其是否存在人脸,如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。 广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 二、发展历史 人脸识别的研究历史比较悠久。高尔顿(Galton)早在1888 年和1910 年就分别在《Nature》杂志发表了两篇关于利用人脸进行身份识别的文章,对人类自身的人脸识别能力进行了分析。但当时还不可能涉及到人脸的自动识别问题。最早的AFR1的研究论文见于1965 年陈(Chan)和布莱索(Bledsoe)在Panoramic Research Inc.发表的技术报告,至今已有四十年的历史。近年来,人脸识别研究得到了诸多研究人员的青睐,涌现出了诸多技术方法。 三、过程与优缺点 人脸的识别过程: (1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。 (2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。 (3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库

人脸识别系统报告解析

摘要 文章具体讨论了主成分分析( PCA)人脸识别算法的原理及实现。它具有简单、快速和易行等特点,能从整体上反映人脸图像的灰度相关性具有一定的实用价值。人脸识别是目前较活跃的研究领域, 本文详细给出了基于主成分分析的人脸特征提取的原理与方法。并使用matlab 作为工具平台, 实现了一个人脸自动识别的系统原型。实验结果表明, 该系统识别率为100%, 达到预期的效果。如果想进一步提高人脸识别率, 可以考虑与其他方法结合。仅单独使用任何一种现有的方法一般都不会取得很好的识别效果, 将其他人脸识别方法组合是今后研究的一种趋势。也可以考虑改进分类决策的方法。本系统采用的最小距离分类法属于线性的分类器, 而利用神经网络这类学习能力更强的非线性分类器对高维人脸识别问题可能会有更好的解决。 1

目录 1.引言................................................................... (1) 2.需求分析.................................................................... 1 2.1 课题的来 源 (1) 2.2人脸识别技术的研究意义 (2) 2.2.1 面部关键特征定位及人脸2D形状检测技术 (2) 2.2.2面部感知系统的重要内 容 (2) 2.3人脸识别的国内外发展概况 (3) 2.3.1国外的发展概 况 (3) 2.3.2国内的发展概 况 (4) 3.概要设计.................................................................... 5 3.1问题描述 (5) 3.2模块设计 (5) 3.3主成分的一般定义 (6) 3.4主成分的性质 (7) 3.5主成分的数目的选取 (7) 4. 详细设计--PCA算法的功能实 现 (8) 4.1引言................................................................... .. 8 4.2 K-L变换 (8) 4.3 PCA方法 (9)

人脸识别毕业设计

摘要 人脸识别技术(FRT)是当今模式识别和人工智能领域的一个重要研究方向。虽然人脸识别的研究已有很长的历史,各种人脸识别的技术也很多,但由于人脸属于复杂模式而且容易受表情、肤色和衣着的影响,目前还没有一种人脸识别技术是公认快速有效的.本文主要讨论了人脸识别技术的一些常用方法,对现有的人脸检测与定位、人脸特征提取、人脸识别的方法进行分析和讨论,最后对人脸识别未来的发展和应用做了展望。 关键字:人脸识别,特征定位,特征提取

ABSTRACT Nowadays the face recognition technology (FRT) is a hot issue in the field of pattern recognition and artificial intelligence.Although this research already has a long history and many different recognition methods are proposed,there is still no effective method with low cost an d high precision.Human face is a complex pattern an d is easily affected by the expression,complexion and clothes.In this paper,some general research are discussed,including methods of face detection and location,features abstraction,and face recognition.Then we analyze and forecast the face recognition’s application and its prospects. Keywords: Face Recognition Technology, Face location,Features abstraction

人脸识别发展史——

人脸识别的研究历史比较悠久。高尔顿(Galton)早在 1888 年和 1910 年就分别在《Nature》杂志发表了两篇关于利用人脸进行身份识别的文章,对人类自身的人脸识别能力进行了分析。但当时还不可能涉及到人脸的自动识别问题。最早的AFR1的研究论文见于 1965 年陈(Chan)和布莱索(Bledsoe)在Panoramic Research Inc.发表的技术报告,至今已有四十年的历史。近年来,人脸识别研究得到了诸多研究人员的青睐,涌现出了诸多技术方法。尤其是 1990 年以来,人脸识别更得到了长足的发展。几乎所有知名的理工科大学和主要IT产业公司都有研究组在从事相关研究。 表 1 人脸识别发展历史简表 人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将 AFR 的研究历史按照研究内容、技术方法等方面的特点大体划分为三个时间阶段,如表1 所示。该表格概括了人脸识别研究的发展简史及其每个历史 阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍。 第一阶段(1964 年~1990年) 这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主

要技术方案是基于人脸几何结构特征(Geometric feature based)的方法。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从事 AFR 研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于 1973 年在京都大学完成了第一篇 AFR 方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。 第二阶段(1991 年~1997年) 这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET 人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的 Visionics(现为 Identix)的 FaceIt 系统。美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(Normalized Correlation)方法一道成为人脸识别的性能测试基准算法。这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥 Poggio)于 1992 年左右做的一个对比实验,他们对比了基于结构特征的方法与基于模板匹配的方法的识别性能,并给出了一个比较确定的结论:模板匹配的方法优于基于特征的方法。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别方法研究,并在很大程度上促进了基于表观(Appearance- based)的线性子空间建模和基于统计模式识别技术的人脸识别方法的发展,使其逐渐成为主流的人脸识别技术。 贝尔胡米尔(Belhumeur)等提出的 Fisherface 人脸识别方法是这一时期的另一重要成果。该方法首先采用主成分分析(Principal Component Analysis,PCA,亦即特征脸)对图像表观特征进行降维。在此基础上,采用线性判别分析(Linear Discriminant Analysis, LDA)的方法变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。该方法目前仍然是主流的人脸识别方法之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的 LDA 判别方法以及近期的一些基于核学习的改进策略。麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别方法。该方法通过“作差法”,人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的方法来进行人脸识别。 脸识别中的另一种重要方法——弹性图匹配技术(Elastic Graph Matching,EGM) 也是在这一阶段提出的。其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征—— Gabor变换12特征,称为Jet;边的属性则为不同特征点之间的几何关系。对任意输入人脸图像,弹性图匹配通过一种优化搜索策略来定位

人脸识别文献综述

文献综述 1 引言 在计算机视觉和模式识别领域,人脸识别技术(Face Recognition Technology,简称FRT)是极具挑战性的课题之一。近年来,随着相关技术的飞速发展和实际需求的日益增长,它已逐渐引起越来越多研究人员的关注。人脸识别在许多领域有实际的和潜在的应用,在诸如证件检验、银行系统、军队安全、安全检查等方面都有相当广阔的应用前景。人脸识别技术用于司法领域,作为辅助手段,进行身份验证,罪犯识别等;用于商业领域,如银行信用卡的身份识别、安全识别系统等等。正是由于人脸识别有着广阔的应用前景,它才越来越成为当前模式识别和人工智能领域的一个研究热点。 虽然人类能够毫不费力的识别出人脸及其表情,但是人脸的机器自动识别仍然是一个高难度的课题。它牵涉到模式识别、图像处理及生理、心理等方面的诸多知识。与指纹、视网膜、虹膜、基因、声音等其他人体生物特征识别系统相比,人脸识别系统更加友好、直接,使用者也没有心理障碍。并且通过人脸的表情/姿态分析,还能获得其他识别系统难以获得的一些信息。 自动人脸识别可以表述为:对给定场景的静态或视频序列图像,利用人脸数据库验证、比对或指认校验场景中存在的人像,同时可以利用其他的间接信息,比如人种、年龄、性别、面部表情、语音等,以减小搜索范围提高识别效率。自上世纪90年代以来,人脸识别研究得到了长足发展,国内外许多知名的理工大学及TT公司都成立了专门的人脸识别研究组,相关的研究综述见文献[1-3]。 本文对近年来自动人脸识别研究进行了综述,分别从人脸识别涉及的理论,人脸检测与定位相关算法及人脸识别核心算法等方面进行了分类整理,并对具有典型意义的方法进行了较为详尽的分析对比。此外,本文还分析介绍了当前人脸识别的优势与困难。 2 人脸识别相关理论 图像是人们出生以来体验最丰富最重要的部分,图像可以以各种各样的形式出现,我们只有意识到不同种类图像的区别,才能更好的理解图像。要建立一套完整的人脸识别系统(Face Recognetion System,简称FRS),必然要综合运用以下几大学科领域的知识: 2.1 数字图像处理技术 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机

人脸识别系统

人脸识别系统 一、概述 人脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。 二、人脸识别系统简介 人脸识别系统具有广泛的应用:人脸识别出入管理系统、人脸识别门禁考勤系统、人脸识别监控管理、人脸识别电脑安全防范、人脸识别照片搜索、人脸识别来访登记、人脸识别ATM机智能视频报警系统、人脸识别监狱智能报警系统、人脸识别RFID 智能通关系统、人脸识别公安罪犯追逃智能报警系统等等。 三、主要的功能 1.人脸捕获与跟踪功能: 人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用

人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。 2.人脸识别比对: 人脸识别分核实式和搜索式二种比对模式。核实式是对指将捕获得到的人像或是指定的人像与数据库中已登记的某一对像作比对核实确定其是否为同一人。搜索式的比对是指,从数据库中已登记的所有人像中搜索查找是否有指定的人像存在。 3.人脸的建模与检索: 可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,最终将根据所比对的相似值列出最相似的人员列表。 4.真人鉴别功能: 系统可以识别得出摄像头前的人是一个真正的人还是一幅照片。以此杜绝使用者用照片作假。此项技术需要使用者作脸部表情的配合动作。 5.图像质量检测: 图像质量的好坏直接影响到识别的效果,图像质量的检测功能能对即将进行比对的照片进行图像质量评估,并给出相应的建议值来辅助识别。

人脸识别系统需求方案

前后门人脸识别系统需求方案为进一步加强厂区人员管控,杜绝无关人员及违禁物品进入厂区,把好人员、物品入场安全第一关,辅助和提升管理人员工作效率,提高公司安全生产管理技术水平,现申请安装前后门人脸识别系统,需求如下: 一、公司人员出入管理存在问题 目前,公司合作单位人员通过办理出入证卡,由前门内勤员进行核对放行的方式进入厂区。但出入证件卡在实际使用过程中存在以下问题:1.卡面磨损程度严重,无法确认人员真实信息,一般情况下多为依靠内勤人员的印象辨别外来人员,如此一来需要耗费大量人力,无法保证厂区人员识别的准确性;2.人员离职后没有及时办理退卡,仍使用出入证逗留厂区;3.一卡多用、借给他人使用;4.合作单位常以未能及时取到证件卡为由,临时通行等。 二、系统实现功能 1.采用快速人脸检测技术,实行一人一脸录入,支持现场设备或者移动客户端录入。 2.系统验证方式需支持人脸识别及身份证均可认证。 3.可在系统管理设置限定时间内(如3-5天,具体时间由我司管理人员自定义),如人员未进行验证,系统会自动发出相关人员名单信息警报提示或停止其使用。 4.前后门验证设备数据要求放置前门值班室处进行统一管

理,同时实现网络远程管理。5.前后门人行道设置双通道区分进出道,进道只允许进入通行不允许出,出道只允许出通行,不允许进入;人员进厂需进行人脸认证,出口红外线感应开启(明确的通行指示功能)。 6.当断电时,闸门能自动打开,确保人员安全通行。 7.前后门各加装2个摄像头,1台监控主机设备,监控闸门位置,防止人员违规通行或设备破坏,有效调查录像取证。 8.单独配置管理电脑套装(主机加显示器等)。 9.在系统出现故障,或者非法闯入时,系统产生声光报警提示功能。 10.系统管理需考虑预留出口道闸后续可以实现增加人脸识别功能融合使用。 三、系统硬件要求

前沿人脸识别综述解读

人脸识别综述 王军军 (西安交通大学,西安,710086) 摘要:人脸识别已成为多个学科领域的研究热点之一,本文对人脸识别的发展历史、研究现状进行了综述,系统地对目前主流人脸识别方法进行了分类针对人脸识别面临的挑战,着重对近几年来在光照和姿态变化处理方面的研究进展进行了详细沦述,并对未来人脸识别的发展方向进行了展望。 关键词:人脸识别,人脸检测,模式识别 一、引言 人脸识别是近年来模式识别、图像处理、机器视觉、神经网络以及认知科学等领域研究的热点课题之一。所谓人脸识别,是指给定一个场景的静态图像或动态视频,利用存储有若干已知身份的人脸图像的数据库验证和鉴别场景中单个或者多个人的身份[1]。人脸识别按照人脸信息的来源可以分为两类:基于静态人脸图像的识别和基于包含人脸的动态视频信息的识别。因为动态视频信息并不能明显提高人脸识别的性能,因此本文只研究基于静态人脸图像的识别[2]。 作为生物特征识别的一个重要方面,人脸识别在档案管理系统、安全验证系统、信用卡验证、公安系统的罪犯身份识别、银行和海关的监控、人机交互等领域具有广阔的应用前景。与指纹识别、视网膜识别、虹膜识别等[3]技术相比,人脸识别技术在数据采集方面手续比较简单,使用者更容易接受。人脸作为生物特征,虽然唯一性比指纹和虹膜要差[4],在高安全性要求的系统中只能作为辅助手段。然而,对于一般安全性要求的身份验证和鉴别系统[5],人脸识别技术已经足够应用了。 人脸识别研究在二十世纪六七十年代引起了诸多学科领域研究者的浓厚兴趣。进人九十年代后,随着各行业对人脸识别系统的迫切需求,人脸识别研究再次成为热门课题。当前世界各国有许多研究机构在从事这方面的研究,这些研究受到军方、警方以及大公司的高度重视和资助[6]。美国军方还专门组织了人脸识别竞赛以促进人脸识别研究的发展。经过三十多年的研究,人脸识别已经成为图像分析与图像理解领域最成功的应用之一研究人员提出了很多识别方法,建成了一些实验系统,也有一些成功的人脸识别商业软件投人市场。 人脸识别作为模式识别的一种,一般可以分为三个组成部分:从场景中检测并分割人脸;抽取人脸特征;匹配和识别人脸[7]。由于人脸检测已经发展成为一个独立的课题,具有特定的思想和方法,所以本文假定人脸已经被正确检测并从场景中分割出来。 二、人脸识别的方法 目前,人脸识别的方法大致可以分为以下几类:基于几何特征的方法、基于模型的方法、基于统计的方法、基于神经网络的方法和多分类器集成的方法[8]。目前主流的方法有基于几何特征的方法和基于模型的方法。 2.1基于几何特征的方法 文献中记载最早的人脸识别方法就是Bledsoe[9]提出的基于几何特征的方法。该方法以面部特征点之间的距离和比率作为特征,通过最近邻方法来识别人脸,以该方法建立的人脸识别系统是一个半自动系统,面部特征点必须由人手工定位。也正是由于人工的参与,该系统对光照变化和姿态变化不敏感[10]。 侧影[11](Profile)识别也是早期基于几何特征人脸识别的一个重要方法,其基本原理是从人脸的侧影轮廓线上提取特征点,将侧影转化为轮廓曲线,从中提取基准点,根据这些点之

人脸识别系统

人脸识别解决方案浙江大华技术股份 有限公司 解决方案部大华人脸识别解决方案

目录 —

1人脸识别技术 地数据呈现一种爆炸式地增长. 设地二期目标.另一方面公安行业对车辆地结构化信息采集已逐渐趋 方式.人脸识别技术在以上情况下解决视频录像、图片等非结构化信息到人员照片、身份信息等结构化地转变.人脸识别技术相对于其他 具有生物特征唯一性、可测量性、可识别性、终身不变性等特点.但 . . . 脸地分拣、判断及 采集及检测、人脸图像预处理、人脸图像特征提取以及人脸特征数据匹配与识别.人脸图像采集及检测基于人地脸部特征对输入地人脸图像或视频流,首先判断是否存在人脸如果存在人脸则进一步地给出每个脸地位置、大小和各个面部器官地位置信息. 于人脸地图像预处理是基于人脸采集及检测结果通过人脸智能算法

对选择出来地人脸图片进行优化和择优选择挑选当前环境下最优人脸并最终服务于特征提取地过程.其预处理过程主要包括人脸图像地光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等. 人脸图像特征提取人脸识别系统可使用地特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等.人脸特征提取地方法归纳起来分为两大类一种是基于知识地表征方 .基于知识地表征方法主要是根据人脸器官地形状描述以及他们之间地距离特性来获得有助于人脸分类地特征数据其特征分量通常包括特征点间地欧氏距离、曲率和角度等. 对这些局部和它们之间结构关系地几何描述可作为识别人脸地重要 .基于知识地人脸表征主要包括基于几何特征地方法和模板匹配法. 1.1人脸识别解决方案 相似度超过这一阈值则把匹配得到地结果输出.这一过程又分为两类 进行图像匹配对比地过程.

人脸识别系统的功能和优点介绍

现今随着人脸识别系统的不断成熟和完善,它也被人们广泛应用于社会的公共安全防范、刑侦、技侦、网络安全、金融安全等领域。接下来,我们就来具体了解一下。 一、人脸管理功能 1、名单管理。对名单库及库内名单进行管理。支持用户新增、修改、删除名单库,也可以对库内名单进行新增、修改、删除等动作。 2、资源管理。对布控点及布控点内的人脸采集摄像机、抓拍相机进行管理,可添加,修改,删除抓拍机。 3、布控管理。支持添加、编辑、撤销布控任务。 4、任务管理。支持对上传记录进行显示、查询及删除操作。可显示上传图片的记录,并按姓名、证件号和建模状态查询查看建模的黑名单、总数、成功数和失败数。 二、人脸应用功能 1、实时抓拍。基于前端高清摄像机或人脸抓拍相机,通过系统或抓拍相机在实时视频中检测人脸,跟踪人脸运动轨迹,截取到最清晰的一帧进行储存。并

把抓拍人脸照片、经过时间、相机地点信息等记录在路人库中,抓拍到并储存的人脸信息可作为检索数据库使用。 2、实时预警。支持抓拍图片与黑名单库的实时比对。支持预警接收的设置,在预警设置里,可选择预警接收的布控任务和布控范围。 3、历史预警。支持按布控任务、布控范围、布控对象、相似度、时间、报警确认形式进行单一条件或组合条件的查询。 4、人脸查询。支持对动态抓拍库、静态名单库的人脸查询。查询照片支持原图查看,详细信息查看,前后视频预览。 三、人脸识别优势 1、非接触性。人脸识别可以不接触人体,直接通过摄像头在一定距离内识别人的面部特征,达到辨别的目的,从而可以实现更大范围,更多方位的信息采集。 2、非侵扰性。人脸识别的非接触性也为被采集者带来了非侵扰性的体验。一方面对人脸的采集无需被采集者配合也无需工作人员干预。另一方面人脸属于暴露在外的生物特征,对人脸的识别采集更容易被大众接受。 3、硬件基础完善。人脸识别对硬件的需求主要体现在摄像头上,当前普及的智能手机均带有高像素的摄像头。同时,伴随国内视频监控体系建立的逐渐完善,城市中高清晰度摄像头的密度逐渐增加,因此相比需要特定的指纹识别设备等,人脸识别的硬件基础优势更加明显。 4、采集快捷便利。对基础设施的要求比较低和非接触的采集方式缩短了信息采集时间,提供了方便的采集方式。

人脸识别系统解决方案

人脸识别系统解决方案 深圳东南创通智能科技有限公司 2018年6月13日

目录

一、概述 1、背景分析 随着我国城镇化进程的加快,城市人口日趋密集,人口流动性也大大增加,社会犯罪率呈逐年升高的趋势。在传统侦查工作方式中,多采用人工排查的方式,要排查重要场所人员身份,和限制外来人员进入固定区域,不仅费时费力,还可能造成遗漏等情况,排查效率大打折扣,同时给公共安全防范和社会维稳工作带来了极大的困难。 为切实解决重点复杂区域社会治理难题,夯实社会稳定和长治久安的基层基础,及高清技术、智能化技术、网络技术的日趋普及与成熟,我司立足实际需求,针对复杂区域流动人口多、身份难以核查、人员来访不易管理的局面,推出人脸识别系统解决方案。 系统采用先进的人脸识别算法,高速芯片作为识别算法的运行硬件平台,通过出入口的身份证信息采集、实时人脸抓拍和人证比对,从而实现人证合一验证。并针对不同场所实现固定人员刷脸通行,访客人员人证比对登记,解决固定人员每次需要刷证或输入密码的问题,人证比对失败人员则需要安保人员或工作人员人工确认后手动放行。 2、设计原则 系统设计遵循技术先进、深度学习算法、性能稳定、节约成本的原则;本系统设计内容是系统的、全面的、完整的、易用的以及符合人机交互的;方案设计具有科学性、合理性、可操作性。

二、系统介绍 1、系统组成 人脸识别系统由人证识别终端、通道闸、人脸识别管理客户端及平台组成。 人脸识别系统拓扑图 2、人脸识别特性 人脸识别系统核心组成部分主要包括人脸图像采集模块、动态人脸定位、人脸识别预处理、身份查找、身份比对、身份确认、执行机构和记录平台等,并通过一脸通平台判断人员身份及权限,开放相应的区域,保留人脸通行记录事件,并根据相应的权限命令各子系统作出响应,例如固定客户通道自动放行,访客只允许进入指定楼层等。 人脸识别一体化终端使用世界领先的人脸检测、识别算法(FDDB与LFW世界前三),将其运行在高性能嵌入式平台中,配合200W像素的摄像头,终端实现人脸检测、人脸跟踪、与人脸识别,并可在屏幕上呈现相应的反馈。 本产品能够同时识别5个人,光线环境良好的情况下最远能识别5米远的人脸,人脸跟踪与检测耗时20ms左右,人脸特征提取耗时200ms左右,人脸比对耗时左右,对光

2人脸识别发展历史

人脸识别发展历史 1 引言 在我们生存的这个地球上,居住着近65亿人。每个人的面孔都由额头、眉毛、眼睛、鼻子、嘴巴、双颊等少数几个区域组合而成,它们之间的大体位置 关系也是固定的,并且每张脸的大小不过七八寸见方。然而,它们居然就形成 了那么复杂的模式,即使是面容极其相似的双胞胎,其家人通常也能够非常容 易地根据他们面孔上的细微差异将他们区分开来。这使得我们不得不承认这个 世界上找不出两张完全相同的人脸!那么,区分如此众多的不同人脸的“特征”到底是什么?能否设计出具有与人类一样的人脸识别能力的自动机器?这种自动 机器的人脸识别能力是否能够超越人类自身?对这些问题的分析和解答无疑具有重要的理论和应用价值,这正是众多从事自动人脸识别研究的研究人员所面临 的挑战。 本文首先给出了人脸识别的一个一般计算模型,然后简单回顾自动人脸识 别的研究历史,接下来阐述人脸识别的研究现状并介绍几种主流的技术方法, 简单介绍计算所人脸识别研究组的研究进展,最后对上述哲学层面的问题作了 一些简单的探讨。 2 人脸识别发展历史人脸识别是一个被广泛研究着的热门问题,大量的研 究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术方法 等方面的特点大体划分为三个时间阶段,如表1所示。该表格概括了人脸识别 研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三 个阶段的研究进展情况作简单介绍: 第一阶段(1964年~1990年) 这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采 用的主要技术方案是基于人脸几何结构特征(Geometric feature based)的方法。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于 人脸识别问题中。较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈

人脸识别智能监控系统解决处理办法

深圳亿维 人脸检测智能监控系统 技术方案

目录 第1章前言 (1) 1.1 项目背景 (1) 1.2 设计依据 (2) 1.3 设计原则 (2) 1.3.1 先进性 (2) 1.3.2 实用性 (2) 1.3.3 易用性 (3) 1.3.4 扩展性 (3) 1.4 用户需求 (3) 第2章系统方案 (5) 2.1 系统结构 (5) 2.2 系统功能 (7) 2.2.1 营业网点监控功能设计说明 (7) 2.2.1.1 ATM机监控 (7) 2.2.1.2 营业厅大门监控 (7) 2.2.1.3 营业厅监控 (8) 2.2.1.4 监控室 (8) 2.2.2 智能化 (8) 2.2.3 集中管理(联网模式) (9) 2.2.4 网络连接 (9) 2.2.5 人脸采集的现场因素分析 (10) 2.2.5.1 安装方位 (10) 2.2.5.2 镜头焦距 (10) 2.2.5.3 光照 (10) 2.2.5.4 场景复杂程度 (11) 2.2.5.5 人员的姿态和服饰 (12) 2.2.6 扩展与升级 (12) 2.3 系统构成 (13) 2.3.1 亿维锐创智能监控主机 (13) 2.3.1.1 功能特点 (13) 2.3.2 亿维锐创智能视频叠加器 (15) 2.3.2.1 功能及特点 (15) 2.3.2.2 系统参数 (15) 2.3.3 远程管理软件(联网模块) (16) 2.3.3.1 远程运行状态监控 (17) 2.3.3.2 远程录像检索回放 (17) 2.3.3.3 远程人脸检索查看 (17) 2.3.3.4 远程实况监看 (17) 2.3.3.5 系统维护 (18) 2.3.3.6 典型应用 (18) 2.4 配置选型 (18) 2.4.1 主要硬件 (18)

人脸识别系统技术方案

智能人脸识别系统 技 术 方 案 2018年3月

目录 1智能人像比对平台 1.1系统结构 建立标准统一的共享人像库,并在此基础上,部署完整的人像比对判定平台。该系统由人像标准化采集系统,人像数据库子系统、基础比对服务平台、人脸识别应用平台4大部分组成,支持前端人像采集、静态人脸查询、移动警务通人脸识别一体化服务。 该平台支持统一人像数据交换接口,兼容大多数人像数据交换标准。统一的安全标准接口,兼容PKI密钥,网络加密狗等常见的安全标准接口。系统总体结构如下: 系统采用B/S架构,以浏览器方式进行人像预处理、人像比对、结果查询、用户管理、系统运行状态查询等管理操作,减少了系统后台管理、人口治安及其他警种成百上千终端安装和维护难度,方便未来多警种共享应用。系统可提供标准的WebService接口,将业务系统获取的人像照片与相关人像库进行比对。 1.2设计原则 本着统一标准、分级管理、资源共享、无缝对接的设计原则,以人像比对算法为核心,整合多区域现有资源,实现准确识别、快速反映,覆盖全面的智能人像识别应用平台。 1.2.1先进性 该平台算法由中国科学院自动化研究所研究员、国际知名人脸识别专家、IEEE院士李子青教授领衔研发,是基于中国自主知识产权,针对公安各警种业务特点专门研发的综合智能人像识别应用系统平台。

1.2.2开放性 人像采集与比对平台具有统一的服务接口,兼容公安部拟指定的统一人像数据交换标准草案。统一的安全验证,兼容PKI密钥,身份认证等常见的安全验证机制。 1.2.3扩展性 整个平台系统接口分为系统级别之间的接口与单个系统开放出来的服务接口组成。系统可“随需而变,以不变应万变”提供多种可靠服务功能。 1、系统级接口 系统级接口指的是不同地区部署的人像辅助识别平台之间的接口,主要有两种访问方式第一种采用页面查询的方式,以只查询方式进行访问,通过系统提供的Guest权限进行页面访问。适用于不同平台之间快速的调阅查询。第二种通过请求服务与直接调阅的形式进行数据库的查询,系统预留标准数据库查询接口,以市,县二层结构进行数据库间的查询调用,采用本系统建立的数据中心,纵向上进行直接的调用,高层中心保留下级中心的数据库信息索引。即市级中心直接查询市级与县级中心,市级中心直接查询县级中心。横向上以请求服务形式进行调用,横向系统间不保留对方的数据库信息索引,而是通过请求服务方式进行。 2、服务接口 服务接口适用于该系统与其他业务应用系统做二次开发或者集成用接口,包括所有系统级接口与平台应用接口。 人像基础比对服务平台通过WebService进行与其他系统的交换机制,通过标准的XML或者Jason格式文件进行数据交换,兼容《GA/T 922.2-2011标准第二部分人像数据采集标准》中的数据格式交换。 服务接口主要以WebService与ActiveX等方式提供。满足各业务系统二次开发,集成使用。 服务接口说明

人脸识别基础知识

人脸识别 发展历史 人脸识别系统得研究始于20世纪60年代,80年代后随着计算机技术与光学成像技术得发展得到提高,而真正进入初级得应用阶段则在90年后期,并且以美国、德国与日本得技术实现为主;人脸识别系统成功得关键在于就是否拥有尖端得核心算法,并使识别结果具有实用化得识别率与识别速度;“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理得理论与实现,就是生物特征识别得最新应用,其核心技术得实现,展现了弱人工智能向强人工智能得转化。[1] 技术特点 传统得人脸识别技术主要就是基于可见光图像得人脸识别,这也就是人们熟悉得识别方式,已有30多年得研发历史。但这种方式有着难以克服得缺陷,尤其在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统得需要。解决光照问题得方案有三维图像人脸识别与热成像人脸识别。但这两种技术还远不成熟,识别效果不尽人意。 迅速发展起来得一种解决方案就是基于主动近红外图像得多光源人脸识别技术.它可以克服光线变化得影响,已经取得了卓越得识别性能,在精度、稳定性与速度方面得整体系统性能超过三维图像人脸识别。这项技术在近两三年发展迅速,使人脸识别技术逐渐走向实用化。 人脸与人体得其它生物特征(指纹、虹膜等)一样与生俱来,它得唯一性与不易被复制得良好特性为身份鉴别提供了必要得前提,与其它类型得生物识别比较人脸识别具有如下特点: 非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识得状态下就可获取人脸图像,这样得取样方式没有“强制性"; 非接触性:用户不需要与设备直接接触就能获取人脸图像;

人脸识别系统

#include #include #include #include #include using namespace std; using namespace cv; int main(int argc, const char** argv) { //create the cascade classifier object used for the face detection CascadeClassifier face_cascade; //use the haarcascade_frontalface_alt.xml library face_cascade.load("haarcascade_frontalface_alt2.xml"); const char* imagename = "test3.jpeg"; //从文件中读入图像 Mat img = imread(imagename); //如果读入图像失败 if (img.empty()) { fprintf(stderr, "Can not load image %s\n", imagename); return -1; } //setup image files used in the process Mat grayscaleFrame; //convert captured image to gray scale and equalize cvtColor(img, grayscaleFrame, CV_BGR2GRAY); equalizeHist(grayscaleFrame, grayscaleFrame); //create a vector array to store the face found std::vector faces; //find faces and store them in the vector array face_cascade.detectMultiScale(grayscaleFrame, faces, 1.1, 3, CV_HAAR_FIND_BIGGEST_OBJECT | CV_HAAR_SCALE_IMAGE, Size(30, 30)); //draw a rectangle for all found faces in the vector array on the original image for (int i = 0; i < faces.size(); i++) {

相关文档
最新文档