实验四:介观动力学模拟

实验四:介观动力学模拟
实验四:介观动力学模拟

《计算材料学》实验讲义粗粒度模拟

实验名称:介观动力学模拟

一、前言

1、介观模拟简介

长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。

由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微妙)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。

目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin’s equation)来描述体系演化的动力学。

(1)MS-Mesocite简介

MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite 的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、和动力学特性,分析函数主要有角度分布,密度分布,径向分布函数,二面角分布,均方根位移等。同时,您还可以使用力场编辑工具对MS Mesocite的力场进

行编辑,以获得满足特殊要求的力场,从而拓展了MS Mesocite的应用范围。

应用mesocite进行动力学模拟时,最主要的是得到精确的力场。Martini力场,是由Marrink提出的,可以应用于生物分子体系。Martin力场中包括四种主要的力场类型:极性(polar-P)、非极性(apolar-C)、无极性(nonpolar-N)、带电(charged-Q)。每种力场类型又分为若干子类型,极性和非极性根据极性高低下分有五种类型(用下坐标1-5表示),无极性和带电的更具氢键结合能力分为四种类型(d-氢键供体,a氢键受体,da-两个都有,o-都没有),这样使得Martini 力场能够更加精确的描述体系性质,应用于更多不同的有机分子体系。

二、实验目的

1、了解介观模拟方法及应用领域

2、了解Martini力场的

3、掌握mesocite基本原理

4、掌握mesocite模块的基本操作

三、实验内容

以下以介观动力学模拟脂质双分子层为例,熟悉mesocite的基本操作。1、打开MS,选择created new project,键入CG-bilayer作为工程的名称,点击OK。本实例是在软件所有参数在默认的情况下进行的,选择Tools-Settings Organizer,选中CG-bilayer,点击Reset。

2、建脂质分子,建模过程要用到Mesostructure toolbar,如在工具栏中没有此建模工具,点击菜单栏中的view-toolbar-mesostructure,调出此建模工具。

(1)点击Bead Types按钮,打开Bead Types 对话框。

点击Properties…按钮,打开Bead Type Properties 对话框,点击Defaults…按钮,设置Mass为72,Radius为2.35,关闭Bead Type Defaults和Bead Type Properties对话框。

在Bead Types对话框中,定义一下珠子类型:C、GL、PO和NC,关闭对话框。

(2)点击Mesomolecule按钮,打开Build Mesomolecule对话框。

定义粗粒化分子,依次选择4个C、1个GL、1个PO、1个GL和4个C,确定不选Randomize order within repeat unit,点击Build按钮。

在Mesomolecule.xsd文件中左击PO珠子,删除Build Mesomolecule对话框中所有的珠子。

选中Add to branch points,点击more…按钮,打开Mesomolecule Branches 对话框。设置Number of branches to attach为1,关闭对话框。

在Build Mesomolecule对话框中选择1个NC。点击Build按钮。(在显示面板中右击,选择Label,打开label对话框,在properties一栏中选择BeadTypeName,点击Apply,可以检测建立的粗粒化分子是不是正确,可以对比下图。

(3)关闭Build Mesomolecule对话框。在Project Explorer,把Mesomolecule.xsd 文件名改为DPPC.xsd。我们得到以下粗粒化分子结构:

3、更改Martini力场,分配力场,优化脂质分子。

(1)选择Modules -Mesocite - Forcefield Manager或点击Mesocite tools,选择Forcefield Manage,选择MS Martini,点击>>,打开力场文件。在Project Explorer 中,把文件名改为MSMartiniCIS.off。

(2)打开MSMartiniCIS.off文件,点击Interactions。在Show interaction下拉选项中选择Angle Bend。在空白框中,设置Fi 和Fk 到Na 以及Fj 到Qa。改变Functional Form 为Cosine Harmonic设置TO为120,KO为10.8。保存并关闭力场文件。

(3)选择Modules | Mesocite | Calculation或点击Mesocite tools选择Calculation;

打开Mesocite Calculation对话框,点击Energy,在Forcefield的下拉选项中选择Browse...,在Choose Forcefield对话框中选择MSMartiniCIS.off。

(4)打开DPPC.xsd文件。按下ALT键,双击任意C类型珠子,选中所有的C 类型珠子。在Mesocite Calculation对话框中,点击More...打开Mesocite Proparation

options对话框,选择C1,点击Assign按钮。

重复此步,为GL、PO、NC分配力场,分配类型如下表所示:

BeadTypeName MS Martini Forcefield Type Charge

C C1 0

GL Na 0

PO Qa -1.0

NC Q0 1.0

选择PO珠子,在Properties Explorer中,设置Charge为-1,同样把NC设置为1。

(5)在Mesocite Calculation对话框中,点击Setup,改变Task为Geometry Optimization。点击Run按钮。得到以下结构:

(6)在工具栏中,选择Measure/Change按钮,下拉选项中点击Angel,依次点击左边的C-GL-PO,同样选择右边的PO-GL-C。此时会显示出两个接近156.50的角度,选在两个角度,在Properties Explorer中,设置Angels为230。按下ALT键,双击角度,按下Delete。得到以下分子结构:

(7)参照第二步,定义珠子W,用Build Mesomolecule建模工具,建立一个仅包含W的粗粒化分子。更改文件名为solvent.xsd。

4、建立双分子层结构。

(1)选择Build | Build Mesostructure | Mesostructure Template或点击Mesostructure

toolbar中的Mesostructure Template,打开Build Mesostructure Template对话框。

改变X、YExtents为64,Z Extent为100。在Filler中,键入solvent。点击Build按钮。

在Build Mesostructure Template对话框中,改变Former type为Slab。改变Depth为44.15,Orientation为Along Z。

选中Enable surface packing;

在Filler中键入lipid。点击Add,关闭对话框。

(2)选择Build | Build Mesostructure | Mesostructure或点击Mesostructure

toolbar中的Mesostructure ,打开Build Mesostructure对话框。

solvent filler 中的Mesoscale Molecule,选择solvent.xsd。

lipid filler选择优化的DPPC.xsd。

点击Packing,设置Length scale (L)为1,Density为0.00836;

不选Randomize conformations。

在Packing中,点击More...按钮,打开Bead Packing Options对话框;

双击打开已经优化过的DPPC.xsd。选择NC,点击Create bead Head set from selection按钮。

按下CTRL + D取消选定,之后按下CTRL键,选择尾部的两个C珠子。在Bead Packing Options对话框中,改变Bead tag为Tail,点击Create bead Tail set from selection。

关闭对话框。标记后的DPPC结构如下:

(3)双击mesostructure template.msd。在Build Mesostructure对话框中,点击Build 按钮。得到下图所示结构:

(4)在菜单栏中选择File | Export...,打开Export对话框,在保存类型下拉选项中选择Materials Studio 3D Atomistic Files (*.xsd),点击Options...按钮,打开MSD/MTD Export Options对话框,设置Length scale为1,点击OK。

改变文件名为bilayer.xsd,保存在(I):选择当前工程的根目录下的CG-bilayer Files/Documents。点击保存(S)。此时在project explorer会出现一个名为bialyer.xsd的文件。

(5)在菜单栏中选择File | Save Project,选择Window | Close All。

5、体系优化及动力学过程。

在Project Explorer中,双击bilayer.xsd,打开文件。

(1)分配力场:如第三步中的第四小步,为每种粗粒子珠子分配力场,分配电

荷。分配类型如下表所示:

BeadTypeName MS Martini Forcefield Type Charge

GL Na 0

PO Qa -1.0

NC Q0 1.0

(2)第一次构型优化

打开Mesocite Calculation对话框;

点击Energy按钮,在summation method中的Electrostatic的下拉选项中选择Bead based。

确保Mesocite Calculation/Setup中的Task为Geometry Optimization;

选中Mesocite Calculation/Jop Control中的Run inparallel on[ ]of i processors,把可用的CPU调到最大值(此后在几何优化过程,还是动力学过程,为了充分利用服务器,CPU都调到最大值)。

点击Run。

(3)第二次构型优化

双击打开优化过的bilayer.xsd

在Mesocite Calculation对话框中选择Setup按钮;

点击More...打开Mesocite Geometry Optimization对话框,选中Optimize cell;

关闭Mesocite Geometry Optimization对话框。

点击Run。

(4)动力学优化

双击打开第二次优化过的文件bilayer.xsd

在Setup中,选择Task为Dynamics,点击More...按钮,打开Mesocite Dynamics 对话框。

设置Time step为40fs,改变Ensemble为NPT。

选择Thermostat按钮,设置Thermostat为Velocity Scale。

点击Barostat按钮,设置Barostat为Andersen。

在Mesocite Calculation对话框中点击Run。

(5)第二次动力学优化

双击打开bilayer Mesocite Dynamics文件夹下的bilayer.xtd文件;

在Mesocite Dynamics对话框中选择Thermostat按钮,设置Thermostat为Nose。

设置Q ratio为1600。

点击Dynamics按钮,设置Frame output every为250steps。

在Mesocite Calculation对话框中,选中Restart;

点击Run。

弹出警告对话框,点击Yes。

(6)选择File | Save Project,选择Window | Close All。

6、结果分析,以角度分布和沿Z轴浓度分布为例。

(1)角度分布:

①双击打开bilayer Mesocite Restart文件夹下的bilayer.xtd文件;

双击打开DPPC Mesocite GeomOpt文件夹下的DPPC.xsd文件。

在DPPC.xsd下,用Measure/change工具,选择下图所示两个角度。选择GL-PO-GL键角。

②在菜单栏中选择Edit | Find Patterns,打开Find Patterns对话框。

定义优化过的DPPC.xsd文件作为Pattern document,并且确定键角GL-PO-GL仍然被选中。

改变Match property为BeadTypeName。

打开轨迹文件bilayer.xtd,点击Find。

点击New Sets...按钮,打开Define New Set对话框,键入GL-PO-GL Angles,点击OK按钮。

在bilayer.xtd文件中取消选定。

同样定义sets为C-PO-C Angles。

③选择Modules | Mesocite | Analysis,或点击mesocite tools,选择Analysis;

打开Mesocite Analysis对话框,在Analysis选项中选择Angle distribution;

在Sets下选项中选择GL-PO-GL Angles,点击Analyze。同理,分析键角C-PO-C Angles。把数据拷贝到excel中,作图可得:

(2)Z方向浓度分布

①双击打开bilayer Mesocite Restart文件夹下的bilayer.xtd文件;

选择Edit |Edit sets,打开Edit sets对话框,按下ALT键,双击任意W珠子,选中了所有的W珠子。

在Edit sets对话框中,点击New…,打开Define New Set对话框对话框,键入W,点击OK。

同理,定义Sets NC、PO、GL、C。

②选择Modules | Mesocite | Analysis,或点击mesocite tools,选择Analysis;

打开Mesocite Analysis对话框,在Analysis选项中选择Concentration profile;

Sets选择W,选中Specified direction (hkl),改为0 0 1;

点击Analyze;

同理分析NC、PO、GL、C。把数据拷贝到excel中,作图可得:

本实例为软件帮助中的实例教程,参数设置原因可参考Help帮助文件。

参考文献:S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries., "The MARTINI forcefield: coarse grained model for biomolecular simulations.", J. Phys. Chem. B, 111:7812-7824, 2007.

实验四介观动力学模拟

精品文档 《计算材料学》实验讲义 实验八:介观动力学模拟 一、前言 1、介观模拟简介 长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。 由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微秒)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。 目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau 方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin's equation)来描述体系演化的动力学。 (1)MS-Mesocite简介 MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、. 精品文档 和动力学特性,分析函数主要有角度分布,密度分布,径向分布函数,二面角分布,均方根位移等。同时,您还可以使用力场编辑工具对MS Mesocite的力场进行编辑,以获得满足特殊要求的力场,从而拓展了MS Mesocite的应用范围。 应用Mesocite进行动力学模拟时,最主要的是得到精确的力场。Martini力场,是由Marrink提出的,可以应用于生物分子体系。Martin力场中包括四种主要的力场类型:极性(polar-P)、非极性(apolar-C)、无极性(nonpolar-N)、带电

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

模拟电子电路仿真和实测实验方案的设计实验报告111-副本

课程专题实验报告 (1) 课程名称:模拟电子技术基础 小组成员:涛,敏 学号:0,0 学院:信息工程学院 班级:电子12-1班 指导教师:房建东 成绩: 2014年5月25日

工业大学信息工程学院课程专题设计任务书(1)课程名称:模拟电子技术专业班级:电子12-1 指导教师(签名): 学生/学号:涛 0敏0

实验观察R B 、R C 等参数变化对晶体管共射放大电路放大倍数的影响 一、实验目的 1. 学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及R B 、R C 等参数对放大倍数的影响。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 SS —7802 3、 交流毫伏表 V76 4、 模拟电路实验箱 TPE —A4 5、 万用表 VC9205 四、实验容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? I E =E BE B R U U -≈Ic U CE = U CC -I C (R C +R E )

图1 晶体管放大电路实验电路图 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 根据实验结果可用:I C ≈I E = E E R U 或I C = C C CC R U U U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 五.晶体管共射放大电路Multisim仿真 在Multisim中构建单管共射放大电路如图1(a)所示,电路中晶体管采用FMMT5179 (1)测量静态工作点 可在仿真电路中接入虚拟数字万用表,分别设置为直流电流表或直流电压 表,以便测量I BQ 、I CQ 和U CEQ ,如图所示。

模拟电路实验报告.doc

模拟电路实验报告 实验题目:成绩:__________ 学生姓名:李发崇学号指导教师:陈志坚 学院名称:专业:年级: 实验时间:实验室: 一.实验目的: 1.熟悉电子器件和模拟电路试验箱; 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影 响; 3.学习测量放大电路Q点、A V、r i、r o的方法,了解公发射极电路特 性; 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.三极管及单管放大电路工作原理: 2.放大电路的静态和动态测量方法:

四.实验内容和步骤 1.按图连接好电路: (1)用万用表判断试验箱上三极管的好坏,并注意检查电解电容 C1,C2的极性和好坏。 (2)按图连接好电路,将Rp的阻值调到最大位置。(注:接线前先 测量电源+12V,关掉电源后再连接) 2.静态测量与调试 按图接好线,调整Rp,使得Ve=1.8V,计算并填表 心得体会:

3.动态研究 (一)、按图连接好电路 (二)将信号发生器的输入信号调到f=1kHz,幅值为500mVp,接至放大电路A点。观察Vi和V o端的波形,并比较相位。 (三)信号源频率不变,逐渐加大信号源输出幅度,观察V o不失真时的最大值,并填表: 基本结论及心得: Q点至关重要,找到Q点是实验的关键, (四)、保持Vi=5mVp不变,放大器接入负载R L,在改变Rc,R L数值的情况下测量,并将计算结果填入表中:

实验总结和体会: 输出电阻和输出电阻影响放大效果,输入电阻越大,输出电阻越小,放大效果越好。 (1)、输出电阻的阻值会影响放大电路的放大效果,阻值越大,放大的倍数也越大。 (2)、连在三极管集电极的电阻越大,电压的放大倍数越大。 (五)、Vi=5mVp,增大和减小Rp,观察V o波形变化,将结果填入表中: 实验总结和心得体会: 信号失真的时候找到合适Rp是产生输出较好信号关键。 (1)Rp只有在适合的位置,才能很好的放大输入信号,如果Rp阻值太大,会使信号失真,如果Rp阻值太小,则会使输入信号不能被

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

最新实验四:介观动力学模拟_27396

《计算材料学》实验讲义 实验八:介观动力学模拟 一、前言 1、介观模拟简介 长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。 由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微秒)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。 目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin’s equation)来描述体系演化的动力学。 (1)MS-Mesocite简介 MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite 的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、

北航电子电路设计训练模拟分实验报告

北航电子电路设计训练模拟部分实验报告

————————————————————————————————作者:————————————————————————————————日期:

电子电路设计训练模拟部分实验 实验报告

实验一:共射放大器分析与设计 1.目的: (1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。 (2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察 静态工作点的变化对输出波形的影响。 (3)加深对放大电路工作原理的理解和参数变化对输出波形的影响。 (4)观察失真现象,了解其产生的原因。 图 1 实验一电路图 2.步骤: (1)请对该电路进行直流工作点分析,进而判断管子的工作状态。 (2)请利用软件提供的各种测量仪表测出该电路的输入电阻。 (3)请利用软件提供的各种测量仪表测出该电路的输出电阻。 (4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。 (5)请利用交流分析功能给出该电路的幅频、相频特性曲线。 (6)请分别在30Hz、1KHz、100KHz、4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。 (提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注 意信号源幅度和频率的选取,否则将得不到正确的结果。) 3.实验结果及分析: (1)根据直流工作点分析的结果,说明该电路的工作状态。 由simulate->analyses->DC operating point,可测得该电路的静态工作点为:

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

模电仿真实验报告。

模拟电路仿真实验报告 张斌杰生物医学工程141班学号6103414032 Multisim软件使用 一、实验目的 1、掌握Multisim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、Multisim软件介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 一、实验名称: 仪器放大器设计与仿真 二、实验目的 1、掌握仪器放大器的设计方法 2、理解仪器放大器对共模信号的抑制能力 3、熟悉仪器放大器的调试功能 4、掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏表信 号发生器等虚拟仪器的使用 三、设计实验电路图:

四、测量实验结果: 差模分别输入信号1mv第二条线与第三条线:第一条线输出为差模放大为399mv。 共模输入2mv的的电压,输出为2mv的电压。 五、实验心得: 应用Multisim首先要准备好器件的pspice模型,这是最重要的,没有这个东西免谈,当然Spice高手除外。下面就可以利用Multisim的元件向导功能制作自己的仿真元件模型了。将刚刚做好的元件保存,你可能注意到了,保存的路径里面没有出现Master Database,即主数据库,这就是Multisim做的较好的其中一方面,你无论是新建元件还是修改主数据库里面的元件,都不会影响主数据库里面的元件,选好路径以后点击Finish即可,一个新元件就被创建了。在应用电子仿真软件 Multisim进行虚拟仿真时,有许多传感器或新器件,只要知道了它们的电特性或在电路中的作用,完全可以灵活采用变通的办法代替进行仿真,本来软件就是进行虚拟实验的,并不一定非要用真实元件不可,这样可以大大地拓宽电子仿真软件 Multisim的应用范围。再说用软件仿真时不存在损坏和烧毁元件、仪器的问题,只要设计好了电路都可以试一试,仿真成功了就可以进行实际电路的组装和调试,不

实验四:介观动力学模拟

《计算材料学》实验讲义粗粒度模拟 实验名称:介观动力学模拟 一、前言 1、介观模拟简介 长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。 由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微妙)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。 目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin’s equation)来描述体系演化的动力学。 (1)MS-Mesocite简介 MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite 的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、和动力学特性,分析函数主要有角度分布,密度分布,径向分布函数,二面角分布,均方根位移等。同时,您还可以使用力场编辑工具对MS Mesocite的力场进

介观化学体系中的动力学尺度效应

介观化学体系中的动力学尺度效应 侯中怀 辛厚文1 中国科学技术大学化学物理系 安徽合肥 230026 摘要:以生命和表面催化体系为对象,研究了介观化学体系中,内涨落对体系非线性动力学行为的调控作用。发现内涨落可以诱导随机振荡,其强度在体系处于最佳尺度时会出现一个甚至多个极大值,并且在耦合体系中会得到进一步增强,表现为尺度共振效应,尺度选择效应和双重尺度效应,揭示了介观化学体系中尺度效应的新机制。 一 引言 近年来,随着化学研究的对象向生命和纳米体系的深入,介观化学体系动力学规律的研究,已成为受到广泛关注的前沿课题。按照传统的宏观反应动力学理论,体系的状态()i X t 随着时间的演化规律,可以用如下的确定性方程来描述[1,2]: 1()(,...,), (1,...,)i i N dX t f X X i N dt == (1.1) ,其中()i X t 表示第i 种物质在t 时刻的分子数目。但是当体系的尺度V 小到介观尺度时,体系的内涨落显著增长,此时1()((),...,())N t X t X t ≡X 已成为离散的随机变量,宏观确定性方程(1.1)不再有效,体系状态的演化需要用随机动力学方程来描述[3,4]。 化学体系在远离平衡的条件下,由体系中非线性过程的作用,可以形成化学振荡,化学波,化学混沌等多种非线性动力学行为。在生命体系和表面催化等复杂化学体系中,实验上已经发现了大量的非线性动力学行为的例子,如CO 在单晶催化剂表面的反应速率振荡[5],合成基因网络中的蛋白质浓度振荡[6],细胞内及细胞间钙离子浓度的振荡[7],纳米粒子催化剂表面的反应速率振荡等[8]。这些非线性化学现象,对于表面催化和生命体系的实际功能,如基因表达、钙信号的传递、催化活性和选择性等,有着重要的调控作用。传统上,对这些化学振荡行为都是用形如(1.1)的宏观确定性方程来描述。但是如前所述,对于亚细胞水平以及纳米粒子表面进行的化学反应,宏观确定性方程不再适用,而应当代之以介观层次的随机动力学方法。 1 通讯联系人 Email:hxin@https://www.360docs.net/doc/6b11205067.html,

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共 射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 2.834 6.126 2.2040.63 3.92210k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

泊洛沙姆188 与胆酸聚集形态的介观模拟

中国科学: 化学 2011年第41卷第3期: 500 ~ 508 SCIENTIA SINICA Chimica https://www.360docs.net/doc/6b11205067.html, https://www.360docs.net/doc/6b11205067.html, 《中国科学》杂志社SCIENCE CHINA PRESS 论文 增溶性辅料泊洛沙姆188与胆酸聚集形态的介观模拟 刘南岑①, 史新元②, 乔延江②* ① 首都医科大学中医药学院, 北京 100069 ② 北京中医药大学中药信息工程研究中心, 北京 100102 *通迅作者, E-mail: yjqiao@https://www.360docs.net/doc/6b11205067.html, 收稿日期: 2010-03-05; 接受日期: 2010-04-11; 网络版发布日期: 2010-09-14 doi: 10.1360/032010-160 摘要为了建立符合中药特点的增溶性药用辅料的筛选与评价方法, 本研究以清开灵注射液为研究载体, 采用介观动力学方法(MesoDyn)研究其难溶活性成分胆酸与增溶性辅料泊洛沙姆188之间的相互作用, 探讨了胆酸对泊洛沙姆188临界胶束浓度的影响及泊洛沙姆188浓度、模拟时间、温度对两者聚集体构型的影响, 并采用实验方法验证了部分模拟结果, 为中药注射剂增溶性辅料的科学应用提供一定基础. 结果表明: 在清开灵注射液中活性成分胆酸的存在下, 泊洛沙姆188的临界胶束浓度范围为0.6%~0.7%, 降低了泊洛沙姆188自身的临界胶束浓度, 为使清开灵注射液中的胆酸(3%)全部增溶, 泊洛沙姆188浓度应为1.7%. 关键词 泊洛沙姆188 胆酸 增溶 介观模拟 聚集体 1 引言 在新药研发过程中, 很多体外药理活性很高的药物为难溶性药物[1], 由于其溶解性能较差, 严重限制了其临床应用. 因此, 改善药物溶解性, 提高其生物利用度成为药学领域亟待解决的重点问题之一[2]. 常用的增溶方法是调节pH值、加入潜溶剂或助溶剂、胶束或混合胶束、包合以及乳化等[3]. 其中, 加入嵌段共聚物增溶的方法范围广、结构稳定、粒度分布窄、具有较低的CMC, 基本上克服了低分子表面活性剂增溶效果不理想或毒性较大的缺点, 是一种用于难溶性药物增溶的新型和重要方法[2]. 增溶性辅料的选择对增溶效果、药物的有效性乃至安全性都有较大的影响, 从而影响药物的研发进程及临床应用. 因此, 需对辅料和药物的相互作用机制进行深入探讨. 采用经典的实验方法, 深入研究增溶体系微观结构及其对制剂性能的影响, 难度较大[4]. 近年来, 越来越多的科研小组采用介观模拟方法进行聚集形态的研究, 如聚合物与表面活性剂之间的相互作用[5~9]、嵌段共聚物的相分离过程[10~12]等, 但是针对中药注射液中难溶性活性成分与增溶性辅料的系统研究还未见报道. 介观模拟在处理时间上大大短于热力学驰豫时间, 特别是介观动力学模拟(MesoDyn)[13]和耗散粒子动力学模拟(DPD)[14], 更接近实际情况, 可模拟非理想行为下胶束的介观形貌[15]. 嵌段聚合物的应用性质很大程度上取决于其系统的介观形貌, 而决定介观形貌的因素很多, 如温度、浓度、组成等. 本文采用介观动力学方法, 探讨增溶性辅料泊洛沙姆188和清开灵注射液中活性成分胆酸之间的相互作用, 初步考察了不同浓度、温度及模拟时间, 嵌段共聚物胶束体系形态的变化, 为增溶性药用辅料筛选方法的建立提供介观层次上的信息, 也为后续研究提供一定的基础.

分子动力学模拟基础知识

分子动力学模拟基础知识 ? Molecular Dynamics Simulation o MD: Theoretical Background Newtonian Mechanics and Numerical Integration The Liouville Operator Formalism to Generating MD Integration Schemes o Case Study 1: An MD Code for the Lennard-Jones Fluid Introduction The Code, mdlj.c o Case Study 2: Static Properties of the Lennard-Jones Fluid (Case Study 4 in F&S) o Case Study 3: Dynamical Properties: The Self-Diffusion Coefficient ? Ensembles o Molecular Dynamics at Constant Temperature Velocity Scaling: Isokinetics and the Berendsen Thermostat Stochastic NVT Thermostats: Andersen, Langevin, and Dissipative Particle Dynamics The Nosé-Hoover Chain Molecular Dynamics at Constant Pressure: The Berendsen Barostat Molecular Dynamics Simulation We saw that the Metropolis Monte Carlo simulation technique generates a sequence of states with appropriate probabilities for computing ensemble averages (Eq. 1). Generating states probabilitistically is not the only way to explore phase space. The idea behind the Molecular Dynamics (MD) technique is that we can observe our dynamical system explore phase space by solving all particle equations of motion . We treat the particles as classical objects that, at least at this stage of the course, obey Newtonian mechanics. Not only does this in principle provide us with a properly weighted sequence of states over which we can compute ensemble averages, it additionally gives us time-resolved information, something that Metropolis Monte Carlo cannot provide. The ``ensemble averages'' computed in traditional MD simulations are in practice time averages : (99) The ergodic hypothesis partially requires that the measurement time, , i , in the system. The price we pay for this extra information is that we must at least access if not store particle velocities in addition to positions, and we must compute interparticle forces in addition to potential energy. We will introduce and explore MD in this section.

弹簧阻尼系统动力学模型adams仿真设计

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams 软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams 的命令文件,命令文件要求清楚、简洁。 1K 1 C 2K 2C 3 C 3 K 3 M 1 M 2M 二、建立模型 1)启动admas ,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 图 2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图 2-2 图 2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图 2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

分子动力学模拟I

Gromacs中文教程 淮海一粟 分子动力学(MD)模拟分为三步:首先,要准备好模拟系统;然后,对准备好的系统进行模拟;最后,对模拟结果进行分析。虽然第二步是最耗费计算资源的,有时候需要计算几个月,但是最耗费体力的步骤在于模拟系统准备和结果分析。本教程涉及模拟系统准备、模拟和结果分析。 一、数据格式处理 准备好模拟系统是MD最重要的步骤之一。MD模拟原子尺度的动力学过程,可用于理解实验现象、验证理论假说,或者为一个待验证的新假说提供基础。然而,对于上述各种情形,都需要根据实际情况对模拟过程进行设计;这意味着模拟的时候必须十分小心。 丢失的残基、原子和非标准基团 本教程模拟的是蛋白质。首先需要找到蛋白质序列并选择其起始结构,见前述;然后就要检查这个结构是否包含所有的残基和原子,这些残基和原子有时候也是模拟所必需的。本教程假定不存在缺失,故略去。 另一个需要注意的问题是结构文件中可能包含非标准残基,被修饰过的残基或者配体,这些基团还没有力场参数。如果有这些基团,要么被除去,要么就需要补充力场参数,这牵涉到MD的高级技巧。本教程假定所有的蛋白质不含这类残基。 结构质量 对结构文件进行检查以了解结构文件的质量是一个很好的练习。例如,晶体结构解析过程中,对于谷氨酰胺和天冬酰胺有可能产生不正确的构象;对于组氨酸的质子化状态和侧链构象的解析也可能有问题。为了得到正确的结构,可以利用一些程序和服务器(如 WHATIF)。本教程假定所用的结构没有问题,我们只进行数据格式处理。 二、结构转换和拓扑化 一个分子可以由各个原子的坐标、键接情况与非键相互作用来确定。由于.pdb 结构文件只含有原子坐标,我们首先必须建立拓扑文件,该文件描述了原子类型、电荷、成键情况等信息。拓扑文件对应着一种力场,选择何种力场对于拓扑文件的建立是一个值得仔细考虑的问题。这里我们用的是GROMOS96 53a6连接原子力场,该力场对于氨基酸侧链的自由能预测较好,并且与NMR试验结果较吻合。

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告 实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了

解共射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 10k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

系统动力学模型

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 1.1 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算

机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养

相关文档
最新文档