单片机课程设计-温控直流电机转速

单片机课程设计-温控直流电机转速
单片机课程设计-温控直流电机转速

摘要

本论文要求使用单片机进行电路设计,同时单片机部分应带有显示功能。单片机对某个位置进行温度监控,当外部温度≥45℃时,电动机加速正转,当温度≥75℃时,电动机全速正转;当外部温度≤10℃时,电动机加速反转,当温度≤0℃时,电动机全速反转;当温度回到10℃~45℃之间时电动机逐渐停止转动。

温度采集模块可以采用一只温度传感器 DS18B20,此传感器,可以很容易直接读取被测温度值,利用单片机的一个I/O口的引脚,通过软件对这个引脚不断地输出高低电平来实现PWM波的输出,51系列单片机无PWM输出功能,可以采用定时器配合软件的方法输出。对精度要求不高的场合,非常实用。

所谓脉冲宽度调制是指用改变电机电枢电压接通与断开的时间的占空比来控制电机转速的方法,称为脉冲宽度调制(PWM)。PWM驱动装置是利用全控型功率器件的开关特性来调制固定电压的直流电源,按一个固定的频率来接通和断开,并根据需要改变一个周期内“接通”与“断开”时间的长短,改变直流电动机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速。因此,这种装置又称为“开关驱动装置”。对于直流电机调速系统,其方法是通过改变电机电枢电压导通时间与通电时间的比值(即占空比)来控制电机速度。

本次设计可以作为简单控制向复杂控制的过度,实现直流电机启动、正反转控制和顺序控制外,还要进行转速控制。为以后复杂控制设计做基础。

关键词:PWM;单片机;温度控制

1 设计总说明

引言

在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用,无论在工业农业生产、交通运输、国防航空航天、医疗卫生、商务与办公设备,还是在日常生活中的家用电器,都在大量地使用着各式各样的电动机。据资料统计,现在有的90%以上的动力源来自于电动机,我国生产的电能大约有60%用于电动机。电动机与人们的生活息息相关,密不可分。随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。

研究意义

对电动机的控制可分为简单控制和复杂控制两种,简单控制是对电动机进行启动、制动、正反转控制和顺序控制,复杂控制是对电动机的转速转速、转角、转矩、电压、电流等物理量进行控制。本次设计可以作为简单控制向复杂控制的过度,实现直流电机启动、制动、正反转控制和顺序控制外,还要进行转速控制。为以后复杂控制做为基础学习。

直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。

随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率,可以实现复杂的控制,控制灵活性和适应性好,无零点漂移,控制精密高,可提供人机界面,多机联网工作。

采用智能功率电路驱动比传统的分立功率器件组成的驱动体积小,功能强;减少了电路元器件数量,提高了系统的可靠性;监控更容易实现;集成化使电路的连线减少,减少了布线电容和电感以及信号传输的延时,增加了系统抗干扰的能力;集成化使系统成本大大降低。

系统设计内容

本设计将介绍一种基于单片机的温度控制直流电机转速系统。该系统采用AT89C51

单片机为核心,通过AT89C51 单片机驱动数字温度传感器DS18B20,进行温度数据采集通过温度的比较和温度范围设定的程序控制产生PWM(脉宽调制)信号;通过L298驱动芯片来控制直流电机的启动、速度、方向的变化;通过LM016L显示温度。论文包括对单片机的功能及各个管脚和晶振复位电路的介绍,整个电路设计包括温度采集模块,单片机控制模块,温度显示模块,和电机及电机驱动模块。

2系统方案设计

系统的设计要求及主要技术指标

本论文要求使用单片机进行电路设计,同时单片机部分应带有显示功能。单片机对某个位置进行温度监控,当外部温度≥45℃时,电动机加速正转,当温度≥75℃时,电动机全速正转;当外部温度≤10℃时,电动机加速反转,当温度≤0℃时,电动机全速反转;当温度回到10℃~45℃之间时电动机逐渐停止转动。

系统总体方案

系统总体方案设计,如下图1

图1 系统总体方案图

总体方案论述

该系统采用AT89C51单片机为核心,通过DS18B20进行温度采集,送入单片机,经过软件编程进行温度的比较和范围划定,然后通过程序控制由单片机产生不同的PWM (脉冲宽度调制)信号,送给电机驱动芯片L298的使能端口,通过L298驱动芯片来控制直流电机的启动、速度、方向的变化;单片机将温度数据传送给LM016L显示温度。整个电路设计包括温度采集模块,单片机控制模块,温度显示模块,和电机及电机驱动模块。

3 硬件电路设计

温度采集模块的电路连接

DS18B20 有三个管脚:GND 为电源地,DQ 为数字信号输入/输出端,VCC 为外接供电电源接入端(用寄生电源方式时接地)。在硬件上,DS18B20与单片机的连接有两种方法,一种是VCC接外部电源,GND接地,I/O与单片机的I/O线相连;另一种是用寄生电源供电,此时VCC、GND接地,I/O接单片机I/O。无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。本系统中DS18B20的DQ口与单片机的口连接,GND 接地。Protues软件仿真图如图2所示。

图 2 DS18B20的Protues仿真图

转速控制模块设计

A(IN1)、B(IN2)分别与AT89C51单片机的、相连接,输入控制电位来控制电机的正反转。ENA与单片机的口相连接,口输出控制电动机转速的PWM信号,来控制电动机的加速、减速,启动、停止。由于我们使用的电机是线圈式的,在从运行状态突然转换到停止状态和从顺时针状态突然转换到逆时针状态时会形成很大的反向电流,在电路中加入二极管的作用就是在产生反向电流的时候进行泄流,保护芯片的安全。上面接电源那个是当VS断电后,电机的产生的磁场产生很大的电动势保护电机(因为电机可能正传

或者反转,所以两个方向均要设计二极管),接地那个作用在于保护单片机等元件。

图 3 转速控制模块protues仿真的电路图

温度显示模块设计

数据手册中可能介绍LM1602内部D0~D7已有上拉,可以使用P0口直接驱动。在Proteus里LM016L内部可能没有,应该人为加上拉电阻。

图 5 温度显示模块设计proteus仿真图

4系统软件设计

系统软件构架

图 6系统软件总框图5元器件清单

表 2 元器件清单

名称型号毕数量备注

单片机AT89C511

二极管1N40071

电容CAP2220pF

2100nF 电解电容CAP-ELEC110uF 晶振CRYSTAL112MHZ 温度采集器DS18B201

电机控制元件L2981

LCD显示器LM016L1

电机转子MOTOR-DC1

电阻排阻RES

PESPACK

1

1

1

10K

6电路设计仿真

图 7 设计电路的proteus仿真

结论

本方案实现了单片机通过对温度的采集和比较对直流电机进行转速控制,以及利用软件模拟实现直流电机PWM调速的方法。以AT89C51单片机为控制核心,通过DS18B20进行温度采集,送入单片机,经过软件编程进行温度的比较和范围划定,然后通过程序控制由单片机产生不同的PWM(脉冲宽度调制)控制信号,送给电机驱动芯片L298的使能端口,通过L298驱动芯片来控制直流电机的启动、速度、方向的变化实现了对普通直流电机的转速调节,为进一步研究和优化直流电机控制方法提供了基础。达到了系统的设计要求:单片机对某个位置进行温度监控,当外部温度≥45℃时,电动机加速正转,当温度≥75℃时,电动机全速正转;当外部温度≤10℃时,电动机加速反转,当温度≤

0℃时,电动机全速反转;当温度回到10℃~45℃之间时电动机逐渐停止转动。从这次的设计中,我真真正正的意识到,在以后的学习中,要理论联系实际,把我们所学的理论知识用到实际当中,学习单机片机更是如此,程序只有在经常的写与读的过程中才能提高,这就是我在这次设计中的最大收获。

参考文献

[1] 王之道,周靖,刘旭,一种基于AT89C2051单片机的直流电机调速装置, [J]机械工程与自动化2009(5)

[2] 茹占军,谢家兴,基于AT89S52单片机直流电机调速系统的设计, [J].软件导刊2010, 9(8)

[3] 赵鸿图,基于单片机AT89C51的直流电机PWM调速系统[J].电子技术,2008, 45(10)

[4] 周润景,张丽娜.基于Proteus的电路及单片机系统设计与仿真[M].北京:北京航空航天大学出版社,2006.

[5] 宁成军,张江霞.基于Proteus和Keil接口的单片机外围硬件电路仿真[J].现代电子技术,2006,29(18):142-143,146.

[6] 陈良光,管聪慧.由数字式传感器DS18B20 构成的多点测温系统[J].传感器世界, 1999, 9.

[7] 杜洋,DS18B20温度传感器应用解析, 马忠梅,张凯,等.单片机的C语言应用程序设计(第四版).北京航空航天大学出版社

实验程序

#include<>

#include<>

#difine uchar ;unsigned char

#difine uint ;unsigned int

#define delayNOP() {_nop_();_nop_();_nop_();_nop_();}

sbit DQ =p3^3;

sbit LCD_RS=p2^0;

sbit LCD_RW=p2^1;

sbit LCD_EN=p2^2;

sbit MA =P1^0;

sbit MB =p1^1;

sbit PWM1 =p1^2;

uchar code temp_DISP_Title[] ={"Current temp : "};

uchar current_temp_Display_Buffer[]={"TEMP: "};

;

Current_Temp_Display_Buffer[ 9] = Display_Digit[1] + '0';

Current_Temp_Display_Buffer[ 8] = Display_Digit[2] + '0';

Current_Temp_Display_Buffer[ 7] = Display_Digit[3] + '0';

if (Signed_Temp≥75 ) Signed_Temp = 75;

if (Signed_Temp≤ 0 ) Signed_Temp = 0;

//>=45℃时加速正转,75℃时全速运行

if ( Signed_Temp ≥ 45)

{

MA = 1; MB = 0; //正转

if (Signed_Temp == 45) //PWM输出(占空比:0%)

{

PWM1 = 0; DelayXus(30); return;

}

else

if (Signed_Temp == 75) //PWM输出(占空比:100%)

{

PWM = 1; DelayXus(30); return;

}

PWM1 = 1; //PWM输出(占空比:0%~100%) DelayXus(Signed_Temp - 45);

PWM1 = 0;

DelayXus(75 - Signed_Temp );

}

else

//≤10℃时加速反转,0℃时全速运行

if ( Signed_Temp≤ 10 )

{

MA = 0; MB = 1; //反转

if (Signed_Temp == 10) //PWM输出(占空比:0%)

{

PWM1 = 0; DlayXus(10); return;

}

else

if (Signed_Temp == 0 ) //PWM输出(占空比:100%)

{

PWM = 1; DelayXus(10); return;

}

PWM = 1; //PWM输出(占空比:0%~100%) DelayXus(10 - Signed_Temp);

PWM = 0;

DelayXus(Signed_Temp);

}

//否则由惯性运动过渡到停止

else

{

MA = 0; MB = 0;

}

}

//---------------------------------------------------------------------//主函数

//---------------------------------------------------------------------

void main ()

{

LCD_Intialise();

Read_Temperature(); Delay(5000);

Delay(5000);

TMOD = 0x01;

TH0 = -50000 / 256; TL0 = -50000 % 256; IE = 0x82;

TR0 = 1;

While(1);

}

)

直流电机速度控制模型建立

十二、直流电动机速度控制模型建立 如图所示,a R 和a L 分别为电枢回路电阻和电感,a J 为机械旋转部分的转动惯量,f 为旋转部分的粘性摩擦系统,)(t u a 为电枢电压,)(t n 为电动机转动速度,)(t i a 为电枢回路电流。 通过调节电枢电压)(t u a ,控制电动机的转动速度)(t n 。电动机负载变化为电动机转动速度的干扰因素,用负载力矩)(t M d 表示。 根据直流电动机的工作原理及基尔霍夫定律,直流电动机有四大平衡方程: (1)电枢回路电压平衡方程 )()()(t u E t i R dt t di L a a a a a a =++ 式中,a E 为电动机的反电势。 (2)电磁转矩方程 )()(t ia K t M a w = 式中,)(t M w 为电枢电流产生的电磁转矩,a K 为电动机转矩系数。 (3)转矩平衡方程 )()()()(t M t M t fn dt t dn J d w a +=+ 式中,a J 为机械旋转部分的转动惯量,f 为旋转部分的粘性摩擦系数。 (4)由磁感应关系,得 )(t n K E b a = 根据上述的四个平衡方程式,可建立起系统的输出量、干扰量与输入量之间的传递函数 b a a a a a a a a a K K f R s J R f L s L J K s U s N ++++=)()()(2 a a a a d R s L K s U s M +-=)()( 建立起直流电动机的结构图为

直流电动机参数为 Ω =0.2a R , 015.0,015.0,5.0===b a a K K H L ,Nms f 2.0=,202.0m kg J a ?=。 得到系统的阶跃响应曲线为

基于单片机的电机转速测量系统

兰州交通大学 毕业设计文献综述 题目:基于单片机的电机转速测量系统Title:Motor speed measuring system based on single chip microcomputer 姓名:韦宝芸

学号:3 班级:机设1202班 摘要 本文首先叙述了单片机测量转速的系统构成及转速测量的几种常用方法,分析了相应方法在测量上的特点、误差和计算。其次,针对特定的应用环境,设计出一种基于 80C51单片机的全数字式测速系统,详细阐述了系统的工作原理,指出产生误差的可能原因,并给出了具体解决的方法;根据系统要求编制了源程序,分析其工作流程。最后,对构建的系统利用仿真机进行调试,对测量指标进行了分析、比较并提出改进方案。 关键词:单片机、转速、测量精度 Abstract

This paper first discussed some ways for rotary speed measure. It analyzed characters and errors of these ways. Second, it designed full digital measure system based on a Single-Chip Microprocessor(80C51) responding to special application, stated the working theory of the system and the methods to solve the errors, writed the working programmes by A51 assemble language. Finally, this system implementation was confirmed by using of Keil-51 simulator. The characters on the error margin and accuracy was summarized. Keywords : Single-Chip Microprocessor、rotary speed 、measureprecision Keil-51

单片机直流电机控制实训报告

单片机直流电机控制实训报告

基于AT89C51单片机的直流电动机控制器设计 实训报告 专业:弹药工程与爆炸技术 班级:弹药二班 学生姓名:杨宁 指导教师:佟慧艳 能源与水利学院

1 实训目的 通过单片机实训使学生能够掌握利用Keil软件编写单片机程序,学会设计完整的单片机应用系统;依托Protues仿真平台进行单片机电子应用系统设计与仿真,使学生掌握单片机应用系统的设计技能;培养学生运用所学知识分析和解决实际问题的能力以及实际动手能力和查阅资料能力。

2 实训任务及要求 2.1 任务描述 一单片机为控制核心设计一款直流电机电机控制系统,可以实现直流电机的加速、正转、反转等控制方式。 2.2 任务要求 1)用AT89C51单片机实现上述任务要求; 2)在Keil IDE中完成应用程序设计与编译; 3)在Proteus环境中完成电路设计、调试与仿真。

3 系统硬件组成与工作原理 3.1单片机的控制器与最小系统 单片机的最小系统是指有单片机和一些基本的外围电路所组成的一个可以使单片机工作的系统,一般来说,它包括单片机、晶振电路和复位电路(如图一)。 图1 最小系统设计截图 (一)控制器部分分析 AT89C51(如图2)是一种带4K字节FLASH存 储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微 处理器,俗称单片机。 AT89C51提供以下标准功能:4k 字节Flash 闪 速存储器,128字节内部RAM,32 个I/O 口线,两 个16位定时/计数器,一个5向量两级中断结构, 一个全双工串行通信口,片内振荡器及时钟电路。 同时,AT89C51可降至0Hz的静态逻辑操作,并支 持两种软件可选的节电工作模式。空闲方式停止CPU 的工作,但允许RAM,定时/计数器,串行通信口及 中断系统继续工作。掉电方式保存RAM中的内容,

直流电机转速控制

. 直流电机转速控制 课程设计

姓名: 学号: 班级: 目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6)

3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11 1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。

1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电

直流电机转速电流测量与显示

燕山大学 课程设计说明书题目:直流电机转速电流测量与显示 学院(系):里仁自动化系 年级专业:12级过控1班 学号: 121203021064 学生姓名:刘华 指导教师:梁振虎、王振臣、闫敬 教师职称:副教授

燕山大学课程设计(论文)任务书 院(系):里仁学院基层教学单位:自动化系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2015年6月12日

摘要 单片机又称单片微控制器(MCU),它把一个计算机系统集成到一个芯片上。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。随着电子技术的迅猛发展,单片机技术也有了长足的发展,目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹,导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录象机、摄象机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。 各种电机在工业得到广泛应用,为了能方便的对电机进行控制、监视、调速,有必要机的转速进行测量,从而提高自动化程度。转速和电流是工程上常用参数。转速测量的方法很多,采用光电编码器测量转速是较为常用的测量方法,而电流则采用交流互感器。 通过光电传感器实时采集电机转速并进行处理与显示,设计出一个电动机转速测量系统,并研究其测量精度、测量范围及响应速度.程序设计部分分为初始化模块、脉冲计数模块、计时模块、参数调整模块和显示模块.最后通过试验测试,得到了相应的技术参数,并对转速和电流测量系统的误差进行了分析要求设计的系统稳定可靠、抗干扰能力强、成本低,使用方便。

温度控制直流电动机转速系统设计报告

实训题目: 温度控制直流电动机转速 学生姓名:崔敬通 学号: 201223160126 专业:电子信息工程 2013年11月27日

1 引言 直流电机具有良好的线性调速特性和控制性能,使其调速控制占主流地位。尽管交流变频电机、步进电机等在控制调速领域的应用比较广泛,但直流电机调速仍是大多数调速控制电机的最佳选择。89C55单片机支持C语言编程,可移植性好,速度快,已被广泛应用于机电一体化、工业控制、智能仪器仪表等领域。现应用89C51单片机对直流电机速度进行有效测试和控制,通过对直流电机转速脉冲和中断次数的计数,可实现根据输入值控制直流电机的转速。 2 设计任务与要求 根据设计需要,通过测量原件把检测到的直流电机转速读入到89C55单片机中,再通过编程使读入的数值在显示器上显示出来。若检测到的电机转速等于设定值,则对直流电机的转速进行记录;若检测到的电机转速没有达到设定值,则通过加大数值或模数转换芯片使电机速度提升至设定值;若检测到电机转速超过设定值则通过模数转换芯片把电机速度降至设定值。通过这种实时检测和在线控制的方式使单片机能够对直流电机 2.1系统的设计要求及主要技术指标 本论文要求使用单片机进行电路设计,同时单片机部分应带有显示功能。单片机对某个位置进行温度监控,当外部温度≥45℃时,电动机加速正转,当温度≥75℃时,电动机全速正转;当外部温度≤10℃时,电动机加速反转,当温度≤0℃时,电动机全速反转;当温度回到10℃~45℃之间时电动机逐渐停止转动。 2.2系统总体方案 系统总体方案设计,如下图2.1

图2.1 系统总体方案图 2.3总体方案论述 该系统采用AT89C55单片机为核心,通过DS18B20进行温度采集,送入单片机,经过软件编程进行温度的比较和范围划定,然后通过程序控制由单片机产生不同的PWM(脉冲宽度调制)信号,送给电机驱动芯片L298的使能端口,通过L298驱动芯片来控制直流电机的启动、速度、方向的变化;单片机将温度数据传送给LM016L显示温度。整个电路设计包括温度采集模块,单片机控制模块,温度显示模块,和电机及电机驱动模块。 3硬件电路设计 MCS-51系列单片机 Intel公司推出的8位单片机: 1976年推出的MCS-48系列:8039,8048等。

基于单片机的直流电机控制设计性实验报告

设计题目:直流电机控制电路设计 一设计目得 1掌握单片机用PWM实现直流电机调整得基本方法,掌握直流电机得驱动原理。 2学习模拟控制直流电机正转、反转、加速、减速得实现方法. 二设计要求 用已学得知识配合51单片机设计一个可以正转、反转或变速运动得直流电机控制电路,并用示波器观察其模拟变化状况。 三设计思路及原理 利用单片机对PWM信号得软件实现方法.MCS一51系列典型产品8051具有两个定时计数器。因为PWM信号软件实现得核心就是单片机内部得定时器,所以通过控制定时计数器初值,从而可以实现从8051得任意输出口输出不同占空比得脉冲波形。从而实现对直流电动机得转速控制。 .AT89C51得P1、0—P1、2控制直流电机得快、慢、转向,低电平有效.P3、0为PWM波输出,P3、1为转向控制输出,P3、2为蜂鸣器。PWM控制DC电机转速,晶振为12M,利用定时器控制产生占空比可变得PWM波,按K1键,PWM值增加,则占空比增加,电机转快,按K2键,PWM值减少,则占空比减小,电机转慢,当PWM值增加到最大值255或者最小值1时,蜂鸣器将报警 四实验器材 DVCC试验箱导线若电源等器件

PROTUES仿真软件KRIL软件 五实验流程与程序 #include 〈 reg51、h > sbitK1 =P1^0;增加键 sbit K2 =P1^1 ; 减少键 sbit K3 =P1^2;转向选择键 sbit PWMUOT =P3^0; PWM波输出?? sbitturn_around =P3^1 ;?转向控制输出 sbit BEEP =P3^2 ;蜂鸣器 unsigned int PWM; void Beep(void); void delay(unsigned int n); void main(void) { TMOD=0x11;//设置T0、T1为方式1,(16位定时器) TH0=0 ; 65536us延时常数{t=(65536—TH)/fose/12} ?TL0=0; TH1=PWM; //脉宽调节,高8位 ? TL1=0; EA=1;? //开总中断 ET0=1; //开T0中断? ET1=1;??//开T1中断

直流无刷电机转速控制

一、 直流无刷电机转速控制 1. 模拟PID 控制 1.1 模拟PID 控制原理 在模拟控制系统中,最常用的控制器就是模拟PID 控制器。以下图所示直流电机 控制系统为例,说明PID 控制器控制电机转速的原理。图中)(0t n 为转速设定值,)(t n 为转速反馈值,)()()(0t n t n t e -=为偏差信号,偏差信号通过PID 控制器后产生控制作用作用于直流电机从而控制电机转速到设定值。 常见的模拟PID 控制系统如下图所示。PID 控制器由比例、积分、微分的线性组合构成。控制规律如下: ]) ()(1)([)(0?++=t d i p dt t de T d e T t e K t u ττ * 其中: p K ——控制器的比例系数 i T ——控制器的积分系数 d T ——控制器的微分系数 1) 比例部分 比例部分的数学表达式:)(t e K p 。 比例部分的作用是对偏差信号做出快速反应,一旦控制器检测到偏差,比例部分就 能迅速产生控制作用,且偏差越大,控制作用越强。但仅存在比例控制的系统存在稳态偏差。比例系数越大,响应越快,过渡越快,稳态偏差也越小,但系统也越不稳定,因此比例系数必须选择恰当。 2) 积分部分 积分部分的数学表达式: ?t i p d e T K 0 )(ττ。

从积分部分表达式可以看出,只要系统输出与设定值存在偏差,积分作用就会不断增加,知道偏差为零,因此积分部分可以消除稳态偏差。但积分作用会降低系统的响应速度,增加系统的超调量。积分常数越小,积分作用越强,过渡过程容易产生震荡,但回复时间减小;积分常数越大,积分作用越弱,过渡过程不产生震荡,但回复时间增长。因此应根据具体情况选取积分常数。 3) 微分部分 微分部分的数学表达式: dt t de T K d p ) (。 微分作用能阻值偏差的变化。它根据偏差的变化趋势进行控制。偏差变化越快,微分作用越强,能在偏差变化之前就行控制。微分作用的引入有助于减小超调量,克服振荡;但微分作用对噪声很敏感,导致系统的错误响应,使系统不稳定。 为实现PID 控制器的软件实现,将式*进行适当离散化,即离散PID 。 2. 数字PID 控制 2.1 位置式PID 算法 离散化处理的方法是,以T 为采样周期,对模拟信号进行采样,以k 为采样序列号,进行以下近似: T e e dt t de e T d e kT t k k k j j t 1 )()(-=-≈≈≈∑?ττ 将上式带入式*,得到如下式所示的位置式离散PID 控制规律。 ][1 T e e T e T T e K u k k d k j j i k p k -=-++ =∑ ** 由于位置式PID 要对t 时刻之前的所有输出进行记录,工作量大,对计算机硬件要求高。增量式PID 可避免这些。 2.2 增量式PID 算法 由式**得到 ][2 11 11T e e T e T T e K u k k d k j j i k p k ---=---++ =∑ 将式**与上式相减,得到增量式PID 控制规律如下 211)21()1(---++-++ =-=?k d p k d p k d i p k k k e T T K e T T K e T T T T K u u u *** 一旦得出控制作用的增量,就可递推得出当前控制作用的输出。 2.3 控制器参数整定 1) 离线整定法 步骤 1:将控制器从“自动”模式切换至“手动”模式(此时控制器输出完全由人工控制),人为以阶跃方式增大或减少控制器输出,并记录控制器相关的输入输出动态响应数据。 步骤 2:由阶跃响应数据估计特性参数 K , T ,τ。

直流风扇电机转速测量与PWM控制

1直流电机……………………………………………………………..6. 1.1直流电机的结构 (7) 1.2直流电机的原理 (7) 1.3直流电机的主要技术参数 (8) 1.4直流电机调速技术指标 (9) 2 .单片机的相关知识 (9) 2.1单片机的简介 (9) 2.2单片机的发展史 (9) 2.3单片机的特点 (10) 2.4 AT89C51单片机的介绍 (11) 3. 硬件电路的设计 (13) 3.1 控制电路的设计………………………………………………………….13. 3.2 隔离电路的设计 (14) 3.3驱动电路的设计 (14) 3.4续流电路的设计 (17) 3.5 整个电路原理图 (18) 4. 软件设计 4.1 主程序设计 (18) 4.2 数码显数设计…………………………………………………………….20. 4.3功能程序设计 (20) 5.结束语 (24) 参考文献 (24)

摘要 本课题是对直流电机PWM调速器设计的研究,主要实现对电动机的控制。因此在设计中,对直流调速的原理,直流调速控制方式以及调速特性,PWM基本原理及实现方式进行了全面的阐述。 为实现系统的微机控制,在设计中,采用了AT89S52单片机作为整个控制系统的控制电路的核心部分,配以各种显示,驱动模块,实现对电动机的转速的显示和测量;由命令输入模块,光电隔离模块及H型驱动模块组成。采用带中断的独立式键盘作为命令的输入,单片机在程序的控制下,不断给光电隔离电路发送PWM波形,H型驱动电路完成电机的正反转控制。在设计中,采用PWM调速方式,通过改变PWM的占空比从而改变电动机的电枢电压,进而实现对电动机的调速。设计的整个控制系统,在硬件结构上采用了大量的集成电路模块,大大的简化了硬件电路,提高了系统的稳定性和可靠性,使整个系统的性能得到提高。

keilc温度控制直流电机转速课程设计报告

目录 一、设计目的及要求 (2) 1.1 设计目的 (2) 1.2 设计要求 (3) 二、设计方案及论证之硬件电路设计 (3) 2.1芯片简介 (3) 2.2 电路原理图 (4) 2.21 电机测速即驱动部分: (4) 2.22电路供电系部分 (5) 2.23显示部分 (5) 三、设计方案及论证之软件设计 (6) 3.1 程序设计思路 (6) 四、器件清单 (13) 五、器件识别与检测 (14) 六、仿真结果: (15) 七、软件简述 (15) 7.1 keil 简介 (15) 7.2 keil与proteus联调与仿真实现 (16) 九、参考文献 (17) 课程设计任务书

一、设计目的及要求 1.1 设计目的 本设计主要是应用proteus软件和嵌入式C语言编程工具,结合单片机原理及应用。危机原理与接口技术等专业课程,强化和巩固专业理论基础,掌握

Proteus仿真的技巧和嵌入式C语言编程工具,提高单片机开发能力,并为嵌入式开发打下基础。 1.2 设计要求 (1) 使用 AT89C51单片机为核心,使用 4 位集成式数码管显示当前温度,温度传感器使用 DS18B20,使用 L298 驱动直流电动机。 (2)用 4 位集成式数码管显示当前温度, , 当温度在≥ 45 C 时, 直流电动机在 L298 0 0 驱动下加速正转,温度在≥ 75 C 全速正转;当温度≤ 10 C 时,直流电动机加速反转,温度≤ 0 C 时,直流电动机全速反转;温度 10 C ~ 45 C 之间时,直流电动机停止转动。 (3)控制程序在 Keil 软件中编写,编译,整个控制电路在 Proteus 仿真软件中连接调示。 二、设计方案及论证之硬件电路设计 2.1芯片简介 本设计选择采用AT89C51单片机为核心。AT89C51提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内震荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但震荡器停止工作并禁止其他所有部件工作直到下一个硬件复位。

直流电机PLC控制实验

实验四直流电机PLC控制实验一、实验目的 1.掌握PLC的基本工作原理 2.掌握PID控制原理 3.掌握PLC控制直流电机方法 4.掌握直流电机的调速方法 二、实验器材 1.计算机控制技术实验装置一台 2.CP1H编程电缆一条 3.PC机一台 三、实验内容 根据输入,实现PLC对直流电机的调速PID控制。1、输入功能 (1)功能操作,按钮1 1.1、按钮1按下一次,显示SV(设定点值)。 1.2、按钮1按下两次,显示速度设定值。 1.3、按钮1按下三次,设定P值,显示。 1.4、按钮1按下四次,显示P值。 1.5、按钮1按下五次,设定I值,显示。 1.6、按钮1按下六次,显示I值。 1.7、按钮1按下七次,设定D值,显示。 1.8、按钮1按下八次,显示D值。

1.9、按钮1按下九次,显示At(PID 自调整增益) 1.10、按钮1按下十次,自整定显示 1.11、按钮1按下十一次,复位 (2)增加按钮2,数值增加 (3)减小按钮3,数值减小 (4)确定按钮4,操作确定 2、PWM脉冲输出,接输出101.00。 3、直流电机测速,光耦,接高速脉冲输入。 4、LED显示,根据按钮输入,显示设定值/测量值/加减量。 四、实验原理 1.直流无刷电机PWM调速原理 PWM的意思是脉宽调节,也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高.如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%,那么输出全部电压。 PWM的占空比决定输出到直流电机的平均电压,所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节。在使用PWM控制的直流无刷电动机中,PWM控制有两种方式:(1)使用PWM信号,控制三极管的导通时间,导通的时间越长,那么

直流电机转速控制(DOC)

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、

基于单片机的直流电机转速测量与显示(DOC)

目录 绪论 (2) 第1章参数计算与设备选型 (3) 1.1控制芯片 (3) 1.2测速发电机 (4) 1.3模数转化器件——ADC0809 (6) 第2章系统设计 (9) 2.1 系统方框图 (9) 2.2 硬件设计 (10) 2.2.1 直流测速发电机 (10) 2.2.2 ADC0809与单片机连接 (10) 2.2.3 数码管 (11) 2.2.4 综合接线图 (11) 2.3 软件设计 (12) 2.3.1 程序设计思路说明 (12) 2.3.2 总程序控制流程图 (13) 2.3.3 ADC0809工作流程图及程序 (14) 2.3.4显示部分工作流程图及程序 (15) 第3章结论 (18) 参考文献 (19)

绪论 在现代工业自动化高度发展的时期,几乎所有的工业设备都离不开电机,形形色色的电机在不同领域发挥着很重要的作用。与之而来的问题是,如何更好地控制电机,对于不同的场合,对电机的控制要求是不同的,但大部分都会涉及到直流电机的转速测量,从而利用转速来实施对直流电机的控制。 直流电机转速作为直流电机的一项重要技术指标,在各个应用场合都有重要的研究价值,例如在发动机,电动机,机床主轴等旋转设备的试验运转和控制中,常需要分时或连续测量,显示其转速及瞬时速度等,转速是其他大部分技术参数的计算来源,因此,准确测量直流电动机的转速具有重要的研究意义和理论价值。 目前,对直流电动机的速度检测方法很多,从整体上可分为模拟检测和数字检测方法。 模拟检测:即利用测速电机作为发电机,通过检测反电势E的大小和极性可得到转速N和电机转向,采用这种方法直接可以得到转速N和输出电压的特性曲线,直观,但也有很多不足,比如在高速和低速情况下实际输出偏离理想特性。 数字检测技术:即通过分析数字信号产生的一系列脉冲间接获取电机转速。如光电旋转编码器是将检测圆盘划分为等距的三个同心圆,最外环和次外环分别用等距的黑白条纹分开,且最外环和次外环的缝隙位置相位差为90度,用于判断电机的转速,最内环只有一个黑条纹,用作定位脉冲或者是复位脉冲,利用光电编码器输出的脉冲可以计算转速,具体的又可分为M法,T法和M\T法。 此外,市场上已经有了技术成熟的电机测速装置,如利用霍尔元件设计制作的直流电机测速仪等,凭借其精度高,稳定性好等优势占有重要的一席之地。 而本次微机控制原理课程设计的任务是直流电机速度的测量与显示。主要要求是通过测速直流发电机作为传感器,检测直流电机的转速,并输出与转速相关的电压,通过ADC0809芯片将测速发电机输出电压转换成电压的数字信号。控制芯片采用AT89C51将采集转换后的数字信号进行处理,得到转速,并通过四位数码管予以显示。整体上能够完成从转速检测到数据处理到显示的一整套功能。

温度控制直流电动机转速

温度控制直流电机转速 设计报告 院系:物电学院 专业:电子信息工程 学号:201000920146 姓名:赵婧

摘要 本文是对直流电机PWM调速器设计的研究,主要实现对电机的控制。本课程设计主要是实现PWM调速器的正转、反转、加速、减速、停止等操作。并实现电路的仿真。为实现系统的微机控制,在设计中,采用了AT89C51单片机作为整个控制系统的控制电路的核心部分,配以各种显示、驱动模块,实现对电动机转速参数的显示。单片机在程序控制下,H型驱动电路完成电机正反转控制.在设计中,采用PWM 调速方式,通过改变PWM的占空比从而改变电动机的电枢电压,进而实现对电动机的调速。设计的整个控制系统,在硬件结构上采用了大量的集成电路模块,大大简化了硬件电路,提高了系统的稳定性和可靠性,使整个系统的性能得到提高。 关键词:AT89C51单片机;PWM调速;正反转控制;仿真。

The Design of Direct Current Motor speed Regulation System Based on SCM Chenli School of Information and Engineering Abstract This article mainly introduces the method to generate the PWM signal by using MCS-51 single-chip computer to control the speed of a D.C. motor. It also clarifies the principles of PWM and the way to adjust the duty cycle of PWM signal. In addition, IR2110 has been used as an actuating device of the power amplifier circuit which controls the speed of rotation of D.C. motor. What’s more, tachogenerator is used in this system to measure the speed of D.C. motor. The result of the measurement is sent to A/D converter after passing the filtering circuit, and finally the feedback single is stored in the single-chip computer and participates in a PI calculation. As for the software, this article introduces in detail the idea of the programming and how to make it. Key words:PWM signal,tachogenerator,PI calculation

微机原理课程设计—直流电机闭环调速控制系统

实验课题:直流电机调速控制 实验内容: 本实验完成的是一个实现对直流电机转速调节的应用。 编写实验程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。 实验目的: (1)学习掌握模/数信号转换的基本原理。 (2)掌握的ADC0809、8255芯片的使用方法。 (3)学习PC系统中扩展简单I/O接口的方法。 (4)了解实现直流电机转速调节的基本方法。 实验要求: 利用微机接口实验系统的硬件资源,运用汇编语言设计实现直流电机的调速控制功能。 基本功能要求:1、利用A/D转换方式实现模拟量给定信号的采样;2、实现PWM方式直流电机速度调节;3、LED灯显示当前直流电机速度状态。 实验设备: (1)硬件要求: PC微机一台、TD-PIT实验系统一套 (2)软件要求:唐都编程软件,tdpit编程软件,“轻松编程”软件 实验原理: 各芯片的功能简介: (1)8255的基本输出接口电路: 并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU 和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。

基于光电传感器的直流电机转速测量系统设计-课设报告

北京信息科技大学 测控综合实践 课程设计报告 题目:基于光电传感器的直流电机转速测量系统设计学院:仪器科学与光电工程学院 专业:测控技术与仪器 学生姓名:

摘要 摘要 基于单片机的转速测量方法较多,本次设计主要针对于光电传感器测量直流电机转速的原理进行简单介绍,并说明它是如何对电机转速进行测量的。通过实验得到结果并进行了数据分析。 本次设计应用了STC89C52RC单片机,采用光电传感器测量电机转速的方法,其中硬件系统包括脉冲信号的产生模块、脉冲信号的处理模块和转速的显示模块三个模块,采用C语言编程,结果表明该方法具有简单、精度高、稳定性好的优点。 关键词:直流电机;单片机;PWM调节;光电传感器

Abstract

目录 摘要................................................................................................I 第一章概述 (1) 1.1 课设目标 (1) 1.2 内容 (1) 第二章系统设计原理 (2) 2.1 STC89C52单片机介绍 (2) 2.2 STC89C52定时计数器 (4) 2.3 STC89C52中断控制 (6) 2.4 光电传感器 (6) 2.5 数码管介绍 (7) 第三章硬件系统设计 (10) 3.1测速信号采集及其处理 (10) 3.2 单片机处理电路设计 (11) 3.3 显示电路 (12) 3.4 PWM驱动电路 (13) 第四章软件设计 (14) 4.1语言选用 (14) 4.2程序设计流程图 (14) 4.3原程序代码 (15) 第五章数据分析 (19) 总结 (20) 附件 (21) 参考文献 (23)

直流电机转速控制的matlab实验

2012/2013学年第一学期《精密测控与系统》期末大型作业 日期:2012 年11 月 题目与要求: 直流电机转速控制问题,直流电动机物理模型如下图所示。

电动机产生的转矩与电枢电流成正比,即:t t T K i =,电枢绕组的反电动势与转速成正比,即:e d e K dt θ=,牛顿第二定律:2 2d T J dt θ=,其中J 为电机轴上的转动惯 量。 已知:转动惯量:2 2 0.01kg.m /s J =,机械系统摩擦系数:0.1N.m.s b =,电动机力矩 系数:0.01N.m/A e t K K ==,电阻:1R =Ω ,电感:0.5H L =。假设电机转动系统刚 性,输入量为直流电压V ,输出量为电机转速θ 。 问题1:建立该系统的时域数学模型。 问题2:给出该系统的传递函数,用Matlab 计算该系统的阶跃响应曲线,给出阶 跃响应的特征参数。 问题3:建立该系统的状态空间表达式,用Matlab 计算该系统的阶跃响应曲线。 问题4:加入速度反馈及PID 控制器环节,使系统性能达到: (a ) 建立时间<2s; (b ) 超调量<5%; (c ) 稳态误差<1%. 问题5:采用下图所示的模糊控制系统 系统中的模糊控制器是一个双输入单输出型的控制器,输入变量为转速的误差e 和转速误差的变化率Δe ,输出为直流电压的增量ΔV 。请选用合适的隶属度函数,建立该系统的模糊控制规则库,对电机的转速进行控制使期望转速为1000r/min ,建立时间<2s;超调量<5%;稳态误差e<±1.0%。 问题6:通过这个大型作业,谈谈你对本课程的学习心得和体会,以及对本课程授课方式的建议和改进。 一、建立该系统的时域数学模型

直流电动机转速控制

直流电动机转速控制 王文玺 (北京交通大学机械与电子控制工程学院,北京) 摘要:通过对直流电动机控制系统的建模,再利用Matlab对建模后的系统进行分析,来加深对自动控制系统的理解。找到系统的输入、输出,理清经历各环节前后的信号变化,找出系统传递函数。 关键词:直流电动机、Matlab、建模、传递函数 1、直流电动机动态数学模型建立 1.1直流电机数字PID闭环速度控制,系统实现无静差控制。 这是一个完整的带PID算法的直流电动机控制系统。目标值为给定的期望值,期望值与被测输出结果形成的反馈做比较,得到误差信号。误差信号经过PID控制环节得到控制信号。继而经历驱动环节得到操作量,驱动量作用与对象即电动机然后得到输出信号即转速。转速通过传感器得到反馈信号。 1.2PID控制环节 1.3被控对象(直流电动机)的统一数学模型 信号类型一次为,输入信号为电压,然后电流、电流、转矩、转速,反馈信号为电压。

各环节的比例函数为: 1.3.1额定励磁条件下,直流电机的电压平衡关系: (Ud为外加电压,E 为感应电势,R a为电枢电阻 ,La为电枢电感,i a为电枢电流。) 拉氏变换后: (ra—L /R ,为电枢时间常数) 1.3.2直流电机的转矩平衡关系及拉氏变换: (Te 为电磁转矩,Tl 为负载转矩,B为 阻尼系数,J 为转动惯量,w为电机机 械转速,rm=J/B,为机械时间常数) 1.3.3电动机传递函数 可见直流电动机本身就是一个闭环系统,假设电机工作在空载状态,且机械时间常数远大于电枢时间常数,则电机传递函数可近似为: 1.4具体实例 电枢控制直流电动机拖动惯性负载的原理图,涉及的参数有:电压U为输入,转速为输出,R、L为电枢回路电阻、电感,K 是电动机转矩系数,K 是反电动势系数,K 是电动机和负载折合到电动机轴上的黏性摩擦系数,.厂是电动机和负载折合到电动机轴上的转动惯量。已知:R一2.0 Q,L:==0.5 H ,K = Kb一0.015,Kf一0.2 Nms,J— o.02kg.m 。 ( 取电压U为输入,转速叫为输出,由已知条件和原理图,根据直流电机的运动方程可以求出电动机系统的数学模型为:

直流电机效率测试和计算技巧

直流电机效率测试和计算方法 效率测试是所有电传动部件及系统重要检验项目,GB 755 旋转电机定额及性能标准中对各类电机设备效率检测方法进行了详细的介绍。旋转电机效率测试主要有直接测试法及损耗分析法,效率的直接测试方法是通过对直流电机输入输出功率的直接测试而求得效率的方式,下面本文对直流电机效率的直接测试相关试验方法及计算进行详细介绍。 一、直流电机输入功率和输出功率的测量 直接测定效率时,电动机的输入功率用电工仪表测量,输出功率的机械功率用测功机、转矩测量仪测量;发电机的输出功率用电工仪表测量,输入功率用测功机、转矩测量仪测量。 输入功率用电压乘电流来计算,试验电源为整流电源时要求采用真实读书瓦特表或指示电压、电流瞬时值乘积平均值的其他测量装置直接测取电枢回路输入功率,也可分别测量直流功率分量和交流功率分量然后求和。 测功机的功率,在与被试电机同样的转速下应不超过被试电机额定功率的三倍;转矩测量仪的标称转矩,应不超过被试电机额定转矩的三倍。测功机与被试电机之间应用弹性联轴器连接,连接应保证良好、同心。

二、直流电机效率直接测试方法 直流电机效率直接测试试验时,被试电机应在额定功率或额定转矩、额定电压及额定转速下运行至热稳定,读取输入或输出的电压、电流、功率、转速及转矩,并保存周围冷却空气温度,然后立即测定串励、并(他)励及电枢绕组的电阻,并将冷却空气温度换算至25℃。 三、直流电机效率直接测试相关计算 被试电动机的输出机械功率P2按照下式1计算: (1) 式中: TM——被试电动机输出转矩,N.m; nM——被试电动机转速,r/min。 被试电动机的效率ηM按照下式2计算: (2) 式中: P1——被试电动机输入功率,W。 被试发电机的输入机械功率P1(W)按下式3计算: (3) 式中: TG——被试发电机输入转矩,N.m;

PWM控制直流电动机转速报告

2011年全国大学生电子设计竞赛 PWM控制直流电机转速(A题) 【高职组】 2011年9月6日

摘要 本设计主要要实现的功能是,通过直流电机PWM控制系统,实现对直流电机的加速、减速以及电机的正转、反转和急停,并且可以调整电机的转速,能够很方便的实现电机的智能控制。主要采用直流电机PWM调速系统以AT89S52单片机为控制核心,由命令输入模块、LCD 显示模块及电机驱动模块组成。使用带中断的独立式键盘作为命令的输入,单片机在程序控制下,定时不断给L298直流电机驱动芯片发送PWM波形H型驱动电路完成电机正、反转和急停控制,同时单片机不停的将PWM脉宽调制占空比送到LCD1602液晶来完成实时显示。 关键词:直流电机;PWM;控制。

abstract This design mainly in order to realize the function is, through the dc motor PWM control system, the implementation of the dc motor speed, motor and reducer, move forward, reverse and stop, and can adjust the speed of the motor, can easily realize the intelligent control of the machine. Mainly adopts dc motor PWM speed regulation system AT89S52 single chip microcomputer as control core, by the command input module, LCD display module and motor drive module. Using independent type keyboard with interruption as command input, single chip microcomputer under program control, timing, constantly send dc motor driver chip L298 PWM waveform H drive circuit to complete the motor positive and reverse and stop control, meanwhile

相关文档
最新文档