用EXCEL编制手算结构的锅炉热力计算程序

用EXCEL编制手算结构的锅炉热力计算程序
用EXCEL编制手算结构的锅炉热力计算程序

用EXCEL编制手算结构的锅炉热力计算程序

华北电力大学 鲍志勇 刘彦丰 韩中合

摘 要 作者在尝试利用EXCEL电子表格软件来实施锅炉热力计算的计算机程序的基础上,介绍了计算机程序的结构形式和一些主要特点。并以上海锅炉厂一台“400t h再热煤粉炉”为计算实例进行了验证计算。

关键词 锅炉 热力计算 电子表格

锅炉热力计算是锅炉设计和改造所必需的一项重要计算,该计算的繁琐程度也是锅炉专业工作者所共知的。随着计算机应用的普及,近十几年来多数锅炉厂家及科研人员开始采用计算机程序来实施该计算,使其变得简单化和更加精确化。然而以往的锅炉热力计算计算机程序大都由FOR2 TRA、NBA S I C或C语言编制,这些语言具有强大的计算功能,编制的程序具有所需内存少、计算速度快等特点。但其最大缺点则是这些程序中的计算模块和一些系数的选取只能由程序设计者进行修改,一般使用者不能了解其计算过程,只能盲目使用。此外这类程序的输入和输出界面较为单调,若需将计算结果汇编成热力计算书时,则必须将计算结果在文字处理程序中重新编辑,费时费力。为了解决上述问题,使热力计算的计算机程序能够直接面向一般工程技术人员,我们利用EX2 CEL编制了手算结构的计算机程序。

1 EXCE L简介

EXCEL是M icro soft公司推出的一种强有力的电子表格软件,每个EXCEL文件包含一个或多个二维数据工作表。工作表就像会计的分类帐,由行和列交叉成的多个单元组成。用户可在其中填写数据,数据可以是输入的数字或文本,或者是计算数值的公式。用户可以通过对单元的引用来使用工作表中的数据。

除了强大的快速制表功能外,M icro soft EX2 CEL还提供了图表处理、创建数据库管理和宏的功能。宏类似其它应用软件的脚本,可用来在工作表中完成复杂的任务。其中突出的优点是允许用户创建自定义函数及用户的对话框。数据库是结构化数据的集合,其中的数据按照一定的逻辑层次存放。用户对数据的管理和维护变得方便且容易。EXCEL的所有这些特点,为我们编制手算结构的锅炉热力计算电算化程序奠定了基础。

2 程序的结构形式和特点

该计算程序由主菜单表、热力计算程序(见附表)、饱和水温焓表、水蒸气温焓表、水蒸气参数表、烟气温焓表、自定义函数库表等工作表组成。主菜单表负责对后6个工作表的管理和调用。

热力?

4

1

?

 电 力 情 报

I N FORM A T I ON ON EL ECTR I C POW ER

№3

1997

计算程序表通过重新计算、数据管理计算过程管、理、报表打印4个子项负责热力计算主过程的处理。饱和水温焓表和水蒸气温焓表及水蒸气参数表提供了从低压到超高压锅炉热力计算所涉及的饱和水和水蒸气的焓值、导热系数、粘度值等。烟气温焓表列出了0~2000℃之间烟气各种成分的焓值,作为烟气焓值表的计算基础。自定义函数库表是为热力计算所定义的一些函数。

该计算程序具有以下特点:

(1)手算计算书的结构形式。如附表所示,热力计算程序表中的每一行都由序号、名称、符号、单位、数据来源或公式和结果组成。计算顺序也和手算过程一样,因此从表面来看,该工作表就如同用文字处理软件编排的一份锅炉热力计算书。但所不同的是在工作表的某些结果栏中却暗藏着计算程序。如附表中理论空气量行的结果列(即F 26单元)存放的内容为=(1.866×F11+5156×F22+0.7×F23) 21,这可在编辑栏里看到其原貌,即计算程序,但此单元显示的却是计算结果4.8509。式中F21、F22、F23、F25是对相应单元格里数值的引用。

(2)程序易读易用。由于计算程序具有手算结构的形式,因此对于一般用户人员,程序具有良好的阅读性和使用性。当用户要修改某些已知数据或某项计算公式时,只需将光标移至相应的F列单元格位置,填入新的数据或在编辑栏修改原24公式,然后用鼠标点一下热力计算程序表中的重新计算按钮,整个程序即开始运行。

(3)强大的查表计算功能。如上面所述,该程序提供了几个附属的工作表,利用它们可以查取计算中遇到的饱和水、水蒸气、烟气的焓值和常用物性参数。程序中若采用自定义函数库中的查表函数就可自动查取其相应的值,而且查表的结果比利用回归公式计算要精确得多。

(4)数据管理的方便性。利用EXCEL的数据库管理功能,可以很方便地对热力计算程序中所用到的几百个数据进行查询、分类、统计等管理工作。

(5)优化计算。EXCEL还设有优化计算功能。我们把热力计算中各段的迭代误差作为目标函数,进行寻优计算。这可以进一步提高热力计算的精度。 (6)打印报表的多样化。热力计算完成之后,按打印按钮便可将整个热力计算书打印出来,另外也可通过数据管理子模块将数据分类后,只打印某一受热面的数据或某一指定类别的数据,从而实现输出结果的多样化。

3 计算程序实例

作者利用该方法以上海锅炉厂“400t h再热煤粉锅炉”为实例编制了计算程序,程序中的数学模型主要取自《锅炉热力计算标准方法》(1973年版本)。程序计算框图见附图,程序的部分内容见附表

附图 热力计算程序框图

4 结 论

(1)用EXCEL编制的锅炉热力计算程序具有手算的结构形式、计算机程序化的计算功能。不太熟悉计算机编程的热力专业工作者使用也十分方便。

(2)该方法的缺点是初始的程序编制工作量较大,运行速度较慢,有待于进一步提高。

(下转第24页)

?

5

1

?

№3研 究 与 分 析

器马达反转,关小调速汽门。

3.3 防止同步器马达误开保护措施

当汽机脉冲调节回路未发出“开”脉冲时,由于某种原因(如接点13.2吸合后未释放)会造成同步器误开。为此设置了防止同步器马达误开(关)的保护回路,见图4

图4 防止同步器马达误开(关)保护回路

图4中XOR 一输入端接PWM 开的输出,另一端接1ZJ 的常开接点。如PWM 开未发出“开”脉冲,而此时发生同步器误开,则1ZJ 的输入端置“1”,使XOR 输出为

“1”,13.4被激励,常闭接点13.4打开,迫使同步器马达停止正转。

另外,如PWM 关发出“关”脉冲时,13.4常闭接点也会打开,以闭锁同步器马达“开”。3.4 防止同步器马达误关保护措施

和防止误开保护措施类似,见图4括号中内容。当发生同步器马达误关时,则保护回路动作,常闭接点13.7打开,迫使马达停止反转。同时,在(P WM 开)发出“开”脉冲时,常闭接点13.7也会打开,以闭锁同步器关。

4 同步器马达控制和保护回路在PC -110

中的实现

上述同步器马达的控制和保护回路,均通过

PC -110可编程控制器来实现。

采用PC -110比用继电器逻辑来实现更为可靠,同时保护逻辑功能的实现,只须编制程序,实现起来,既简单、方便,又易于修改。

采用PC -110实现的同步器马达控制和保护回路见图5。5 结束语

采用PC -110可编程控制器和K MM 可编

程调节器实现的九江发电厂125MW 火电单元机组协调控制系统,由于同步器马达的控制采用了脉冲调节方式,同时,

设置了上述周密保护措

图5 同步器马达控制和保护回路阶梯图

施,自系统投运以来,同步器马达控制回路未出现任何故障情况,保护回路的工作也很正常,取得了很好的效果。上述脉冲调节方式、保护措施对类似的控制系统也具有一定的参考、借鉴作用。

参考文献

1 吕震中,蔡隆瑞。用可编程控制器实现火电单元机组协调

控制系统。中国电力,1996(12)

(修改稿日期:1997-05-12)

(上接第15页)

参考文献

1 [美]DodgeM ,K inata C ,Stinson C 著。方中,赵军,于

永进等译,EXCEL 5fo r W indow s 使用指南。清华大学

出版社,1994

2 北京锅炉厂译。锅炉机组热力计算标准方法。机械工业出

版社,1976

3 赵翔,任有中。锅炉课程设计。水力电力出版社,1991

(收稿日期:1997-04-14)

?

42? 电 力 情 报

I N FORM A T I ON ON EL ECTR I C POW ER

№3

1997

制冷系统设计步骤

制冷系统设计步骤

一、设计任务和已知条件 根据要求,在武汉地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0. 20;当空调制冷量为174~1744KW时,A=0.10~0.15;当空调制冷量大于1744KW时,A=0.05~0.07;对于直接供冷系统,A=0.05~0. 07。 2、确定制冷剂种类和系统形式

根据设计的要求,选用氨为制冷剂而且采用间接供冷方式。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到武汉地区夏季室外平均每年不保证50h的湿球温度(℃) ℃ 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。

冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定: 选用立式壳管式冷凝器=+(2~4)=31.2+3=34.2℃ 注意:一般不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即 ℃ 式中——载冷剂的温度(℃)。 一般对于冷却淡水和盐水的蒸发器,其传热温差取=5℃。

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

发电厂原则性热力系统计算

发电厂原则性热力系统计算: 已知条件 1. 汽轮机形式和参数 制造厂家: 哈尔滨汽轮机厂 型 号: N300—16.7/538/538型 型 式: 亚临界、一次中间再热、单轴、双缸、双排汽、反动凝汽式汽轮 机 额定功率: 300MW 最大功率: 330MW 初蒸汽参数: =0p 16.67MPa ,=0t 538C ο 再热蒸汽参数: 冷段压力==in rh p p 2 3.653MPa ,冷段温度=in rh t 320.6C ο 热段压力=out rh p 3.288MPa ,热段温度=out rh t 538C ο 低压缸排汽参数: =c p 0.0299MPa ,=c t 32.1C ο , =c h 2329.8kJ/kg 给水泵小汽轮机耗汽份额:=st α0.0432 机组发电机实际发出功率:=' e P 300MW 给水泵出口压力: =pu p 20.81MPa 凝结水泵出口压力: 1.78MPa 机组机电效率: ==g m mg ηηη0.98 加热器效率: =h η0.99 额定排汽量: 543.8t/h 给水温度: 273.6℃ 冷却水温度: 20℃ 最高冷却水温度: 34℃ 额定工况时热耗率: (计算)7936.2Kj/KW .h (保证)7955Kj/KW .h 额定工况时汽耗率 3.043Kg/KW .h 主蒸汽最大进汽量: 1025t/h 工作转速: 3000r/min 旋转方向: 顺时针(从汽轮机向发电机看) 最大允许系统周波摆动: 48.5—50.5Hz 空负荷时额定转速波动: ±1r/min 噪音水平: 90db 通流级数: 36级

工业锅炉强度计算说明书

工业锅炉强度计算软件 用户手册 西安富凯能源科技有限责任公司

前言 本手册是“工业锅炉强度计算软件”的使用说明书,随软件同时提供给客户。 为了使您对该产品有一个总体的认识,方便您的使用,我们专门为您配置了用户手册,主要对“工业锅炉强度计算软件”的主要功能、使用方法、注意事项、用户界面等进行介绍,使您能够掌握本软件的使用方法,是您使用本软件的必不可少的指南。 本手册使用用户要求具备一定的锅炉设计与工程计算的基本知识,在数据输入过程中必须要注意数值的常规范围,并符合实际情况。 使用前,请您仔细阅读本手册,对本产品有一定的了解。由于编者水平有限,可能在程序设计、编制过程中存在缺点和错误,敬请用户批评指正。另外,在使用过程中,如果您有什么问题,请来电查询,我们定当竭诚为您服务。

目录 一、概述 (1) (一)计算标准方法及参考文献 (1) (二)基本使用过程描述 (1) 二、软件界面介绍 (1) (一)菜单栏区域 (2) (二)任务栏区域 (3) (三)操作区域 (4) 三、强度计算过程 (4) (一)新建项目 (4) (二)锅炉基本信息 (4) (三)输入部件列表 (5) (四)输入部件参数 (8) (五)计算 (10) (六)输出计算书 (11) (七)输出Excel计算书 (12) 四、典型算例说明 (13) (一)某型号水管锅炉的强度校核计算 (13)

一、概述 (一)计算标准方法及参考文献 计算标准: 锅壳式锅炉强度计算标准GB/T16508-1996 水管式锅炉强度计算标准GB/T9222-2008 本程序设计主要依据及参考手册 ?《锅炉强度计算标准应用手册》(增订版)李之光编著中国标准出版社 (二)基本使用过程描述 ?新建项目文件 ?输入锅炉的基本信息参数 ?输入部件列表 ?输入部件参数 ?计算项目 ?输出计算书 二、软件界面介绍 在桌面上双击“工业锅炉强度计算软件”图标,此时显示系统主界面如图2-1所示。

锅炉本体设计热力计算部分

一.题目SHL35-1.6-A 二、锅炉规范 锅炉额定蒸发量 35t/h 额定蒸汽压力 1.6MPa 额定蒸汽温度 204.3℃(饱和温度) 给水温度 105℃ 冷空气温度 30℃ 排污率 5% 给水压力 1.8MPa 三.燃料资料 烟煤(AⅡ) 收到基成份(%) C ar H ar O ar N ar S ar A ar M ar 48.3 3.4 5.6 0.9 3.0 28.8 10.0 干燥无灰基挥发份V daf= 40.0 % 收到基低位发热量Q net,ar= 18920 kJ/kg 收到基成份校核: C ar+H ar+O ar+N ar+S ar+A ar+M ar=48.3+3.4+5.6+0.9+3.0+28.8+10.0=100 根据门捷列夫经验公式:Q net,ar=339C ar+1031H ar-109(O ar-S ar)-25.1M ar =339×48.3+1031×3.4-109×(5.6-3.0)-25.1×10.0 =19344.7kJ/kg 与所给收到基低位发热量误差为: 19344.7-18920=424.7kJ/kg<836.32kJ/kg(在A d=32%>25%下,合理)。 四.锅炉各受热面的漏风系数和过量空气系数 序号受热面名称入口'α漏风Δɑ出口''α 1 炉膛 1.3 0.1 1.4 2 凝渣管 1.4 0 1.4 3 对流管束 1. 4 0.1 1.5 4 省煤器 1. 5 0.1 1.6 5 空气预热器 1. 6 0.1 1.7

(工业锅炉设计计算P134表B3~P135表B4)由于AⅡ是较好烧的煤,因此'' 在1.3~1.5取值1.4。 五.理论空气量及烟气理论容积计算 以下未作说明的m3均指在标准状况0℃,101.325kPa的情况下体积。 序号名称 符 号 单位计算公式结果 1 理论空气 量 V0m3/kg V0=0.0889(C ar +0.375S ar )+0.265H ar -0.0333O ar =0.0889(48.3+0.375×3)+0.265×3.4-0.0333 ×5.6 5.10 8 2 RO2容积V RO2m3/kg V RO2 =0.01866(C ar +0.375S ar ) =0.01866(48.3+0.375×3) 0.92 2 3 N2理论容 积 2 N V m3/kg V0 N2 =0.79V0+0.008N ar =0.79×5.108+0.008×0.9 4.04 3 4 H2O理论 容积 2 O H V m3/kg V0 H2O =0.111H ar +0.0124M ar +0.0161V0 =0.111×3.4+0.0124×10+0.0161×5.108 0.58 4 5 理论烟气 量 y V m3/kg V0 y =V RO2 +V0 N2 +V0 H2O =0.922+4.043+0.584 5.54 9 (工业锅炉设计计算 P187) 六.各受热面烟道中烟气特性计算 序号名称 符 号 单位计算公式炉膛 对流 管束 省煤 器 空气 预热 器 1 平均过 量空气 系数 αav-(α’+α”)/2 1.4 1.45 1.55 1.65 2 实际水 蒸气容 积 V H2O m 3/k g 2 O H V+0.0161(αav-1) V0 0.617 0.621 0.629 0.637 3 实际烟 气量 V y m 3/k g Vg=V RO2 +0 2 N V+V H2O+(αav -1)V0 7.625 7.885 8.404 8.923 4 RO2 容积份 额 r RO2- g RO V V 2 0.120 9 0.116 9 0.109 7 0.103 3 5 H2O 容积份 额 r H2O- g H V V 2 O0.080 9 0.078 8 0.074 9 0.071 4 6 三原子 气体容 积份额 r q-r RO2+r H2O0.201 8 0.195 7 0.184 6 0.174 7

制冷循环系统的热力计算

制冷循环系统的热力计算是根据确定的蒸发温度,冷凝温度,液态制冷剂的再冷度和压缩机的吸汽温度等已知条件.通过压焓图,求出各状态点的参数以及相关数值. 图1 CO2跨临界循环系统图 图2 跨临界2co 压焓图 1 循环参数 跨临界co 2空调设计工况制冷量为 2.8 kw ,制热量为3kw ,制冷剂为R744,蒸发温度取为0℃,冷却器出口温度取为40℃。指示效率=i η0.75, 机械效率8.0=m η。 查资料(参考文献1)知,根据冷却压力对循环的影响,最佳冷却压力与冷凝器出口温度的关系式为: Pk=-0.71471+0.27243 tk( MPa) 式中:32℃≤tk ≤48℃. 根据冷凝器出口温度为40℃,计算得最佳冷凝压力为10MPa. 根据吸气过热度对循环的影响,利用回热提高点1的过热度使循环的性能系数增大,但是过热度不是任意可以提高的。由于传热温差的存在,点1的温度总是低于点3的温度。由此假定点1的过热度

为15℃。 由回热器热平衡计算,h1-h0=h3-h4,推得h4=296kJ/kg,查压焓图得t4=36℃.过冷度为4℃.点4到点5的过程为等焓节流过程,得点5的状态:t5=0℃,h5=h4=296kJ/kg. 点1到点2s 过程为等熵压缩,p2s=10MPa ,从而确定点2s 的状态:t2s=100℃,h2s=504kJ/kg. 由压缩机指示效率ηi=0.75,得h2=(h2s-h1)/ηi+h1=520.67kJ/kg. 各点参数 2 热力计算 2.1 夏季热力计算 ⑴单位质量制冷量 0q kg kJ h h q /136500=-= ⑵单位理论功0w kg kJ h h w s s /50120=-= 75.01 21 2000=--=== h h h h w w N N s s i i η kg kJ w w i s /67.6600== η kg kJ h /67.5202= ⑶单位容积制冷量v q 3310/3.11333/012 .0136m kJ m kJ v q q v === 单位冷凝热kg kJ h h q s ks /19032=-= ⑷制冷循环质量流量m q s kg kg kJ kw q Q q m /021.0/1368.200=== ⑸压比 π =π p2/p1 = 100/35 = 2.86

燃气工业炉的热工过程及热力计算

燃气工业炉的热工过程及热力计算 热工过程是工业炉内一个重要的物理、化学过程。燃气工业炉的热工过程是指炉内燃气燃烧、气体流动及热交换过程的总和。显然,它是直接影响工业炉生产的产品数量、质量及经济指标的关键。燃气工业炉的热工过程的好坏,炉膛部位是核心。因为物料的加热、熔炼及干燥等都主要是在炉膛内完成的,而炉膛热工过程又受炉子砌体各部位热工特性影响。一、炉体的热工特性工业炉炉子砌体的结构与材料,决定砌体的基本热工特性,进而对于工业炉热工状态造成重大影响。(一)不同炉子砌体的热工特性工业炉的炉墙、炉顶、炉底由不同材质的多层材料砌筑而成,而各层材料的导热系数与厚度都不一样,因而温度变化也各有差异。图3—9—6所示炉墙,从内到外分别为粘土砖、绝热层和普通红砖。炉膛内高温焰气的热量通过辐射与对流向炉墙内表面传递;内表面再通过传导,把热量传到外表面;而外表面再通过辐射、对流向周围空间散热。 图3-9-6 炉墙厚度上的温度分布1-普通红砖层;2-绝热层;3-粘土砖层;4-炉膛空间;tin-内壁温度;tout-外壁温度一般砌体的作用是保证炉子空间达到工作温度,炉衬不被破坏,而加绝热层是为了减小损失。从加热经济观点看,砌体蓄热能力差,炉子开停温度升降快,但是炉子砌体墙壁太薄,将导致外表面散热损失增加。因此,应在对炉子进行严格的热工分析后,确定砌体的厚度与材质。一般说,长期运行的大型工业炉,砌休可选厚些,反之选薄些。为了节约能源,越来越多的工业炉采用轻质、热导率小的材料作为砌体的绝热层。表3—9—3给出了采用不同轻质绝热材料及组合时的节能效果。对连续式和间歇式加热炉,不同砌体组合的节能效果均为ⅢⅡⅠ。 表3—9—3 采用轻质耐火材料对砌体散热及蓄热的影响炉子工作特点砌筑类型筑炉材料名称厚度/mm热损失散热量/kJ·(m-2·h-1)蓄热量/kJ·m-2连续式炉Ⅰ粘土砖2326926 轻质粘土砖116Ⅱ粘土砖2325074 轻质粘土砖232Ⅲ耐火纤维毡753720 粘土砖232轻质粘土砖232间歇式炉Ⅰ粘土砖2323184381101轻质粘土砖116Ⅱ粘土砖2322157147698硅藻土砖116Ⅲ耐火纤维毡75160910768矿渣纤维100(二)不同砌体对炉子热工状态的影响图3—9—7表示炉子供热量不同对炉内热状态的影响。当供给一定热量使炉子升温时,起初由于

热电厂热力系统计算

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉 锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

(6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂2% 以化学软化水为补给水的供热式电厂5% (7)厂内汽水损失,取锅炉蒸发量的3%。 (8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 (9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 (10)生水水温,一般取5~20℃。 (11)进入凝汽器的蒸汽干度,取0.88~0.95。 (12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。用户处工业用汽符合总量:采暖期最大为175 t/h,折算汇总到电厂出口处为166.65 t/h。 表2-1 热负荷汇总表 折算到热电厂出口的工业热负荷,再乘以0.9的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1、图2-2。 表2-2 热电厂设计热负荷

制冷系统设计步骤

一、设计任务和已知条件 根据要求,在武汉地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0.20;当空调制冷量为1 74~1744KW时,A=0.10~0.15;当空调制冷量大于1744KW时,A=0.05~0.07;对于直接供冷系统,A=0.05~0.07。 2、确定制冷剂种类和系统形式 根据设计的要求,选用氨为制冷剂并且采用间接供冷方式。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到武汉地区夏季室外平均每年不保证50h的湿球温度(℃)

℃ 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。 冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定: 选用立式壳管式冷凝器=+(2~4)=31.2+3=34.2℃ 注意:通常不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即

600MW凝汽式机组原则性热力计算

国产600MV凝汽式机组全厂原则性热力系统计算 (一)计算任务 1.最大计算功率下的汽轮机进汽量D,回热系统各汽水流量D j; 2?计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组热耗率、绝对电效率、 管道效率、全厂热耗率、全厂标准煤耗率、全厂热效率); 3?按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量绘制成表格,绘制回热系统计算点汽水参数表格,并进行功率校核。 (二)计算类型:定功率计算 (三)系统简介 国产600MW凝汽式机组,机组为亚临界压力、一次中间再热、单轴、反动式、四缸四排汽机组。汽轮机高、中、低压转子均为有中心孔的整锻转子。汽轮机配HG-2008/18-YM2型 亚临界压力强制循环汽包炉。采用一级连续排污系统,扩容器分离出得扩容蒸汽送入除氧器。 该系统共有八级抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、 八级抽汽分别供四台低压加热器,第四级抽汽作为除氧器的加热汽源。八级回热加热器(除 氧器除外)均装设了疏水冷却器,以充分利用本级疏水热量来加热本级主凝结水。三级高压 加热器均安装了内置式蒸汽冷却器,将三台高压加热器上端差分别减小为-1.7 C、0C、0C, 从而提高了系统的热经济性。四台低压加热器上端差均为 2.8 C,八级加热器下端差(除氧 器除外)均为5.5 Co 汽轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧 器。然后由汽动给水泵升压,经三级高压加热器加热,最终给水温度达到273.3 C,进入锅 炉。 三台高加疏水逐级自流至除氧器;四台低加疏水逐级自流至凝汽器。凝汽器为双压式凝汽器,汽轮机排汽压力0.0049MPa ,凝汽器压力下饱和水焓h'c=136.2 ( kJ/kg)与单压凝汽器相比,双压凝汽器由于按冷却水温度低、高分出了两个不同的汽室压力,因此它具有更低些的凝汽器平均压力,汽轮机的理想比焓降增大。 给水泵汽轮机(以下简称小汽机)的汽源为中压缸排汽(第4级抽汽),无回热加热, 其排汽亦进入凝汽器。热力系统的汽水损失计有:全厂汽水损失、锅炉排污量(因排污率较 小,未设排污利用系统)。 轴封漏气量D sg =2%D 0全部送入轴封加热器来加热主凝结水,化学补充水量直接送入凝 汽器。 (四)全厂原则性热力系统图如图4-2所示。

制冷系统设计.

课程设计 设计题目:南京市某空调制冷机房 姓名 院系 专业 年级 学号 指导教师 年月日

目录 0设计任务 (1) 1前言 (1) 2课程设计题目及数据 (2) 3制冷机组的类型及条件 (2) 3.1初参数 (2) 3.2确定制冷剂种类和系统形式 (2) 3.3确定制冷系统设计工况 (2) 3.3.1冷凝温度的确定 (2) 3.3.2蒸发温度的确定 (3) 3.3.3过冷温度的确定 (3) 3.3.4过热温度的确定 (3) 3.3.5制冷系统理论循环p-h图 (4) 4制冷系统热力计算 (5) 5制冷压缩机型号及台数 (6) 5.1压缩机形式的选择 (6) 5.2压缩机台数的选择 (7) 5.3压缩机级数的选择 (7) 5.4电机的选择 (7) 6冷凝器的选择计算 (7) 6.1冷凝器的选择 (7) 6.2冷凝器热负荷计算 (7) 6.3冷凝器的已知参数 (8) 6.4计算肋管特性参数 (8) 6.5计算平均传热温差 (8) 6.6冷却水流量 (9) 6.7概算所需传热面积 (9) 6.8初步规划冷凝器结构 (9) 6.9计算水侧的换热系数 (9) 6.10计算制冷剂测得冷凝换热系数 (10) 6.10.1求水平光管管外冷凝换热系数 (10) 6.10.2计算水平肋管外的冷凝换热系数 (10) 6.10.3计算水平肋管束外冷凝换热系 (11) 6.11实际的热流密度 (11) 6.12计算实际传热面积 (11) 6.13冷凝器的类型 (12) 7蒸发器的选择计算 (12)

7.1蒸发器的预选 (12) 7.2蒸发温度与传热温差的确定 (12) 7.3换热面积的计算 (12) 7.4蒸发器风量的确定 (12) 7.5风机的选择 (12) 8冷却水系统的选择 (13) 8.1冷却塔 (13) 8.2水泵的选型 (13) 8.2.1水泵扬程 (13) 8.2.2阻力计算 (13) 9冷冻水系统的选择 (14) 10管径的计算 (14) 11其它辅助膨胀阀的选择计算 (15) 11.1膨胀阀的选择 (15) 11.2贮液器的选择计算 (15) 11.3油氨分离器的选择计算 (15) 11.4气液分离器的选择计算 (15) 11.5集油器的选择计算 (16) 11.6不凝性气体分离器的选择计算 (16) 12制冷机组与管道的保温 (16) 13设备清单及附图 (16) 14参考文献 (17)

发电厂原则性热力系统计算

发电厂原则性热力系统计算: 已知条件 1. 汽轮机形式和参数 制造厂家: 哈尔滨汽轮机厂 型 号: N300—16.7/538/538型 型 式: 亚临界、一次中间再热、单轴、双缸、双排汽、反动凝汽式汽轮 机 额定功率: 300MW 最大功率: 330MW 初蒸汽参数: =0p 16.67MP a ,=0 t 538C 再热蒸汽参数: 冷段压力 ==in rh p p 2 3.653MPa ,冷段温度=in rh t 320.6C 热段压力=out rh p 3.288MP a ,热段温度=out rh t 538C 低压缸排汽参数: =c p 0.0299M Pa ,=c t 32.1C , =c h 2329.8kJ/kg 给水泵小汽轮机耗汽份额:=st α0.0432 机组发电机实际发出功率:=' e P 300MW 给水泵出口压力: =pu p 20.81M Pa 凝结水泵出口压力: 1.78MPa 机组机电效率: ==g m mg ηηη0.98 加热器效率: =h η0.99 额定排汽量: 543.8t/h 给水温度: 273.6℃ 冷却水温度: 20℃ 最高冷却水温度: 34℃ 额定工况时热耗率: (计算)7936.2Kj /KW .h (保证)7955Kj/K W.h 额定工况时汽耗率 3.043K g/KW .h 主蒸汽最大进汽量: 1025t/h 工作转速: 3000r/min 旋转方向: 顺时针(从汽轮机向发电机看) 最大允许系统周波摆动: 48.5—50.5Hz 空负荷时额定转速波动: ±1r/m in 噪音水平: 90db 通流级数: 36级

制冷系统设计步骤

一、设计任务和已知条件 根据要求,在地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0.20;当空调制冷量为174~ 1744KW时,A=0.10~0.15;当空调制冷量大于1744KW时,A=0.05~0.07;对于直接供冷系统,A=0.05~0.07。 2、确定制冷剂种类和系统形式 根据设计的要求,选用氨为制冷剂并且采用间接供冷方式。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到地区夏季室外平均每年不保证50h的湿球温度(℃)℃

对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。 冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定: 选用立式壳管式冷凝器=+(2~4)=31.2+3=34.2℃ 注意:通常不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即 ℃

汽轮机火用分析方法的热力系统计算

汽轮机火用分析方法的热力系统计算 前言 在把整个汽轮机装置系统划分成若干个单元的过程中,任何一个单元由于某些因素而引起的微弱变化,都会影响到其它单元。这种引起某单元变化的因素叫做“扰动”。也就是说,某单元局部参量的微小变化(即扰动),会引起整个系统的“反弹”,但是它不会引起系统所有参数的“反弹”。就汽轮机装置系统而言,系统产生的任何变化,都可归结为扰动后本级或邻近级抽汽量的变化,从而引起汽轮机装置系统及各单元的火用损变化。因此,在对电厂热力系统进行经济性分析时,仅计算出某一工况下各单元火用损失分布还是不够的,还应计算出当某局部参量变化时整个热力系统火用效率变化情况。 1、火用分析方法 与热力系统的能量分析法一样,可以把热力系统中的回热加热器分为疏水放流式和汇集式两类(参见图1和图2),并把热力系统的参数整理为3类:其一是蒸汽在加热器中的放热火用,用q’表示;其二是疏水在加热器中的放热火用,用y 表示;其三是给水在加热器中的火用升,以r’表示。其计算方法与能量分析法类似。

对疏水式加热器: 对疏水汇集式加热器: 式中,e f、e dj、e sj分别为j级抽汽比火用、加热器疏水比火用和加热器出口水比火用。1.1 抽汽有效火用降的引入 对于抽汽回热系统,某级回热抽汽减少或某小流量进入某加热器“排挤”抽汽量,诸如此类原因使某级加热器抽汽产生变化(一般是抽汽量减少),如果认为此变化很小而不致引起加热器及热力系统参数变化,那么便可基于等效焓降理论引入放热火用效率来求取某段抽汽量变化时对整个系统火用效率的影响。 为便于分析,定义抽汽的有效火用降,在抽汽减少的情况下表示1kg排挤抽汽做功的增加值;在抽汽量增加时,则表示做功的减少值;用符号Ej来表示。当从靠近凝汽器侧开始,

用EXCEL编制手算结构的锅炉热力计算程序

用EXCEL编制手算结构的锅炉热力计算程序 华北电力大学 鲍志勇 刘彦丰 韩中合 摘 要 作者在尝试利用EXCEL电子表格软件来实施锅炉热力计算的计算机程序的基础上,介绍了计算机程序的结构形式和一些主要特点。并以上海锅炉厂一台“400t h再热煤粉炉”为计算实例进行了验证计算。 关键词 锅炉 热力计算 电子表格 锅炉热力计算是锅炉设计和改造所必需的一项重要计算,该计算的繁琐程度也是锅炉专业工作者所共知的。随着计算机应用的普及,近十几年来多数锅炉厂家及科研人员开始采用计算机程序来实施该计算,使其变得简单化和更加精确化。然而以往的锅炉热力计算计算机程序大都由FOR2 TRA、NBA S I C或C语言编制,这些语言具有强大的计算功能,编制的程序具有所需内存少、计算速度快等特点。但其最大缺点则是这些程序中的计算模块和一些系数的选取只能由程序设计者进行修改,一般使用者不能了解其计算过程,只能盲目使用。此外这类程序的输入和输出界面较为单调,若需将计算结果汇编成热力计算书时,则必须将计算结果在文字处理程序中重新编辑,费时费力。为了解决上述问题,使热力计算的计算机程序能够直接面向一般工程技术人员,我们利用EX2 CEL编制了手算结构的计算机程序。 1 EXCE L简介 EXCEL是M icro soft公司推出的一种强有力的电子表格软件,每个EXCEL文件包含一个或多个二维数据工作表。工作表就像会计的分类帐,由行和列交叉成的多个单元组成。用户可在其中填写数据,数据可以是输入的数字或文本,或者是计算数值的公式。用户可以通过对单元的引用来使用工作表中的数据。 除了强大的快速制表功能外,M icro soft EX2 CEL还提供了图表处理、创建数据库管理和宏的功能。宏类似其它应用软件的脚本,可用来在工作表中完成复杂的任务。其中突出的优点是允许用户创建自定义函数及用户的对话框。数据库是结构化数据的集合,其中的数据按照一定的逻辑层次存放。用户对数据的管理和维护变得方便且容易。EXCEL的所有这些特点,为我们编制手算结构的锅炉热力计算电算化程序奠定了基础。 2 程序的结构形式和特点 该计算程序由主菜单表、热力计算程序(见附表)、饱和水温焓表、水蒸气温焓表、水蒸气参数表、烟气温焓表、自定义函数库表等工作表组成。主菜单表负责对后6个工作表的管理和调用。 热力? 4 1 ?  电 力 情 报 I N FORM A T I ON ON EL ECTR I C POW ER №3 1997

600MW凝汽式机组全厂原则性热力系统计算

[键入文字] 华址电力*营 《热力发电厂》课程设计 题目:国产600MW凝汽式机组全厂原则性热力系统设计 计算 指导教师:李惊涛 专业:热能与动力工程 班级: 热能09 学号: 1091 姓名: 能源动力与机械工程学院

目录 一、............................................................. 课程设计的目的 3 二、................................................................... 计算任务 3 三、............................................................... 计算原始资料 3 3.1汽轮机形式及参数 (3) 3.2回热加热系统参数 (3) 3.3锅炉型式及参数 (4) 3.4其他数据 (4) 3.5简化条件 (4) 四、................................................................. 热系统计算 5 4.1汽水平衡计算 (5) 4.2 汽轮机进汽参数计算 (5) 4.3辅助计算 (5) 4.4各级加热器进、出水参数计算 (6) 4.5高压加热器组及除氧器抽汽系数计算 (7) 4.6除氧器抽汽系数计算 (8) 4.7低压加热器组抽汽系数计算 (8) 4.8汽轮机排汽量计算与校核 (10) 4.9汽轮机内功计算 (11) 4.10汽轮机发电机组热经济性指标计算 (12) 4.11全厂热经济性指标计算 (13) 五、反平衡校核 14 六、参考资料 15 附图(汽态膨胀过程线) (16)

热力发电厂课程设计说明书国产600MW凝汽式机组全厂原则性热力系统设计计算word文档

国产600MW 凝汽式机组全厂原则性热力系统设计计算 1 课程设计的目的及意义: 电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据。 2 课程设计的题目及任务: 设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算。 计算任务: ㈠ 根据给定的热力系统数据,在h - s 图上绘出蒸汽的汽态膨胀线 ㈡ 计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D ㈢ 计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、 绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率) ㈣ 按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图 3 已知数据: 汽轮机型式及参数 机组型式:亚临界、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机;

锅炉型式及参数 锅炉型式英国三井2027-17.3/541/541额定蒸发量Db:2027t/h 额定过热蒸汽压力P b17.3MPa 额定再热蒸汽压力 3.734MPa 额定过热蒸汽温度541℃ 额定再热蒸汽温度541℃ 汽包压力:P du18.44MP 锅炉热效率92.5% 汽轮机进汽节流损失4% 中压缸进汽节流损失2% 轴封加热器压力P T98kPa 疏水比焓415kJ/kg 汽轮机机械效率98.5% 发电机效率99% 补充水温度20℃ 厂用电率0.07 4 计算过程汇总: ㈠原始资料整理:

制冷系统设计步骤

一、设计任务和已知条件根据要求,在武汉地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=~;当空调制冷量为174~1744KW时,A=~;当空调制冷量大于1744KW时,A=~;对于直接供冷系统,A=~。 2、确定制冷剂种类和系统形式 根据设计的要求,选用氨为制冷剂并且采用间接供冷方式。 3、确定制冷系统设计工况

确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到武汉地区夏季室外平均每年不保证5 0h的湿球温度(℃) ℃ 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。 冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定:

选用立式壳管式冷凝器=+(2~4)=+3=℃ 注意:通常不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即 ℃ 式中——载冷剂的温度(℃)。 一般对于冷却淡水和盐水的蒸发器,其传热温差取=5℃。 ③、过冷温度()的确定 在冷凝压力下,制冷剂液体的过冷温度与冷凝温度的差值,称为过冷度。是否采用过冷应进行全面的经济技术分析。

(完整版)热力计算

1. 水冷壁、锅炉管束、省煤器、过热器、再热器、凝渣管、空气预热器的作用是什么? 水冷壁:(1)吸收炉膛内火焰的热量,是主要蒸发受热面,将烟气冷却到合适的炉膛出口温度。(2)保护炉墙。(3)悬吊敷设炉墙、防止炉壁结渣。凝渣管:是蒸发受热面,进一步降低烟气温度,保护烟气下游密集的过热受热面不结渣堵塞。锅炉管束:是蒸发受热面。过热器:是过热受热面。将锅炉的饱和蒸汽进一步加热到所需过热蒸汽的温度。省煤器:(1)降低排烟温度,提高锅炉效率,节省燃料。(2)充当部分加热受热面或蒸发受热面。空气预热器:(1)降低排烟温度提高锅炉效率。(2)改善燃料着火条件和燃烧过程,降低燃烧不完全损失,进一步提高锅炉效率。(3)提高理论燃烧温度,强化炉膛的辐射传热。(4)热空气用作煤粉锅炉制粉系统的干燥剂和输粉介质。 2. 水冷壁、省煤器、过热器、空气预热器可分为哪几类?各有什么优缺点? 水冷壁可分为光管水冷壁和膜式水冷壁。光管水冷壁优点:制造、安装简单。缺点:保护炉墙的作用小,炉膛漏风严重。膜式水冷壁:优点:对炉墙的保护好,炉墙的重量、厚度大为减少。炉墙只需要保温材料,不用耐火材料,可采用轻型炉墙。水冷壁的金属耗量增加不多。气密性好,大大减少了炉膛漏风,甚至也可采用微正压燃烧,提高锅炉热效率。蓄热能力小,炉膛燃烧室升温快,冷却亦快,可缩短启动和停炉时间。厂内预先组装好才出厂,可缩短安装周期,保证质量。缺点:制造工艺复杂。不允许两相邻管子的金属温度差超过50 度,因要把水冷壁系统制成整体焊接的悬吊框式结构,设计膜式水冷壁时必须保证有足够的膨胀延伸自由,还应保证人孔、检查孔、看火孔以及管子横穿水冷壁等处有绝对的密封性。省煤器:铸铁式省煤器:优点:耐腐蚀、耐磨损。耐内部氧腐蚀、耐外部酸腐蚀。缺点:承压能力低,铸铁省煤器的强度不高,即承压能力低。不能做成沸腾式,否则易发生水击,损坏省煤器;易积灰,表面粗糙,胁制片间易积灰、堵灰;易渗漏,弯头多,法兰连接,易渗水漏水。体积大,重量重,价格贵,铸铁省煤器管壁较厚,笨重。钢管式省煤器:优点:钢管式省煤器可用于任何压力和容量的锅炉,置于不同形状的烟道中。体积小,重量轻,价格低廉。过热器:水平过热器:疏水容易,固定困难。立式放置时刚好相反。空气预热

相关文档
最新文档