二次函数的几种变换

二次函数的几种变换
二次函数的几种变换

解析二次函数的一般式的三种变换

二次函数的一般式的用途非常广泛,其中与函数图像的对称变换相结合是一个亮点,经常在高考题中出现,考察了同学们的灵活应用能力。为此,就常见几种形式归类如下:

一. 2()||f x ax bx c =++ 1、变换过程:

|

|2x x x 2c bx ax y c bx ax y ++=????????????→?++=轴上方

轴为对称轴翻折到轴下方的图像以把2、草图:以△>0为例,如图一。 3、性质:

定义域为R ;值域:[0,+∞); 对称性:以a

b

x 2-

=为对称轴; 单调性:减区间(-∞,1x )和(2,2x a

b

-

); 增区间(1x ,a

b

2-)和(2x ,+∞)。

奇偶性:若0=b ,函数为偶函数; 若0≠b ,函数为非奇非偶函数;

例一.(08浙江卷)已知t 为常数,函数x x y --=22

t=__ _

解析:本小题主要考查二次函数问题。对称轴为1,x =下方图像翻到x 轴上方.由区间[0,

3]上的最大值为2,知max (3)32,y f t ==-=解得15,t =或检验5t =时,

(0)52f =>不符,而1t =时满足题意.

点评:

二. 2()||f x ax b x c =++ 1、变换过程:

c

x b x a y c bx ax y ++=?????????????→?++=||||2y 2轴为对称的图形

侧图像关于保留右侧图像,再作右2、草图:以△>03. 性质:

定义域为R ;值域:[a b ac 442-,+∞);

对称性:以a

b

x 2-=为对称轴;

单调性:减区间(-∞, a b 2)和(0,-增区间(a b 2,0)和(a

b

2-,+奇偶性:函数为偶函数;

例二.关于x 的方程()01122

2=+---k x x ,给出下列四个命题:

①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中假命题的个数是 ( )

A. 0

B. 1

C. 2

D. 3

【解析】据题意可令21x t -=(0)t ≥①,则方程化为2

0t t k -+=②,作出函数21

y x =-的图像如图2,结合函数的图象可知:(1)当t=0或t>1时方程①有2个不等的根;(2)当0

程②有两个不等正根时,即1

04

k <<此时方程②有两根且均小于1大于0,故相应的满足方程2

1x t -=的

解有8个,即原方程的解有8个;当1

4

k =时,方程②有两个相等正根t =

12

,相应的原方程的解有4个。 例4.设a 为实数,函数2()||1f x x x a =+-+,x R ∈. (1)讨论()f x 的奇偶性; (2)求 ()f x 的最小值.

解:(1)当0a =时,2()()||1()f x x x f x -=-+-+=,此时()f x 为偶函数; 当0a ≠时,2()1f a a =+,2()2||1f a a a -=++, ∴()(),()(),f a f a f a f a -≠-≠-

此时函数()f x 既不是奇函数也不是偶函数.

三. 2

()||f x ax bx c =++ 1.变换过程:

222||||ax bx x ax bx c ax bx c ++++把轴下方的图像翻着上去图像向上平移个单位

2.草图:以△>0,c>0为例,如图四;

3.性质:定义域为R ;值域:[c,+∞);

对称性:以a

b

x 2-=为对称轴;

单调性:减区间(-∞,0)和(a

b

2-,2x );

增区间(0,a

b

2-

)和(2x ,+∞)。 奇偶性:若0=b ,函数为偶函数;

若0≠b ,函数为非奇非偶函数;

例三.已知函数2()|2|f x x x c =-+下面几个命题正确的是 (1).若c=0,函数为偶函数;(2)存在常数c 使得方程()0f x =有4个根; (3)函数的对称轴为1=x ;(4)函数()f x 的最小值为0。 解析:函数()f x 为非奇非偶函数,与C 的值无关,(1)错;

由函数图像可知,若)0,1(-∈c 满足()0f x =有4个根,(2)对;(3)正确; 函数()f x 的最小值为c ,当c=0时,最小值才为0,(4)错误。

二次函数的三种表达形式

二次函数地三种表达形式:①一般式: (≠、、为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出、、地值. ②顶点式: ()(≠、、为常数),顶点坐标为对称轴为直线,顶点地位置特征和图像地开口方向与函数地图像相同,当时,最值. 有时题目会指出让你用配方法把一般式化成顶点式. 例:已知二次函数地顶点()和另一任意点(),求地解析式. 解:设(),把()代入上式,解得(). 注意:与点在平面直角坐标系中地平移不同,二次函数平移后地顶点式中,>时,越大,图像地对称轴离轴越远,且在轴正方向上,不能因前是负号就简单地认为是向左平移. 具体可分为下面几种情况: 当>时,()地图象可由抛物线向右平行移动个单位得到; 当<时,()地图象可由抛物线向左平行移动个单位得到; 当>>时,将抛物线向右平行移动个单位,再向上移动个单位,就可以得到()地图象; 当><时,将抛物线向右平行移动个单位,再向下移动个单位可得到()地图象; 当<>时,将抛物线向左平行移动个单位,再向上移动个单位可得到()地图象; 当<<时,将抛物线向左平行移动个单位,再向下移动个单位可得到()地图象.

③交点式: ()() (≠) [仅限于与轴即有交点时地抛物线,即≥] . 已知抛物线与轴即有交点(,)和(,),我们可设()(),然后把第三点代入、中便可求出. 由一般式变为交点式地步骤: 二次函数 ∵,(由韦达定理得), ∴ () [()] ()(). 重要概念: ,,为常数,≠,且决定函数地开口方向.>时,开口方向向上; <时,开口方向向下.地绝对值可以决定开口大小. 地绝对值越大开口就越小,地绝对值越小开口就越大. 能灵活运用这三种方式求二次函数地解析式; 能熟练地运用二次函数在几何领域中地应用; 能熟练地运用二次函数解决实际问题.b5E2R。 二次函数解释式地求法: 就一般式++(其中,,为常数,且≠)而言,其中含有三个待定地系数,,.求二次函数地一般式时,必须要有三个独立地定量条件,来建立关于,,地方

二次函数图像的变换练习题

二次函数图像的变换 1、 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .()213y x =--- B .()213y x =-+- C .()213y x =--+ D .()2 13y x =-++ 2、将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .()221y x =+ B .()221y x =- C .221y x =+ D .221y x =- /3将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( ) A. 232y x =- B. 23y x = C. 23(2)y x =+ D. 232y x =+ 4、函数23(2)1y x =+-的图象可由函数23y x =的图象平移得到,那么平移的步骤 是:( ) A. 右移两个单位,下移一个单位 B. 右移两个单位,上移一个单位 C. 左移两个单位,下移一个单位 D. 左移两个单位,上移一个单位 5、函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤是( ) A. 右移三个单位,下移四个单位 B. 右移三个单位,上移四个单位 C. 左移三个单位,下移四个单位 D. 左移四个单位,上移四个单位 6、把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .()213y x =--- B .()213y x =-+- C .()213y x =--+ D .()2 13y x =-++ 7、将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( ) A. 232y x =- B. 23y x = C. 23(2)y x =+ D. 232y x =+ 8、函数2y x =与2y x =-的图象关于______________对称,也可以认为 2y x =是函数2y x =-的图象绕__________旋转得到. 9、已知:点P (2,7)在函数2y ax =+b 的图象上,而且当x=-√3时,y=5;(1)求a,b 的值并确定此函数的解析式。(2)若(1/2,m )和点(n,17)也在函数的图像上,求m 和n 的值。 10、已知一个二次函数图像的形状与抛物线Y=4x 2相同,它的顶点坐标是(2,4),求该二次函数的解析式。

有关二次函数的图象变换

一、有关二次函数的图象变换 图形的变换是新课标下的初中数学中的重要内容,在复习二次函数时,可将它的图象--抛物线进行平移、关于x轴、y轴成轴对称或关于原点O(或它的顶点)成中心对称等变换,求对应的抛物线的解析式。 解决这类问题的关键是能正确求出变换后的抛物线的顶点坐标及确定抛物线的开口方向。 例:已知;抛物线y=-x2+2x+3,回答下列问题, (1)分别写出此抛物线的顶点P,与x轴的两个交点A、B(A点在B点的左侧),与y轴的交点c的坐标。 答:P(1,4),A(-1,0),B(3,0),C(0,3) (2)求抛物线y=-x2+2x+3关于y轴对称的抛物线的解析式。 解:y=-x2+2x+3=-(x-1)2+4,因为此抛物线的顶点P(1,4)关于y轴的对称点为P1(-1,4), 所以,所求抛物线的解析式为y=-(x+1)2+4,即y=-x2-2x+3。 (在这个变换过程中,点C(0,3)是不动点) (2)求抛物线y=-x2+2x+3关于x轴对称的抛物线的解析式。 解:若以抛物线y=-x2+2x+3的顶点入手, ∵点P(1,4)关于x轴的对称点为P2(1,-4),而且原抛物线y=-x2+2x+3在关于x轴对称的变换过程中,开口方向由向下变为向上,

∴所求抛物线的解析式为 y=(x-1)2-4,即y=x2-2x-3 (在这个变换过程中,点A(-1,0),B(3,0)是不动点) 若以函数值的正、负入手,抛物线y=-x2+2x+3关于x轴对称的抛物线的解析式为y=-(-x2+2x+3)=x2-2x-3。 (3)求抛物线y=-x2+2x+3关于原点O对称的抛物线的解析式 解:∵点P(1,4)关于原点O的对称点为P3(-1,-4),而且抛物线y=-x2+2x+3关于原点O对称的过程中开口方向由向下变为向上, ∴所求抛物线的解析式为y=(x+1)2-4,即y=x2+2x-3。 (在这个变换过程中,原抛物线y=-x2+2x+3上的点,都绕原点O旋转180°) (4)求抛物线y=-x2+2x+3关于顶点P对称的抛物线的解析式。 解:∵抛物线y=-x2+2x+3关于顶点P对称的抛物线与原抛物线的顶点相同,开口方向相反,

二次函数的基本解析式与图像变换进阶篇(上)

题型一:二次函数的解析式 【引例】 如图,抛物线y=ax2+bx-3与x轴交于A、B两点,交y轴于C点,若OB=OC=3OA,则抛物线的解析式为__________。 【例1】 ⑴抛物线y=ax2-2ax+a2-1的顶点在直线y=x上,则抛物线的解析式为________。 ⑵如图,抛物线223 y ax ax =-+经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC。则抛物线的解析式为___________。 二次函数的基本解析式 与图像变换进阶篇(上)

⑶设抛物线y=-x2+(m+4)x-4m,其中0<m<4,与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,-2),且AD·BD=10,求抛物线的解析式。 【例2】 对于二次函数y=ax2+bx+c,如果当x取任意整数时,函数值y都是整数,那么我们把该函数的图象叫做整点抛物线。(例如:y=x2+2x+2)。 ⑴请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式__________。(不必证明) ⑵请探索:是否存在二次项系数的绝对值小于1 2 的整点抛物线?若存在,请写出其中一条抛 物线的解析式;若不存在,请说明理由。 题型二:二次函数的图象变换 【引例】 在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0)。 ⑴求该二次函数的解析式; ⑵将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标。

【例3】 已知抛物线C1:y=ax2-2amx+am2+2m+1(a>0,m>1)的顶点为A,抛物线C2的对称轴是y轴,顶点为点B,且抛物线C1和C2关于点P(1,3) 成中心对称。 ⑴用含m的代数式表示抛物线C1的顶点坐标; ⑵求m的值和抛物线C2的解析式; ⑶设抛物线C2与x轴正半轴的交点是C,当△ABC为等腰三角形时,求a的值。 【挑战题】 已知二次函数y=ax2+bx+c的图象和x轴有且只有一个交点A,与y轴的交点为B(0,4),且ac=b。 ⑴求该二次函数的解析表达式; ⑵将一次函数y=-3x的图象作适当平移,使它经过点A,记所得的图象为L,图象L与抛物 线的另一个交点为C,求△ABC的面积。

二次函数的三种表达形式.

二次函数的三种表达形式: ①一般式: y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c =a(x2+b/ax+c/a) =a[x2-(x1+x2)x+x1?x2] =a(x-x1)(x-x2). 重要概念: a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。 a的绝对值越大开口就越小,a的绝对值越小开口就越大。 能灵活运用这三种方式求二次函数的解析式;

二次函数表达式三种形式练习题

二次函数表达式三种形式 一.选择题(共12小题) 1.(2015?永春县校级质检)把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.(2014?XX模拟)将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为()A.B. C.D. 3.(2015秋?XX校级期中)与y=2(x﹣1)2+3形状相同的抛物线解析式为() A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.(2015秋?XX校级月考)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.(2015秋?禹城市校级月考)已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3

6.(2014秋?岳池县期末)顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.(2014秋?招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.(2013秋?青羊区校级期中)若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.(2013秋?江北区期末)如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是() A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.(2014?XX县校级模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的 值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.(2015?XX模拟)二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125B.4 C.2 D.0 12.(2015?宜城市模拟)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣

二次函数图像的变换

二次函数图像的变换 第一环节 【知识储备】 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 ()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出 二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图 所示: (2)平移规律:在原有函数的基础上“左加右减”. 二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2 y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2 y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2 y a x h k =-+-; 4. 关于顶点对称 2y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n , 对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,

二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系 课时学习目标: 1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。 2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。 3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。 学习重点: 利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42-的取值,对图像特征的影响。。 学习难点:利用图像认识总结函数性质变化规律。 一、复习预备 1.抛物线5)4(22-+-=x y 的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是 。 2.抛物线y=x 2-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是____ 。 3.已知函数y= x 2 -2x -3 , (1)把它写成k m x a y ++=2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的? (2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图; (5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积; (6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0. 4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 42- 0。 例3:已知二次函数的图像如图—3所示,下列结论: (1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a 其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个. 二、归纳二次函数y=ax 2+bx+c(a ≠0)的图像 与系数a 、b 、c 、ac b 42-的关系

二次函数图象与几何变换

二次函数图象与几何变换 1.将抛物线y=x2﹣2x+3平移得到抛物线y=x2,则这个平移过程正确的是() A.先向左平移1个单位,再向下平移2个单位 B.先向左平移2个单位,再向下平移1个单位 C.先向右平移1个单位,再向上平移2个单位 D.先向右平移2个单位,再向上平移1个单位 【变式1】.将函数y=x2+x+b的图象向右平移a(a>0)个单位,再向上平移2个单位,得到函数y=x2﹣3x+4的图象,则a、b的值分别为() A.a=1、b=4 B.a=2、b=2 C.a=2、b=0 D.a=3、b=2 【变式2】如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为() A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1 【变式3】.若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为() A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+4 【变式4】.将抛物线y=x2﹣4x+3向上平移至顶点落在x轴上,如图所示,则两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)是() A.1 B.2 C.3 D.4 2.与抛物线y=x2﹣2x﹣4关于x轴对称的图象表示为() A.y=﹣x2+2x+4 B.y=﹣x2+2x﹣4 C.y=x2﹣2x+6 D.y=x2﹣2x﹣4 【变式】.二次函数y=x2﹣4x﹣5的图象关于直线x=﹣1对称的图象的表达式是() A.y=x2﹣16x+55 B.y=x2+8x+7 C.y=﹣x2+8x+7 D.y=x2﹣8x+7

二次函数表达式三种形式的联系与区别

二次函数表达式三种形式的联系与区别 二次函数的表达式有三种形式,即一般式、顶点式、交点式。它们之间各不相同,而又相互联系。 一、一般式:)0(2≠++=a c bx a y x 优点:二次项系数a ,一次项系数b ,常数项c ,三系数一目了然。 缺点:不容易看出顶点坐标和对称轴 二、顶点式:)0(4422)2(≠-+=+a a ac a y b a b x 优点:很容易看出顶点坐标和对称轴 缺点:不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 三、交点式:))((2 1x x x x a y --= 优点:很容易看出图像与x 轴的交点坐标(x 1,0)和(x 2 ,0) 缺点:(1)不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 (2)当图像不与x 轴相交时,此式不成立。 四、三种表达式之间的联系 (1)一般式转化为顶点式 利用配方法转化(一提、二配、三整理) a ac a a ac a a c a x a b a x a b a x a b a c bx a y b a b x b a b x a b a b x x x x 44444][[)2222222222)2()2()2()2(-+=+-=+-++=++ =+ =++=++(

(2)顶点式转化为一般式 展开整理即可 c bx a a ac bx a a ac a bx a a ac x a b a a a ac a y x x b b x b a b x b a b x ++=++=-+++=-+++=≠-+=+222222222224444444)4()0(44)2( (3)交点式转化为一般式 展开,利用韦达定理整理可得 二次函数)0(2≠++=a c bx a y x 与x 轴有两交点(x 1,0)和(x 2,0) 则x 1 和x 2为方程02=++c bx a x 的两个根 ] )([)())((212122121221x x x x x x x x x x x x x a x x a x x a y ++-=+--=--= 由韦达定理得: a c a b x x x x =-=+2121 代入得: c bx a a c x a b a x a y x x x x x x x ++=+--=++-=2221212])([] )([ 三种表达式视情况而定; (1)不知道特殊点的坐标时,常用一般式来表示; (2)知道顶点坐标,常用顶点式来表示; (3)如果知道图像与x 轴的交点坐标,常用交点式来表示。 上述三种情况要灵活运用才能更好地理解二次函数的解析式。

二次函数平移、旋转、轴对称变换

二次函数专题训练(平移、旋转、轴对称变换) 一、二次函数图象的平移、旋转(只研究中心对称)、轴对称变换 1、抛物线的平移变换:一般都是在顶点式的情况下进行的。 y=a(x-h)2+k y=a(x-h)2+k ±m y=a(x-h)2 y=a(x-h ±m)2+k 练习:(1)函数 图象沿y 轴向下平移2个单位,再沿x 轴向右平移3 个单位,得到函数__________________的图象。 (2)抛物线2 25y x x =-+向左平移3个单位,再向下平移6个单位,所得抛物线的解析式是 。 2、抛物线的旋转变换(只研究中心对称):一般都是在顶点式的情况下进行的。 (1)将抛物线绕其顶点旋转180?(即两条抛物线关于其顶点成中心对称) ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2 y a x h k =--+。 (2)将抛物线绕原点旋转180?(即两条抛物线关于原点成中心对称) ()2y a x h k =-+关于原点对称后,得到的解析式是()2 y a x h k =-+-。 练习:(1)抛物线2 246y x x =-+绕其顶点旋转180?后,所得抛物线的解析式是 (2)将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( ) A .y =-x 2 B .y =-x 2+1 C .y =x 2-1 D .y =-x 2-1 3、抛物线的轴对称变换: 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 练习:已知抛物线C 1:2 (2)3y x =-+ (1)抛物线C 2与抛物线C 1关于y 轴对称,则抛物线C 2的解析式为 (2)抛物线C 3与抛物线C 1关于x 轴对称,则抛物线C 3的解析式为 总结:根据平移、旋转、轴对称的性质,显然无论作何种变换,抛物线的形状一定不会发生变化,因此a 永远不变。 二、二次函数的系数与图象的关系。 热身练习:1、抛物线y=ax 2+bx+c 的开口方向与 有关。 2、抛物线y=ax 2+bx+c 的对称轴是 . 3、抛物线y=ax 2+bx+c 与y 轴的交点坐标是 ,与x 轴的交点坐标是 。

2二次函数图象的几何变换

一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 ()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函 数2y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”. 二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2 y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2 y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2 y a x h k =-+关于原点对称后,得到的解析式是 ()2 y a x h k =-+-; 4. 关于顶点对称 2 y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+- ; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2 y a x h k =--+. 5. 关于点()m n , 对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 知识点拨 二次函数图象的几何变换

专题09 一元二次函数的三种表示方式(解析版)

专题09 一元二次函数的三种表示方式 一、知识点精讲 通过上一小节的学习,我们知道,一元二次函数可以表示成以下三种形式: 1.一般式:y=ax2+bx+c(a≠0); 2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k). 除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式, 我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数. 当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.① 并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac 存在下列关系: (1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立. (2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立. (3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0), 则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2= b a -,x1x2= c a ,即 b a =-(x1+x2), c a =x1x2.所 以,y=ax2+bx+c=a(2b c x x a a ++) = a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论: 若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法: 3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标. 今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题. 二、典例精析 【典例1】已知某一元二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),

二次函数表达式三种形式练习题

1.把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为() A.B.C.D. 3.与y=2(x﹣1)2+3形状相同的抛物线为()A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3 6.顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是()A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 12.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣ 13.如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它 的解析式为. 14.二次函数的图象如图所示,则其解析式为. 15.若函数y=(m2﹣4)x4+(m﹣2)x2的图象是顶点在原点,对称轴是y轴的抛物线,则 m=. 16.二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x轴的距离为2, 则该二次函数的解析式为. 17.如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0), 那么它对应的函数解析式是. 18.二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(0,﹣3)、C(4,5)三点,求出 抛物线解析式. 19.二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为. 20.如图,一个二次函数的图象经过点A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为 (4,0),点C在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是. 21.坐标平面内向上的抛物线y=a(x+2)(x﹣8)与x轴交于A、B两点,与y轴交于C点,若 ∠ACB=90°,则a的值是.

二次函数的三种表达形式

?二次函数的三种表达形式: ?①一般式: ?y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] ?把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c 的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到; 当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;

当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c

中考数学:二次函数与图形变换

中考数学:二次函数与图形变换 二次函数是初中数学中最精彩的内容之一,也是历年中考的热点和难点。其中,关于函数解析式的确定是非常重要的题型。而今年的中考正是面临新课程改革,教材的内容和学习要求变化较大,其中一个突出的变化就是强化了对图形变换的要求,那么二次函数和图形变化的结合,将是同学们在学习中不可忽视的内容。 图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形变化(平移、轴对称、旋转)的过程中,如何完成解析式的确定呢?解决此类问题的方法很多,关键在于解决问题的着眼点。笔者认为最好的方法是用顶点式的方法。因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再根据具体图形变换的特点,确定变化后新的顶点坐标及a值。 1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。 例1.将二次函数y=x2-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____ 分析:将y=x2-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此a值不变,故平移后的解析式为y=(x-2)2-2。 2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。 二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。 二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a 值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。 例2.求抛物线y=x2-2x-3关于x轴以及y轴对称的抛物线的解析式。

二次函数图象的几何变换

二次函数图象的几何变换 知识点拨 -、二次函数图象的平移变换 (1)具体步骤: 2 先利用配方法把二次函数化成 y =a(x -h) k 的形式,确定其顶点(h,k),然后做出二次函 2 2 数y = ax 的图像,将抛物线 y = ax 平移,使其顶点平移到 (h, k) ?具体平移方法如图所示: (2)平移规律:在原有函数的基础上 左加右减” 2 y = ax ■ bx 关于顶点对称后,得到的解析式是 2 y =a x - h k 关于顶点对称后,得到的解析式是 关于点m , n 对称 2 2 y=ax-h k 关于点 m ,n 对称后,得到的解析式是 y --a x ? h -2m ? 2n -k 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变?求 抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原 抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向, 然后再写出其对称抛物线的表达式. ∕=?ιx 1+Λ 嚼gl?駕 g-*÷l?l 秋1. 2. 3. 4. 二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 关于X 轴对称 ^aX ■ b X 关于X 轴对称后,得到的解析式是 2 y =a(x-h j +k 关于X 轴对称后,得到的解析式是 关于y 轴对称 2 y =ax ■ bx 关于y 轴对称后,得到的解析式是 2 y =a(x-h j +k 关于y 轴对称后,得到的解析式是 关于原点对称 2 y = ax ■ bx 关于原点对称后,得到的解析式是 2 y = a x- h ■关于原点对称后,得到的解析式是 关于顶点对称 Y= -aχ2「bx —c ; 2 y = -a x -h ; —k ; y = ax 2 - bx C ; 2 y=a xfj 亠k ; y = -aχ2 bx -c ; 2 y = —a x h [ —k ; 2 2 b y - -ax -bx c _ a 2 y = -a x —h I 亠 k . 5. 冏上(tx>>.下(KO)平移 "I 个单位■

二次函数图象的平移和对称变换

二次函数图象的平移、旋转、轴对称专题 有关图象的变换一般可采用两种基本的方法,其一是利用特殊点进行变换,其二是利用坐标变换的规律进行变换。所谓利用特殊点进行变换,即选取原图象上一些特殊的点,把这些点按指定的要求进行变换,再把变换后的点代入到新的解析式中,从而求出变换后的解析式,利用特殊点进行变换,又可以从一般形式入手,选取图象上的三个特殊的点进行变换,也可以把一般形式化为顶点式,选取顶点作为特殊点,然后进行变换。利用坐标变换的方法,根据题目的要求,利用坐标变换的规律,从而进行变换。下面由具体的例子进行说明。 一、平移。 例1、把抛物线y=x2-4x+6向左平移3个单位,再向下平移4个单位后,求其图象的解析式。 法(一)选取图象上三个特殊的点,如(0,6),(1,3),(2,2)【选取使运算最简单的点】,然后把这三个点按要求向左平移3个单位,再向下平移4个单位后得到三个新点(-3,2),(-2,-1),(-1,-2),把这三个新点代入到新的函数关系式的一般形式y=ax2+bx+c中,求出各项系数即可。 例2、已知抛物线y=2x2-8x+5,求其向上平移4个单位,再向右平移3个单位,求其解析式。 法(二) 先利用配方法把二次函数化成2 =-+的形式,确定其顶点(2,-3),然 () y a x h k 后把顶点(2,-3)向上平移4个单位,再向右平移3个单位后得到新抛物线的顶点为(5,1),因为是抛物线的平移,因此平移前后a的值应该相等,这样我们就得到新的抛物线的解析式中a=2,且顶点为(5,1),就可以求出其解析式了。

【平移规律:在原有函数的基础上“左加右减、上加下减”】. 法(三) 根据平移规律进行平移,不论哪种抛物线的形式,平移规律为“左右平移即把解析式中自变量x改为x加上或减去一个常数,左加右减,上下平移即把整个解析式加上或减去一个常数,上加下减。” 例3、已知抛物线y=2x2-8x+5,求其向上平移4个单位,再向右平移3个单位,求其解析式。 平移后的图象的解析式为:y=2(x-3)2-8(x-3)+5+4.然后化简即可。 针对练习 1、求把二次函数y=x2-4x+3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位;(2)向上平移3个单位,向左平移2个单位。 2、抛物线2 y x =怎样平移得到的? 2 2(1)3 y x =-+是由抛物线2 3、若抛物线2 y x =-向左平移2个单位,再向下平移4个单位,求所得到的解析式。 二、二次函数图象的轴对称变换 二次函数图象的对称一般有关于x对称和关于y对称等情况,可以用一般式或顶点式表达 1.关于x轴对称 例4、把抛物线y=x2-4x+6关于x轴对称后,求其图象的解析式。 法(一)选取图象上三个特殊的点,如(0,6),(1,3),(2,2)【选取使运算最简单的点】,然后把这三个点按要求关于x轴对称后得到三个新点(0,-6),(1,-3),(2,-2),把这三个新点代入到新的函数关系式的一般形式y=ax2+bx+c 中,求出各项系数即可。 例5、已知抛物线y=2x2-8x+5,求其关于x轴对称后的解析式。 法(二)

相关文档
最新文档