Matlab实验报告七(最小二乘拟合曲线拟合)

Matlab实验报告七(最小二乘拟合曲线拟合)
Matlab实验报告七(最小二乘拟合曲线拟合)

用matlab实现最小二乘递推算法辨识系统参数

用matlab实现最小二乘递推算法辨识系统参 数 自动化系统仿真实验室指导教师: 学生姓名班级计082-2 班学号撰写时间: 全文结束》》-3-1 成绩评定: 一.设计目的 1、学会用Matlab实现最小二乘法辨识系统参数。 2、进一步熟悉Matlab的界面及基本操作; 3、了解并掌握Matlab中一些函数的作用与使用;二.设计要求最小二乘递推算法辨识系统参数,利用matlab编程实现,设初始参数为零。z(k)-1、5*z(k-1)+0、7*z(k-2)=1*u(k-1)+0、5*u(k-2)+v(k); 选择如下形式的辨识模型:z(k)+a1*z(k- 1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k);三.实验程序 m=3;N=100;uk=rand(1,N);for i=1:Nuk(i)=uk(i)*(-1)^(i-1);endyk=zeros(1,N); for k=3:N yk(k)=1、5*yk(k-1)-0、 7*yk(k-2)+uk(k-1)+0、5*uk(k-2); end%j=100;kn=0;%y=yk(m:j);%psi=[yk(m-1:j-1);yk(m-2:j-2);uk(m-1:j-1);uk(m-2:j- 2)];%pn=inv(psi*psi);%theta=(inv(psi*psi)*psi*y);theta=[0 ;0;0;0];pn=10^6*eye(4);for t=3:Nps=([yk(t-1);yk(t-

2);uk(t-1);uk(t-2)]);pn=pn- pn*ps*ps*pn*(inv(1+ps*pn*ps));theta=theta+pn*ps*(yk(t)-ps*theta);thet=theta;a1=thet(1);a2=thet(2);b1=thet(3);b2= thet(4); a1t(t)=a1;a2t(t)=a2;b1t(t)=b1;b2t(t)=b2;endt=1:N;plot(t,a 1t(t),t,a2t(t),t,b1t(t),t,b2t(t));text(20,1、 47,a1);text(20,-0、67,a2);text(20,0、97,b1);text(20,0、47,b2);四.设计实验结果及分析实验结果图:仿真结果表明,大约递推到第步时,参数辨识的结果基本到稳态状态,即a1=1、5999,b1=1,c1=0、5,d1=-0、7。五、设计感受这周的课程设计告一段落了,时间短暂,意义重大。通过这次次练习的机会,重新把matlab课本看了一遍,另外学习了系统辨识的有关内容,收获颇丰。对matlab的使用更加纯熟,也锻炼了自己在课本中搜索信息和知识的能力。在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。同时我也进一步认识了matlab软件强大的功能。在以后的学习和工作中必定有很大的用处。

MATLAB曲线拟合的应用

MATLAB曲线拟合的应用 王磊品吴东 新疆泒犨泰克石油科技有限公司新疆油田公司准东采油厂信息所 摘要:1.阐述MATLAB数学分析软件的基本功能; 2.对MATLAB在生产数据分析中的应用进行了研究,指出曲线拟合的基本方法; 3.以实例阐明MATLAB与行业生产数据结合对生产数据进行分析的原理。 关键词:MATLAB;曲线拟合;插值 1.引言 在生产开发过程中,复杂的生产数据之间或多或少的存在着这样或者那样的联系,如何利用现今普及的计算机以及网络资源在最短的时间内找到这个联系,以指导我们的生产开发,这对于行业科研人员来说无疑是一个最为关心的问题。MATLAB矩阵分析软件,自推出以来,已成为国际公认的最优秀的数学软件之一,其范围涵盖了工业、电子、医疗以及建筑等各个领域,以其强大的科学计算功能使众多科研机构纷纷采用。 为此,本文从介绍MATLAB软件开始,以实例讲述如何使用MATLAB对生产开发数据进行计算与分析,从而达到高效、科学指导生产的目的。 2.MATLAB简介 MATLAB是MathWorks公司于1982年推出的一套高性能的数值计算和可视化数学软件。由于使用编程运算与人进行科学计算的思路和表达方式完全一致,所以不象学习其它高级语言那样难于掌握,用Matlab编写程序犹如在演算纸上排列出公式与求解问题,所以又被称为演算纸式科学算法语言。在这个环境下,对所要求解的问题,用户只需简单地列出数学表达式,其结果便以数值或图形方式显示出来。 MATLAB的含义是矩阵实验室(MATRIX LABORATORY),主要用于方便矩阵的存取,其基本元素是无须定义维数的矩阵。自问世以来, 就是以数值计算称雄。MATLAB进行数值计算的基本单位是复数数组(或称阵列),这使得MATLAB高度“向量化”。经过十几年的完善和扩充,现已发展成为线性代数课程的标准工具。由于它不需定义数组的维数,并给出矩阵函数、特殊矩阵专门的库函数,使之在求解诸如信号处理、建模、系统识别、控制、优化等领域的问题时,显得大为简捷、高效、方便,这是其它高级语言所不能比拟的。美国许多大学的实验室都安装有供学习和研究之用。 MATLAB中包括了被称作工具箱(TOOLBOX)的各类应用问题的求解工具。工具箱实际上是对MATLAB进行扩展应用的一系列 MATLAB函数(称为M文件),它可用来求解各类学科的问题,包括信号处理、图象处理、控制系统辨识、神经网络等。随着 MATLAB版本的不断升

最小二乘法数值分析实验报告

最小二乘法数值分析实验报告数学与信息工程学院实课程名称:实验室:实验台号:班级:姓名:实验日期:验报告数值分析2012 年 4 月 13 日数值分析实验报告五最小二乘法一、题目设有如下数据用三次多项式拟合这组数据,并绘出图形二、方法最小二乘法三、程序M文件: syms x f;xx=input(‘请输入插值节点as [x1,x2...]\n’);ff=input(‘请输入插值_ __________________ ___________________ ___________________ ___________________实验一MATLAB在数值分析中的应用插值与拟合是来源于实际、又广泛应用于实际的两种重要方法随着计算机的不断发展及计算水平的不断提高,它们已在国民生产和科学研究等方面扮演着越来越重要的角色下面对插值中分段线性插值、拟合中的最为重要的最小二乘法拟合加以介绍分段线性插值所谓分段线性插值就是通过插值点用折线段连接起来逼近原曲线,这也是计算机绘制图形的基本原理实现分段线性插值不需编制函数程序,MATLAB自身提供了内部函数interp1其主要用法如下:interp1(x,y,xi) 一维插值◆yi=interp1(x,y,xi)对一组点(x,y) 进行插值,计算插值点xi的函数值x为节点向量值,y为对应的节点函数值如果y

为矩阵,则插值对y 的每一列进行,若y 的维数超出x 或xi 的维数,则返回NaN ◆ yi=interp1(y,xi)此格式默认x=1:n ,n为向量y的元素个数值,或等于矩阵y的size(y,1) ◆ yi=interp1(x,y,xi,’method’)method用来指定插值的算法默认为线性算法其值常用的可以是如下的字符串nearest 线性最近项插值linear线性插值spline 三次样条插值贵州师范大学数学与计算机科学学院学生实验报告1. 对函数f(x)?,哪一种曲线拟合较好?为什么?能找出更好的拟合曲线吗?七、总结1、从图像可以看出用lagrange插值函数拟合数据中间拟合的很好,但两边与原函数图象相比波动太大,逼近效果很差,出现所谓的Runge现象2、从图像可以看出用最小二乘法去拟合较少的数据点,曲线拟合比直线拟合得好,高次的会比低次的拟合得好3.一般情形高次插值比低次插值精度高,但是插值次数太高也不一定能提高精度.八、附录1、M文件:function cy=Lagrange(x,y,n,cx)m=length(cx);cy=zeros(1,m);for k=1:n+1t=ones(1,m);for j=1:n+1if j~=kt=t.*(cx-x(j))./(x(k)-x(j));endendcy=cy+y(k).*t ;end>> x=-5::5;>> y=1./(x.+1);>> plot(x,y)>> n=10;>> x0=-5:10/n:5;>> y0=1./(1+x0.);>> cx=-5::5;>> cy=Lagrange(x0,y0,n,cx);>> hold on>> plot(cx,cy)e1 =xxxx大学数值分析实验报告题目:学

Matlab最小二乘法拟合笔记

最小二乘法拟合 在科学实验的统计方法研究中,往往要从一组实验数据中寻找出自变量x 和因变量y之间的函数关系y=f(x) 。由于观测数据往往不够准确,因此并 不要求y=f(x)经过所有的点,而只要求在给定点上误差 按照某种标准达到最小,通常采用欧氏范数作为误差量度的标准。这就是所谓的最小二乘法。在MATLAB中实现最小二乘法拟合通常采用polyfit函数进行。 函数polyfit是指用一个多项式函数来对已知数据进行拟合,我们以下列数据为例介绍这个函数的用法: >> x=0:0.1:1; >> y=[ -0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2 ] 为了使用polyfit,首先必须指定我们希望以多少阶多项式对以上数据进行拟合,如果我们指定一阶多项式,结果为线性近似,通常称为线性回归。我们选择二阶多项式进行拟合。 >> P= polyfit (x, y, 2) P= -9.8108 20.1293 -0.0317 函数返回的是一个多项式系数的行向量,写成多项式形式为: 为了比较拟合结果,我们绘制两者的图形: >> xi=linspace (0, 1, 100); %绘图的X-轴数据。 >> Z=polyval (p, xi); %得到多项式在数据点处的值。 当然,我们也可以选择更高幂次的多项式进行拟合,如10阶: >> p=polyfit (x, y, 10); >> xi=linspace (0, 1,100);

>> z=ployval (p, xi); 读者可以上机绘图进行比较,曲线在数据点附近更加接近数据点的测量值了,但从整体上来说,曲线波动比较大,并不一定适合实际使用的需要,所以在进行高阶曲线拟合时,“越高越好”的观点不一定对的。

MATLAB实验报告

MATLAB程序设计语言 实 验 报 告 专业及班级:电子信息工程 姓名:王伟 学号:1107050322 日期 2013年6月20日

实验一 MATLAB 的基本使用 【一】 实验目的 1.了解MATALB 程序设计语言的基本特点,熟悉MATLAB 软件的运行环境; 2.掌握变量、函数等有关概念,掌握M 文件的创建、保存、打开的方法,初步具备将一般数学问题转化为对应计算机模型处理的能力; 3.掌握二维图形绘制的方法,并能用这些方法实现计算结果的可视化。 【二】 MATLAB 的基础知识 通过本课程的学习,应基本掌握以下的基础知识: 一. MATLAB 简介 二. MATLAB 的启动和退出 三. MATLAB 使用界面简介 四. 帮助信息的获取 五. MATLAB 的数值计算功能 六. 程序流程控制 七. M 文件 八. 函数文件 九. MATLAB 的可视化 【三】上机练习 1. 仔细预习第二部分内容,关于MATLAB 的基础知识。 2. 熟悉MATLAB 环境,将第二部分所有的例子在计算机上练习一遍 3. 已知矩阵???? ??????=??????????=123456789,987654321B A 。求A*B ,A .* B ,比较二者结果是否相同。并利用MATLAB 的内部函数求矩阵A 的大小、元素和、长度以 及最大值。 程序代码: >> A=[1 2 3;4 5 6;7 8 9]; >> B=[9 8 7;6 5 4;3 2 1]; >> A*B ans =

30 24 18 84 69 54 138 114 90 >> A.*B ans = 9 16 21 24 25 24 21 16 9 两者结果不同 >> [m,n]=size(A) m = 3 n = 3 >> b=sum(A) b = 12 15 18 >> a=length(A) a = 3 >>max(A) ans =

matlab曲线拟合实例

曲线拟合 求二次拟合多项式 解:(一)最小二乘法MA TLAB编程: function p=least_squar(x,y,n,w) if nargin<4 w=1 end if nargin<3 n=1 end m=length(y); X=ones(1,m) if m<=n error end for i=1:n X=[(x.^i);X] end A=X*diag(w)*X';b=X*(w.*y)';p=(A\b)' 输入: x=[1 3 5 6 7 8 9 10]; y=[10 5 2 1 1 2 3 4] p=least_squar(x,y,2) 运行得: p = 0.2763 -3.6800 13.4320 故所求多项式为:s(x)=13.432-3.68x+0.27632x (二)正交多项式拟合MATLAB编程: function p=least_squar2(x,y,n,w) if nargin<4 w=1; end if nargin<3 n=1; end m=length(x); X=ones(1,m); if m<=n error end for i=1:n X=[x.^i;X]; end A=zeros(1,n+1);

A(1,n+1)=1; a=zeros(1,n+1); z=zeros(1,n+1); for i=1:n phi=A(i,:)*X;t=sum(w.*phi.*phi); b=-sum(w.*phi.*x.*phi)/t a(i)=sum(w.*y.*phi)/t; if i==1 c=0;else c=-t/t1; end t1=t for j=1:n z(j)=A(i,j+1); end z(n+1)=0 if i==1 z=z+b*A(i,:); else z=z+b*A(i,:)+c*A(i-1,:); end A=[A;z]; end phi=A(n+1,:)*X;t=sum(w.*phi.*phi); a(n+1)=sum(w.*y.*phi)/t; p=a*A; 输入: x=[1 3 5 6 7 8 9 10]; y=[10 5 2 1 1 2 3 4]; p=least_squar2(x,y,2) 运行得: b = -6.1250 t1 = 8 z = 0 1 0 b = -4.9328 t1 = 64.8750 z = 1.0000 -6.1250 0 p = 0.2763 -3.6800 13.4320 故所求多项式为:s(x)=13.432-3.68x+0.27632x

最小二乘拟合实验报告

实验名称: 最小二乘拟合 1 引言 在科学实验和生产实践中,经常要从一组实验数据(,)(1,2,,)i i x y i m =出发, 寻求函数y=f (x )的一个近似表达式y=φ(x),称为经验公式,从几何上来看,这就是一个曲线拟 合的问题。 多项式的插值虽然在一定程度上解决了由函数表求函数近似表达式的问题,但用它来解决这里的问题,是有明显的缺陷的。首先,由实验提供的数据往往有测试误差。如果要求近似曲线y=φ(x)严格地通过所给的每个数据点(,)i i x y ,就会使曲线保留原来的测试误差,因此当个别数据的误差较大的时候,插值的效果是不理想的。其次,当实验数据较多时,用插值法得到的近似表达式,明显缺乏实用价值。在实验中,我们常常用最小二乘法来解决这类问题。 定义()i i i x y δ?=-为拟合函数在i x 处的残差。为了是近似曲线能尽量反映所给数据点的变化趋势,我们要求||i δ尽可能小。在最小二乘法中,我们选取()x ?,使得偏差平方和最小,即 2 2 1 1 [()]min m m i i i i i x y δ?=== -=∑∑,这就是最小二乘法的原理。 2 实验目的和要求 运用matlab 编写.m 文件,要求用最小二乘法确定参数。 以下一组数据中x 与y 之间存在着bx y ae =的关系,利用最小二乘法确定式中的参数a 和b ,并计算相应的军方误差与最大偏差。数据如下: 3 算法原理与流程图 (1) 原理 最小二乘是要求对于给定数据列(,)(1,2, ,)i i x y i m =,要求存在某个函数类 01{(),(),()}()n x x x n m ???Φ=<中寻求一个函数: ** **0011()()()()n n x a x a x a x ????=++ +,使得*()x ?满足

MATLAB实验报告实验二

实验二 MATLAB矩阵及其运算 学号:3121003104 姓名:刘艳琳专业:电子信息工程1班日期:2014.9.20 一实验目的 1、掌握Matlab数据对象的特点以及数据的运算规则。 2、掌握Matlab中建立矩阵的方法以及矩阵处理的方法。 3、掌握Matlab分析的方法。 二实验环境 PC_Windows 7旗舰版、MATLAB 7.10 三实验内容 4、1. (1)新建一个.m文件,验证书本第15页例2-1; (2)用命令方式查看和保存代码中的所有变量;

(3)用命令方式删除所有变量; (4)用命令方式载入变量z。 2. 将x=[4/3 1.2345e-6]在以下格式符下输出:短格式、短格式e方式、长格式、长格式e方式、银行格式、十六进制格式、+格式。 短格式 短格式e 长格式

长格式e方式 银行格式 十六进制格式 3.计算下列表达式的值 (1)w=sqrt(2)*(1+0.34245*10^(-6)) (2)x=(2*pi*a+(b+c)/(pi+a*b*c)-exp(2))/(tan(b+c)+a) a=3.5;b=5;c=-9.8; (3)y=2*pi*a^2*((1-pi/4)*b-(0.8333-pi/4)*a) a=3.32;b=-7.9; (4)z=0.5*exp(2*t)*log(t+sqrt(1+t*t)) t=[2,1-3i;5,-0.65];

4. 已知A=[1 2 3 4 5 ;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20],对其进行如下操作:(1)输出A在[ 7, 10]范围内的全部元素; (2)取出A的第2,4行和第1,3,5列; (3)对矩阵A变换成向量B,B=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]; (4)删除A的第2,3,4行元素; (1) (2)

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程 最小二乘法曲线拟合的应用实例 班级: 姓名: 学号: 指导教师:

一,实验目的 通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法 二,实验内容 1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。要求: 对该数据进行合理的最小二乘法数据拟合得下列数据。 x=[10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 2 0000 21000 22000 23000]; y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 65.8 87.5 137.8 174. 2] 三,程序如下 X=10000:1000:23000; Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,65.8,87.5,137.8,17 4.2] dy=1.5; %拟合数据y的步长for n=1:6 [a,S]=polyfit(x,y,n); A{n}=a;

da=dy*sqrt(diag(inv(S.R′*S.R))); Da{n}=da′; freedom(n)=S.df; [ye,delta]=polyval(a,x,S); YE{n}=ye; D{n}=delta; chi2(n)=sum((y-ye).^2)/dy/dy; end Q=1-chi2cdf(chi2,freedom); %判断拟合良好度 clf,shg subplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’) subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’) nod=input(‘根据图形选择适当的阶次(请输入数值)’); elf,shg, plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’); axis([8000,23000,20.0,174.2]);hold on errorbar(x,YE{nod},D{nod},‘r’);hold off title(‘较适当阶次的拟合’) text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

matlab实验二

本科实验报告 课程名称:Matlab电子信息应用实验项目:矩阵和数组的操作 实验地点:电机馆跨越机房 专业班级:学号: 学生姓名: 指导教师: 2014年3月26 日

一、实验目的 1.掌握矩阵和数组的一般操作,包括创建、保存、修改和调用等。 2.学习矩阵和数组的加减运算与乘法。 3.掌握对数组中元素的寻访与赋值,会对数组进行一般的操作。 二、预备知识 1.常用的产生特殊矩阵的函数 ?eye(m,n) 单位阵 ?rand(m,n) 随机矩阵 ?randn(m,n) 正态分布的随机矩阵 ?zeros(m,n) 零矩阵 ?ones(m,n) 全部元素都为1的矩阵 ?compan(A) 矩阵A的伴随矩阵 ?bankel(m,n) n维Hankel矩阵 ?invhilb(n) n维逆Hilbert矩阵 ?magic(n) n维Magic矩阵 ?toeplitz(m,n) Toeplitz矩阵 ?wilkinson(n) n维Wilkinson特征值测试矩阵 ?handamard(n) n维Handamard矩阵 ?hilb(n) n维Hilbert矩阵 ?kron(A,B) Kronecker张量积 ?pascal(n) n维Pascal矩阵 ?vander(A) 由矩阵A产生Vandermonde矩阵 2.通过矩阵的结构变换,获得新矩阵 表2 矩阵结构变化产生新矩阵 L=tril(A) L主对角线及以下元素取矩阵A 的元素,其余为0 L=tril(A,k) L及第k条对角线及以下元素取矩阵A的元素,其余为 U=triu(A) U主对角线及以上的元素取矩阵A的元素,其余为0 U=triu(A,k) U第k条对角线及以上的元素取矩阵A的元素,其余为

曲线拟合的最小二乘法matlab举例

曲线拟合的最小二乘法 学院:光电信息学院 姓名:赵海峰 学号: 200820501001 一、曲线拟合的最小二乘法原理: 由已知的离散数据点选择与实验点误差最小的曲线 S( x) a 0 0 ( x) a 1 1(x) ... a n n ( x) 称为曲线拟合的最小二乘法。 若记 m ( j , k ) i (x i ) j (x i ) k (x i ), 0 m (f , k ) i0 (x i )f (x i ) k (x i ) d k n 上式可改写为 ( k , jo j )a j d k ; (k 0,1,..., n) 这个方程成为法方程,可写成距阵 形式 Ga d 其中 a (a 0,a 1,...,a n )T ,d (d 0,d 1,...,d n )T , 、 数值实例: 下面给定的是乌鲁木齐最近 1个月早晨 7:00左右(新疆时间 )的天气预报所得 到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。 它的平方误差为: || 2 | 2 ] x ( f

(2008 年 10 月 26~11 月 26) F 面应用Matlab 编程对上述数据进行最小二乘拟合 三、Matlab 程序代码: x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1]; %三次多项式拟合% %九次多项式拟合% %十五次多项式拟合% %三次多项式误差平方和 % %九次次多项式误差平方和 % %十五次多项式误差平方和 % %用*画出x,y 图像% %用红色线画出x,b1图像% %用绿色线画出x,b2图像% %用蓝色o 线画出x,b3图像% 四、数值结果: 不同次数多项式拟和误差平方和为: r1 = 67.6659 r2 = 20.1060 r3 = 3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和 拟和曲线如下图: a 仁polyfit(x,y,3) a2= polyfit(x,y,9) a3= polyfit(x,y,15) b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).A 2) r2= sum((y-b2).A2) r3= sum((y-b3).A2) plot(x,y,'*') hold on plot(x,b1, 'r') hold on plot(x,b2, 'g') hold on plot(x,b3, 'b:o')

实验3__曲线拟合的最小二乘法

《计算方法》实验报告 学院:计算机学院 专业:计算机科学与技术 指导教师:JW-++1 爨莹

班级学号:201207010229 姓名:图尔荪托合提

实验三曲线拟合的最小二乘法 1、实验目的: 在科学研究与工程技术中,常常需要从一组测量数据出发,寻找变量的函数关 系的近似表达式,使得逼近函数从总体上与已知函数的偏差按某种方法度量能达到最小而又不一定过全部的点。这是工程中引入最小二曲线拟合法的出发点。充分掌握:1.最小二乘法的基本原理;2.用多项式作最小二乘曲线拟合原理的基础上, 通过编程实现一组实验数据的最小二乘拟合曲线。 2、实验要求: 1) 认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方 案和算法; 2) 编写上机实验程序,作好上机前的准备工作; 3) 上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结 果); 4) 分析和解释计算结果; 5) 按照要求书写实验报告; 3、实验内容: 1) 给定数据如下: x :0.15,0.4,0.6 ,1.01 ,1.5 ,2.2 ,2.4,2.7,2.9,3.5 ,3.8 , 4.4,4.6 , 5.1 , 6.6, 7.6; y :4.4964,5.1284,5.6931 ,6.2884 ,7.0989 ,7.5507 ,7.5106, 8.0756, 7.8708,8.2403 ,8.5303 ,8.7394,8.9981 ,9.1450 ,9.5070,9.9115;试作出幂函数拟合数据。 2) 已知一组数据: x :0,0.1,0.2 ,0.3 ,0.4 ,0.5 ,0.6,0.7,0.8,0.9 ,1 y :-0.447,1.978,3.28 ,6.16 ,7.08 ,7.34 ,7.66,9.56,9.48,9.30 ,11.2; 试用最小二乘法求多项式函数,使与此组数据相拟合。

实验二 MATLAB程序设计 含实验报告

实验二 MATLAB 程序设计 一、 实验目的 1.掌握利用if 语句实现选择结构的方法。 2.掌握利用switch 语句实现多分支选择结构的方法。 3.掌握利用for 语句实现循环结构的方法。 4.掌握利用while 语句实现循环结构的方法。 5.掌握MATLAB 函数的编写及调试方法。 二、 实验的设备及条件 计算机一台(带有MATLAB7.0以上的软件环境)。 M 文件的编写: 启动MATLAB 后,点击File|New|M-File ,启动MATLAB 的程序编辑及调试器(Editor/Debugger ),编辑以下程序,点击File|Save 保存程序,注意文件名最好用英文字符。点击Debug|Run 运行程序,在命令窗口查看运行结果,程序如有错误则改正 三、 实验内容 1.编写求解方程02=++c bx ax 的根的函数(这个方程不一定为一元二次方程,因 c b a 、、的不同取值而定) ,这里应根据c b a 、、的不同取值分别处理,有输入参数提示,当0~,0,0===c b a 时应提示“为恒不等式!”。并输入几组典型值加以检验。 (提示:提示输入使用input 函数) 2.输入一个百分制成绩,要求输出成绩等级A+、A 、B 、C 、D 、E 。其中100分为A+,90分~99分为A ,80分~89分为B ,70分~79分为C ,60分~69分为D ,60分以下为E 。 要求:(1)用switch 语句实现。 (2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。 (提示:注意单元矩阵的用法) 3.数论中一个有趣的题目:任意一个正整数,若为偶数,则用2除之,若为奇数,则与3相乘再加上1。重复此过程,最终得到的结果为1。如: 2?1 3?10?5?16?8?4?2?1 6?3?10?5?16?8?4?2?1 运行下面的程序,按程序提示输入n=1,2,3,5,7等数来验证这一结论。 请为关键的Matlab 语句填写上相关注释,说明其含义或功能。 4. 的值,调用该函数后,

matlab 最小二乘最优问题

最小二乘最优问题(转) 默认分类2009-05-21 14:56:33 阅读62 评论1 字号:大中小 1.约束线性最小二乘 有约束线性最小二乘的标准形式为 sub.to 其中:C、A、Aeq 为矩阵;d、b、beq、lb、ub、x 是向量。 在MA TLAB5.x 中,约束线性最小二乘用函数conls 求解。 函数lsqlin 格式x = lsqlin(C,d,A,b) %求在约束条件下,方程Cx = d 的最小二乘解x。 x = lsqlin(C,d,A,b,Aeq,beq) %Aeq、beq 满足等式约束,若没有不等式约束,则设A=[ ],b=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) %lb、ub 满足,若没有等式约束,则Aeq=[ ],beq=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) % x0 为初始解向量,若x 没有界,则lb=[ ],ub=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定优化参 数 [x,resnorm] = lsqlin(...) % resnorm=norm(C*x-d)^2,即2-范数。 [x,resnorm,residual] = lsqlin(...) %residual=C*x-d,即残差。 [x,resnorm,residual,exitflag] = lsqlin(...) %exitflag 为终止迭代的条 件 [x,resnorm,residual,exitflag,output] = lsqlin(...) % output 表示输出

MATLAB中简单的数据拟合方法与应用实例①

MATLAB中简单的数据拟合方法与应用实例 仅供努力学习matlab的同学们参考参考,查阅了M多资料,总结了以下方法 按步骤做能够基本学会matlab曲线拟合的 1.1数据拟合方法 1.1.1多项式拟合 1.多项式拟合命令 polyfit(X,Y,N):多项式拟合,返回降幂排列的多项式系数。 Polyval(P,xi):计算多项式的值。 其中,X,Y是数据点的值;N是拟合的最高次幂;P是返回的多项式系数;xi是要求的横坐标 拟合命令如下: x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; P=polyfit(x,y,3); xi=0:.2:10; yi=polyval(P,xi); plot(xi,yi,x,y,'r*'); 拟合曲线与原始数据如图1-1 图1-1 2图形窗口的多项式拟合 1)先画出数据点如图1-2 x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; plot(x,y,'r*');

图1-2 2)在图形窗口单击Tools—Basic Fitting,如图1-3勾选. 图1-3 图1-3右方分别是线性、二阶、三阶对数据进行多项式拟合。下面的柱状图显示残差,可以看出,三阶多项式的拟合效果是最好的。 1.1.2指定函数拟合 已知M组数据点和对应的函数形式f t (t)=acos(kt)e X Y 编写M文件:

syms t x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6;14.4;15]; y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;-0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02]; f=fittype('a*cos(k*t)*exp(w*t)','independent','t','coefficients',{'a','k','w'}); cfun=fit(x,y,f) xi=0:.1:20; yi=cfun(xi); plot(x,y,'r*',xi,yi,'b-'); 图1-4 运行程序,在命令窗口可达到以下运行结果,图像如图1-4 Warning: Start point not provided, choosing random start point. > In fit>handlewarn at 715 In fit at 315 In Untitled2 at 5 cfun = General model: cfun(t) = a*cos(k*t)*exp(w*t) Coefficients (with 95% confidence bounds): a = 0.9987 ( 0.9835, 1.014) k = 1.001 (0.9958, 1.006) w = -0.2066 (-0.2131, -0.2002) 从结果可以看出,拟合的曲线为: (0.2066) ()0.9987cos(1.001)*t f t t e- =。拟 合曲线给出了数据大致趋势,并给出了各参数的置信区间。

最小二乘法的多项式拟合matlab实现

最小二乘法的多项式拟 合m a t l a b实现 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

用最小二乘法进行多项式拟合(matlab 实现) 西安交通大学 徐彬华 算法分析: 对给定数据 (i=0 ,1,2,3,..,m),一共m+1个数据点,取多项式P(x),使 函数P(x)称为拟合函数或最小二乘解,令似的 使得 其中,a0,a1,a2,…,an 为待求未知数,n 为多项式的最高次幂,由此,该问题化为求 的极值问题。由多元函数求极值的必要条件: j=0,1,…,n 得到: j=0,1,…,n 这是一个关于a0,a1,a2,…,an 的线性方程组,用矩阵表示如下:

因此,只要给出数据点 及其个数m ,再给出所要拟合的参数n ,则即可求出未知数矩阵(a0,a1,a2,…,an ) 试验题1 编制以函数 为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi ≡1) x i y i 总共有7个数据点,令m=6 第一步:画出已知数据的的散点图,确定拟合参数n; x=::;y=[,,,,,,]; plot(x,y,'*') xlabel 'x 轴' ylabel 'y 轴' title '散点图' hold on {} n k k x 0=

因此将拟合参数n设为3. 第二步:计算矩阵 A= 注意到该矩阵为(n+1)*(n+1)矩阵, 多项式的幂跟行、列坐标(i,j)的关系为i+j-2,由此可建立循环来求矩阵的各个元素,程序如下: m=6;n=3; A=zeros(n+1); for j=1:n+1 for i=1:n+1 for k=1:m+1 A(j,i)=A(j,i)+x(k)^(j+i-2) end end

实验二MATLAB程序设计含实验报告

实验二M A T L A B程序设计含实验报告 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验二 MATLAB 程序设计 一、 实验目的 1.掌握利用if 语句实现选择结构的方法。 2.掌握利用switch 语句实现多分支选择结构的方法。 3.掌握利用for 语句实现循环结构的方法。 4.掌握利用while 语句实现循环结构的方法。 5.掌握MATLAB 函数的编写及调试方法。 二、 实验的设备及条件 计算机一台(带有以上的软件环境)。 M 文件的编写: 启动MATLAB 后,点击File|New|M-File ,启动MATLAB 的程序编辑及调试器 (Editor/Debugger ),编辑以下程序,点击File|Save 保存程序,注意文件名最好用英文字符。点击Debug|Run 运行程序,在命令窗口查看运行结果,程序如有错误则改正 三、 实验内容 1.编写求解方程02=++c bx ax 的根的函数(这个方程不一定为一元二次方程,因c b a 、、的不同取值而定),这里应根据c b a 、、的不同取值分别处理,有输入参数提示,当0~,0,0===c b a 时应提示“为恒不等式!”。并输入几组典型值加以检验。 (提示:提示输入使用input 函数) 2.输入一个百分制成绩,要求输出成绩等级A+、A 、B 、C 、D 、E 。其中100分为A+,90分~99分为A ,80分~89分为B ,70分~79分为C ,60分~69分为D ,60分以下为E 。 要求:(1)用switch 语句实现。

(2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。 (提示:注意单元矩阵的用法) 3.数论中一个有趣的题目:任意一个正整数,若为偶数,则用2除之,若为奇数,则与3相乘再加上1。重复此过程,最终得到的结果为1。如: 21 3105168421 63105168421 运行下面的程序,按程序提示输入n=1,2,3,5,7等数来验证这一结论。 请为关键的Matlab 语句填写上相关注释,说明其含义或功能。 4. y 5. (Root Mean Square)的计算(1(2)x=rand(1,200),得到的x 为200个(0,1)之间均匀分布的随机数。 6.根据2 2222 1......3121116n ++++=π,求π的近似值。当n 分别取100、1000、10000时,结果是多少 思考题:

最小二乘法MATLAB程序及结果

最小二乘递推算法的MATLAB仿真 针对辨识模型,有z(k)-+a1*z(k-1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k)模型结构,对其进行最小二乘递推算法的MATLAB仿真,对比真值与估计值。更改a1、a2、b1、b2参数,观察结果。 仿真对象:z(k)-1.5*z(k-1)+0.7*z(k-2)=u(k-1)+0.5*u(k-2)+v(k) 程序如下: L=15; y1=1;y2=1;y3=1;y4=0; %四个移位寄存器的初始值 for i=1:L; %移位循环 x1=xor(y3,y4); x2=y1; x3=y2; x4=y3; y(i)=y4; %取出作为输出信号,即M序列 if y(i)>0.5,u(i)=-0.03; %输入信号 else u(i)=0.03; end y1=x1;y2=x2;y3=x3;y4=x4; end figure(1); stem(u),grid on z(2)=0;z(1)=0; for k=3:15; z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %输出采样信号 end c0=[0.001 0.001 0.001 0.001]'; %直接给出被识别参数的初始值 p0=10^6*eye(4,4); %直接给出初始状态P0 E=0.000000005; c=[c0,zeros(4,14)]; e=zeros(4,15); for k=3:15; %开始求k h1=[-z(k-1),-z(k-2),u(k-1),u(k-2)]'; x=h1'*p0*h1+1; x1=inv(x); k1=p0*h1*x1; %开始求k的值 d1=z(k)-h1'*c0;c1=c0+k1*d1; e1=c1-c0; e2=e1./c0; %求参数的相对变化 e(:,k)=e2; c0=c1; c(:,k)=c1; p1=p0-k1*k1'*[h1'*p0*h1+1]; %求出P(k)的值 p0=p1;

相关文档
最新文档