浅谈矩阵在实际生活中的应用

浅谈矩阵在实际生活中的应用
浅谈矩阵在实际生活中的应用

浅谈矩阵在实际生活中的应用

摘要:从数学的发展来看,它来源于生活实际,在科技日新月异的今天,

数学越来越多地被应用于我们的生活,可以说数学与生活实际息息相关。我们在学习数学知识的同时,不能忘记把数学知识应用于生活。在学习线性代数的过程中,我们发现代数在生活实践中有着不可或缺的位置。在本文中,我们对代数中的矩阵在成本计算、人口流动、加密解密、计算机图形变换等方面的应用进行了探究。

关键词:线性代数矩阵实际应用

Abstract:From the development of mathematics, we can see that it comes from our life. With the development of science and technology, the math is more and more being used in our lives, it can be said that mathematics and real life are closely related. While learning math knowledge we can not forget to apply mathematical knowledge to our life. In the process of learning linear algebra, we found that algebra has an indispensable position in life practice. In this article, we explore the application of the matrix in the costing, population mobility, encryption and decryption, computer graphics transform.

Keywords: linear algebra matrix practical application

1 引言

数学作为一门相当重要的学科,在人类发展历史中一直扮演着必不可少的角色,它凝聚了每一代聪明智慧的人们的结晶。数学应用的领域遍及我们日常生活的每个部分,数学是我们的基本功,是每个人或多或少都应该懂的知识。数学是一门神奇的学科,它有着迷人的魅力,让一代又一代的数学爱好者为之痴迷,他们在这方面也做出不朽的贡献。如今,我们将带着好奇的心走进数学领域中的一门有趣的课——《线性代数》,其中我们将对矩阵的应用做简要的介绍。矩阵是一个大家听起来很陌生的次,但它简单易懂而且在生活中有重要的作用。下面我们将举例论述矩阵在实际生活中的应用。

2 实际应用举例

2.1 生产成本计算

在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,但是得到的原始数据往往纷繁杂乱,这就需要用一些方法对数据进行处理,生成直接明了的结果。在计算中引入矩阵可以对数据进行大量的处理,这种方法比较简单快捷。

例1.某工厂生产三种产品A 、B 、C 。每种产品的原料费、支付员工工资、管理费和其他费用等见表1,每季度生产每种产品的数量见表2。财务人员需要用表格形势直观地向部门经理展示以下数据:每一季度中每一类成本的数量、

每一季度三类成本的总数量、四个季度每类成本的总数量。

表1.生产单位产品的成本(元) 表2.每种产品各季度产量(件)

解:我们用矩阵的方法考虑这个问题。两张表格的数据都可以表示成一个矩阵。如下所示:

通过矩阵的乘法运算得到

MN 的第一行元素表示了四个季度中每个季度的原料总成本;

MN 的第二行元素表示了四个季度中每个季度的支付工资总成本; MN 的第三行元素表示了四个季度中每个季度的管理及其他总成本。 MN 的第一列表示了春季生产三种产品的总成本;

成本 产品

A B C

原料费用 10 20 15 支付工资 30 40 20 管理及其他费用 10 15 10 产品 春季 夏季 秋季 冬季 A 2000 3000 2500 2000

B 2800 4800 3700 3000

C 2500 3500 4000 2000 ????? ??=101510204030152010M ??

??? ??=200040003500250030003700480028002000250030002000N ?

?

???

??=8500012050011000087000220000303000352000222000110000159000178500113500MN

MN 的第二列表示了夏季生产三种产品的总成本; MN 的第三列表示了秋季生产三种产品的总成本; MN 的第四列表示了冬季生产三种产品的总成本。

对总成本进行汇总,每一类成本的年度总成本由矩阵的每一行元素相加得到,每一季度的总成本可由每一列相加得到。如下表:

表3. 总成本汇总表

季度

春季

夏季 秋季 冬季 全年 原料费 113500 178500 159000 110000 561000 支付工资 222000 352000 303000 220000 1097000 管理费及其他

87000 110000 120500 85000 402500 合计

422500

640500

582500

415000

2060500

这样,我们就利用矩阵的乘法把多个数据表汇总成一个数据表。从而比较直观地反映了该工厂生产的成本。

2.2 人口流动问题

例2.假设某个中小城市及郊区乡镇共有40万人从事农、工、商工作,假定这个总人数在若干年内保持不变,而社会调查表明:

1) 在这40万就业人员中,目前约有25万人从事农业,10万人从事工业,5万人经商; 2) 在务农人员中,每年约有10%改为务工,10%改为经商; 3) 在务工人员中,每年约有10%改为务农,20%改为经商; 4) 在经商人员中,每年约有10%改为务农,20%改为务工。

现欲预测一、二年后从事各业人员的人数,以及多年之后,从事各业人员总数之发展趋势。 解:若用三维向量(x i ,y i ,z i )T

表示第i 年后从事这三种职业的人员总数,则已知(x 0,y 0,z 0)T

=(25,10,5)T

。而欲求(x 1,y 1,z 1)T

,(x 2,y 2,z 2)T

并考察在n →∞时(x n ,y n ,z n )T

的发展趋势。

依题意,一年后,从事农、工、商的人员总数应为

即:

以(x 0,y 0,z 0)T =(25,10,5)T

代入上式,即得:

即一年业人员的人数分别为21.5万10.5万、8万人。

???

??++=++=++=0001

000100017.02.01.02.07.01.01.01.08.0z

y x Z z y x Y z y x X ????

?

??=?????

??????? ??=????? ??0000001117.02.01.02.07.01.01.01.08.0z y x A z y x Z Y X ?

??

?

?

??=????? ??85.105.21111Z Y X

以及

即两年后从事各业人员的人数分别为19.05万、11.1万、9.85万人。进而推得:

即n 年之后从事各业人员的人数完全由

决定。 在这个问题的求解过程中,我们应用到矩阵的乘法、转置等,将一个实际问题数学化,进而解决了实际生活中的人口流动问题。不得不说,矩阵是我们解决实际问题的重要工具。

2.3 应用矩阵编制Hill 密码

密码学在经济和军事方面都起着极其重要的作用。1929年,希尔(Hill )通过矩阵理论对传输信息进行加密处理,提出了在密码学史上有重要地位的希尔加密算法。下面我们介绍一下这种算法的基本思想。

假设我们要发出“attack ”这个消息。首先把每个字母a ,b ,c ,d ……x ,y ,z 映射到数1,2,3,4……24,25,26。例如1表示a ,3表示c ,20表示t ,11表示k ,另外用0表示空格,用27表示句号等。于是可以用以下数集来表示消息“attack ”:

把这个消息按列写成矩阵的形式:

第一步:“加密”工作。现在任选一个三阶的可逆矩阵,例如: 于是可以把将要发出的消息或者矩阵经过乘以A 变成“密码”(B )后发出。

第二步:“解密”。解密是加密的逆过程,这里要用到矩阵A 的逆矩阵A -1

这个可逆矩阵称为

解密的钥匙,或称为“密匙” 。当然矩阵A 是通信双方都知道的。即用 从密码中解出明码:

通过反查字母与数字的映射,即可得到消息“attack ”。

在实际应用中,可以选择不同的可逆矩阵,不同的映射关系,也可以把字母对应的数字进行不同的排列得到不同的矩阵,这样就有多种加密和解密的方式,从而保证了传递信息的秘密性。上述例子是矩阵乘法与逆矩阵的应用,将高等代数与密码学紧密结合起来。运用数学知识破译密码,进而运用到军事等方面。可见矩阵的作用是何其强大。

???

?

? ??=112032011

M ??

?

?

?

??=210211321A B

AM =?

???? ??=????? ??????? ??=2560266140101112032011210211321????? ??----=-111122110

1A M

B A =????? ??=????? ??????? ??----=-11203201125602661401011111221101????

?

??=????? ??=????? ??=????? ??85.91.1105.190002111222z y x A z y x A Z Y X ?

?

??

?

??=????? ??=????? ??---000111z y x A z y x A Z Y X n n n n n n n n A {}11,3,1,20,20,1

3 结束语

通过这次论文的举例,加深了我们对矩阵的认识,深刻理解了矩阵在实际生活中的应用,矩阵在实际生活中的应用还有很多,在次就不一一列举,以后在日常生活中会经常接触。这次通过对矩阵的学习不仅加深了对矩阵的认识,而且在计算机图形学中也加强了对矩阵变换的应用,使我们对其矩阵变换过程有了更好的理解。相信在以后的学习过程中,我们能更有兴趣,热爱数学,情迷数学。

参考文献

[1] 上海交通大学数学系. 线性代数(第二版)[M]. 北京:科学出版社,2007.

[2] 陆枫,何云峰.计算机图形学基础[M]. 北京:电子工业出版社,2008.

[3] 郭龙先,张毅敏,何建琼.高等代数[M].北京:科学出版社,2011

矩阵特征值的运算性质及推广

矩阵特征值的运算性质及推广 摘要:本篇论文主要从五方面来进行讲解:引言;矩阵特征值的性质;矩阵特征值的应用推广;分块矩阵的性质;分块矩阵特征值应用推广。 由于本篇论文是要以矩阵特征值性质的应用为主题,首先介绍总结了矩阵的一些基本概念及矩阵基本运算,然后在文中着重阐述了矩阵特征值性质,罗列出相关引理并予以证明,然后通过五种类型的矩阵特征值的应用例子将矩阵特征值的运算性质进行推广。将矩阵拓展到分块矩阵,讨论分块矩阵的性质及应用. 关键词:矩阵,特征值,特征向量,特征方程,特征多项式 The Operation Properties and Promotion of Eigenvalue Cui haiyang (Institute of Computer Science, Math) Abstract Three aspects to this thesis to explain: Introduction; matrix eigenvalue nature; promote the application of Matrix Eigenvalues. Because of this paper is a matrix eigenvalue to the application of the nature of the theme first introduced some basic concepts of matrix and the matrix of basic operations, and then in the text focuses on the eigenvalue properties, set out the relevant Yin Li, and to prove it. Finally, five types of application examples Eigenvalue Eigenvalue computation will be the nature of promotion. Key words:Matrix , Eigenvalue, Eigenvectors, Characteristic equation,Characteristic polynomial 1引言 矩阵计算领域在不断的发展和成熟,作为一门数学学科,它是众多理工学科重要的数学工具,矩阵理论既是经典数学的基础课程,是数学的一个重要且目前仍然非常活跃的领域,又是一门最有实用价值的数学理论,是计算机科学与工

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的?就如矩阵的元素(数)一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,- 般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法?比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A、C都是n阶矩阵, A B 其中A 0,并且AC CA,则可求得AD BC ;分块矩阵也可以在求解线性 C D 方程组应用? 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利

1 分块矩阵的定义及相关运算性质 1.1 分块矩阵的定义 矩阵分块 , 就是把一个大矩阵看成是由一些小矩阵组成的 . 就如矩阵的元素 ( 数) 一 样,特别是在运算中 , 把这些小矩阵当作数一样来处理 . 定义1设A 是一个m n 矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 A 11 ... 分成s 块,于是有rs 块的分块矩阵,即A .... A r1 . 1.2 分块矩阵的相关运算性质 1. 2.1 加法 A A ij r s , B B ij r s , 其中 A ij , B ij 的级数相同, A B A ij B ij r s 1.2.2 数乘 kA 1.2.3 乘法 1.2.4 转置 A A ji s r 1.2.5 分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换: A 1s ... ,其中 A ij 表示的是一个矩阵 . A rs 设 A a ij B mn b ij m n ,用同样的方法对 A,B 进行分块 设是任 A a ij mn A ij r s ,k 为任意数, 定义分块矩阵 A A ij r s 与 k 的数乘为 设 A a ij ,B sn n m 分块为 A A ij nm r l ,B B ij l r ,其中 A ij 是 s i n j 矩阵, B ij 是 n i m j 矩阵, 定义分块矩阵A A j rl 和B B ij l r 的乘积为 r C ij A i1 B 1j A i2 B 2j ... A il B lj , i 1,2,...t; j 1,2,3,..., l a ij s n 分块为 A sn A ij r s ,定义分块矩阵 A A ij r s 的转置为 rs

分块矩阵的性质及其应用【开题报告】

阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的. 根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式. 二、研究的基本内容, 拟解决的主要问题: 研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用. 解决的主要问题: 1.了解分块矩阵的基本概念. 2.探讨分块对角化的性质. 3.研究分块矩阵的应用. 三、研究步骤、方法及措施: 研究步骤: 1.查阅相关资料, 做好笔记; 2.仔细阅读研究文献资料; 3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告; 4.翻译英文资料; 5.撰写毕业论文; 6.上交论文初稿; 7.反复修改论文, 修改英文翻译, 撰写文献综述; 8.论文定稿.

高等数学的矩阵在实际生活中的应用修订稿

高等数学的矩阵在实际生活中的应用 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

矩阵在实际生活中的应用 一.【摘要】 随着科学技术的发展,数学的应用越来越广泛,可以说和我们的生活息息相关。而高等数学中的线性代数,也同样有着广泛的应用。本篇论文中,我们就对线性代数中的矩阵在生产成本、人口流动、加密解密、计算机图形变换等方面的应用进行研究。 【关键词】 高等数学矩阵实际应用 二.应用举例 1.生产成本计算:在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,以此来对生产过程进行了解和监控,进而对生产进行管理和调控,保证正常平稳的生产以达到最好的经济收益。但是得到的原始数据往往纷繁复杂,这就需要用一些方法对数据进行处理,生成直接明了的结果。在计算中引入矩阵可以对数据进行大量的处理,这种方法比较简单快捷。 例1.某工厂生产三种产品A、B、C。每种产品的原料费、支付员工工资、管理费和其他费用等见表1,每季度生产每种产品的数量见表2。财务人员需要用表格形势直观地向部门经理展示以下数据:每一季度中每一类成本的数量、每一季度三类成本的总数量、四个季度每类成本的总数量。 表1.生产单位产品的成本(元)表2.每种产品各季度产量(件)

解 我们用矩阵的方法考虑这个问题。两张表格的数据都可以表示成一个矩阵。如下所示: 通过矩阵的乘法运算得到 MN 的第一行元素表示了四个季度中每个季度的原料总成本; MN 的第二行元素表示了四个季度中每个季度的支付工资总成本; MN 的第三行元素表示了四个季度中每个季度的管理及其他总成本。 MN 的第一列表示了春季生产三种产品的总成本; MN 的第二列表示了夏季生产三种产品的总成本; MN 的第三列表示了秋季生产三种产品的总成本; MN 的第四列表示了冬季生产三种产品的总成本。 对总成本进行汇总,每一类成本的年度总成本由矩阵的每一行元素相加得到,每一季度的总成本可由每一列相加得到。如下表: 表3. 总成本汇总表 ? ? ?? ? ??=200040003500250030003700480028002000250030002000N

我看矩阵在实际生活中地指导应用

矩阵在实际生活中的应用 华中科技大学文华学院 城市建设工程学部 环境工程1班丛

目录 摘要 (3) 实际应用举例 (4) 论文总结 (15) 参考文献 (16)

摘要:随着现代科学的发展,数学在经济中广泛而深入的应用 是当前经济学最为深刻的因素之一,马克思曾说过:“一门学科 只有成功地应用了数学时,才真正达到了完善的地步”。下面 通过具体的例子来说明矩阵在经济生活中、人口流动、电阻电路、密码学、文献管理的应用。 关键词:矩阵、人口流动、电阻电路、密码学、文献管理

一:矩阵在经济生活中的应用 1.“活用”行列式定义 定义:用符号表示的n阶行列式D指的是n!项代数和,这些项是一切可能的取自D不同行与不同列上的n个元素的乘积的符号为。由定义可以看出。n阶行列式是由n!项组成的,且每一项为来自于D中不同行不同列的n个元素乘积。 实例1:某市打算在第“十一”五年规划对三座污水处理厂进行技术改造,以达到国家标准要求。该市让中标的三个公司对每座污水处理厂技术改造费用进行报价承包,见下列表格(以1万元人民币为单位).在这期间每个公司只能对一座污水处理厂进行技术改造,因此该市必须把三座污水处理厂指派给不同公司,为了使报价的总和最小,应指定哪个公司承包哪一座污水处理厂? 设这个问题的效率矩阵为,根据题目要求,相当于从效率矩阵中选取来自不同行不同列的三个元素“和”中的最小者!从行列式定义知道,这样的三个元素之共有31=6(项),如下: 由上面分析可见报价数的围是从最小值54万元到最大值58万元。由

④得到最小报价总数54万元,因此,该城市 应选定④即 2.“借用”特征值和特征向量 定义:“设A是F中的一个数.如果存在V中的零向量,使得,那么A就叫做的特征值,而叫做的属于本征值A的一个特征向量。 实例2:发展与环境问题已成为21世纪各国政府关注 和重点,为了定量分析污染与工业发展水平的关系,有人提出了以下的工业增长模型:设是某地区目前的污染水平(以空气或河湖水质的某种污染指数为测量单位),是目前 的工业发展水平(以某种工业发展指数为测量单位).若干年后(例如5年后)的污染水平和工业发展水平分别为和 它们之间的关系为 试分析若干年后的污染水平和工业发展水平。对于这个 问题,将(1)写成矩阵形式,就是

浅谈矩阵的特征向量特征值的意义

浅谈矩阵的特征向量特征值的意义 描述了矩阵的特征向量和特征值的定义,简述了矩阵的特征向量特征值在数学、物理、信息和哲学上的一些意义,对于从多角度深入理解矩阵的特征向量特征值有积极意义。 标签:线性代数;矩阵;特征向量;特征值 1 线性变换与矩阵的特征向量特征值[1] 线性变换是指一个n维列向量被左乘一个n阶矩阵后得到另一个n维列向量,它是同维向量空间中的把一个向量线性映射成了另一个向量。即 Y=AX (Y,X∈Rn A=(aij)A=(aij)n×n) 如果对于数λ,存在一个n维零列向量X(即X∈Rn且X≠0),使得 AX=?姿X 则称数λ为矩阵A的一个特征值,X为矩阵A对应于λ的特征向量。 在线性代数中研究线性变换就是研究相应的矩阵A,矩阵A的特征向量和特征值是线性变换研究的重要内容。 2 在数学上的意义 矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。这里可以将特征值为负,特征向量旋转180度,也可看成方向不变,伸缩比为负值。所以特征向量也叫线性不变量。特征向量的不变性是他们变成了与其自身共线的向量,他们所在的直线在线性变换下保持不变;特征向量和他的变换后的向量们在同一根直线上,变换后的向量们或伸长或缩短,或反向伸长或反向缩短,甚至变成零向量(特征值为零时)[2]。 对对称矩阵而言,可以求得的特征向量是正交的,就是把矩阵A所代表的空间,进行正交分解,使得A的向量集合可以表示为每个向量a在各个特征向量上面的投影长度。 例如,对于x,y平面上的一个点(x,y),我对它作线性变换A, 这个线性变换相当于关于横轴x做镜像。我们可以求出矩阵A的特征向量

矩阵的分块及应用

矩阵的分块及应用 武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩

阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it is

浅析分块矩阵的性质和应用[1]讲解

浅析分块矩阵的性质和应用 作者姓名:周甜 河南理工大学数学与信息科学学院数学与应用数学专业2007级2班 性质1:分块矩阵都是可逆的,且逆矩阵为分块初等矩阵。 性质2:分块单位矩阵经过一次分块矩阵的初等变换后所得到的矩阵仍为分块初等矩阵。 摘要:分块矩阵在高等代数中有着广泛的应用,矩阵的分块运算是矩阵运算的一种重要方法。本文主要讨论了分块矩阵的运算性质,初等变换,并举例说明和分析了分块矩阵在解决矩阵特征值计算和有关矩阵证明等问题中的应用。利用分块矩阵可以使阶数比较高,比较复杂的矩阵和抽象矩阵的特征值问题的解决变得简明而清晰。 关键词:分块矩阵行列式特征值初等变换矩阵的逆 Tentative Analysis of Properties and Applications of Block Matrices Author Name:Zhou Tian Class 2 Grade 2007 of Mathematics and Applied Mathematics of College Mathematics and Information Science of Henan Polytechnic University School Summary:Block matrices has a wide use in Advanced Algebra. Operations of block matrices play an important role in the operation of matrices. This paper mainly illustrates the operation properties and the elementary transformations of block matrices. Several examples are given in the paper to show the applications of block matrices in calculating the eigenvalues of a matrix and proving a subject in connection with matrices. It is convenient to apply block matrices to deal with questions containing matrices with high order and complex appearances and calculating the eigenvalues of abstract matrices. Keywords: block matrices determinant eigenvalues elementary transformation the inverse of a matrix

浅谈矩阵在数学建模中的应用

浅谈矩阵在数学建模中的应用 【摘要】矩阵作为一种认识复杂事物的简捷工具已经被广泛应用在各个学科领域中,在数学建模中也有许多应用。本文就数学建模中使用矩阵的情况做一些举例、小结,最后给出一个典型的数学模型。 【关键词】数学建模;模型;矩阵 矩阵是最基本的数学概念之一,也是人们把握复杂的实际事物本质的一种简捷的思维工具。在数学建模中,矩阵的使用相当广泛,如数学规划、层次分析、马氏链模型、投入产出、数据拟合等都主要应用矩阵分析解决问题,就数学建模中涉及的矩阵就有量纲矩阵、L矩阵、成对比较矩阵、正互反矩阵、一致阵、邻接矩阵、素阵、状态转移矩阵、随机矩阵,还有网络计划分析法中的可达矩阵、模糊评价分析法中的评判矩阵、投入产出法中的消耗系数矩阵、产品流量矩阵,另外在数学建模中还使用了许多普通矩阵。 1.线性方程组与矩阵 自然科学和工程实践很多问题的解决都归纳为线性方程组的求解和矩阵运算。有些问题本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题、投入产出分析问题和各种晶体管电路分析问题;另一方面有些数值计算方法也导致线性方程组求解,如数据拟合问题、非线性方程组和偏微分方程数值解问题等等。 例1:曲线拟合问题:已知一组(二维)数据,即平面上n个点(x1,y1)(i=1,2,…,n),寻求一个函数(曲线)y=f(x),使f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。曲线拟合问题最常用的解法——线性最小二乘法的基本思路: 数学规划是解决这类问题的有效方法。 而线性规划是数学规划中产生较早的一个分支,如今在国防科技、经济学、现代工农业、环境工程、生物学等众多学科和领域都有十分广泛的应用,典型问题有生产计划、任务分配、投料或产品的混合、运输、库存等问题。 3.微分方程模型中的矩阵 微分方程是研究函数变化过程中变化规律的有力工具,在科技、工程、经济管理、人口、交通、生态、环境等各个领域有着广泛的应用,如在研究牛顿力学、热量在介质中的传播、抛体运动、化学中液体浓度变化、人口增长预测、种群变化、交通流量控制等过程中,作为研究对象的函数,常常要和函数自身的导数一起,用一个符合其内在规律的方程,即微分方程来加以描述。矩阵较多地用在微分方程,尤其是方程组有关的理论结果的表示上。

波士顿矩阵分析在实际案例中的运用

波士顿矩阵分析在实际案例中的运用[1] 上海和达汽车零部件有限公司是由某国内上市公司与外商合的生产汽车零部件的企业。公司于1996年正式投产.配套厂海大众发、一汽大众、上海通用、东风柳汽、吉利、湖南长风武等。 和达公司的主要产品分成五类,一是挤塑和复合挤塑类(密封嵌条、车顶饰条等);二是滚压折弯类(车门导槽、滑轨、车架管;三是普通金属焊接类(汽车仪表板横梁模块);四是激光焊接镁合金横梁模块);五是排档杆类(手动排档总成系列)。 和达公司产品波士顿矩阵分析 A 问题型业务(Question Marks.指高增长、低市场份额) 处在这个领域中的是一些投机性产品。这些产品可能利润率但占有的市场份额很小。公司必须慎重回答“是否继续投资.业务?”这个问题。只有那些符合企业发展长远目标、企业具优势、能够增强企业核心竞争力的业务才得到肯定的回答。 从和达公司的情况来看。滚压折弯类产品由于技术含量不高.褴低,未来市场竞争程度必然加剧。所以对于这类产品.最好就是舍弃。由于目前还能带来利润,不必迅速退出,只要目前持必要的市场份额,公司不必再增加投入。当竞争对手大举,可以舍弃。 B 明星型业务(8tsx8,指高增长、高市场份额) 这个领域中的产品处于快速增长的市场中并且占有支配地位份额。但也许不会产生正现金流量。但因为市场还在高速成业必须继续投资,以保持与市场同步增长,并击退竞争对手。 对于和达公司来说,铝横梁的真空电子束焊接系统是国内第一家。具有技术上的领先优势。因此企业应该加大对这一产品的投入.以继续保持技术上的领先地位。对于排档杆类产品.由于国内在这个领域的竞争程度还不太激烈,因此可以考虑进入。和达公司应该把这类产品作为公司

分块矩阵的应用研究文献综述

毕业论文文献综述 数学与应用数学 分块矩阵的应用研究 一、前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关 主题争论焦点) 本论文的重要目的是通过查阅各种相关文献,寻找各种相关信息,来研究分块矩阵的计算方法和分块矩阵在化简行列式、行列式运算、求矩阵的特征值等方面的应用,首先我们先来介绍一些概念: 分块矩阵的概念[] 1: 当矩阵的行数与列数较大时, 为便于运算, 有时把它分成若干个小块, 每个小块是行数与列数较小的矩阵.把一个矩阵看作是由一些小块矩阵所构成, 这就是矩阵的分块.构成分块矩阵的每个小矩阵, 称为子块. 如对矩阵A 分块如下 ? ? ??? ???? ???-=1011 012100100001A 其中记? ? ? ???-=??????=???? ??=1121,0000,10011A O E ,则A 可表示为分块矩阵??????=E A O E A 1 矩阵的分块可以有各种不同的分法.如矩阵A 也可分块如下: ? ? ??? ???? ???-=1011012100100001 A 通过分块矩阵的定义和概念,我们将探讨分块矩阵的计算,并利用分块矩阵的思想把分块矩阵的应用联系到其它问题中.

二、主题部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问 题的评述) 作为解决线性方程的工具,矩阵已有不短的历史.拉丁方阵和幻方在史前年代已有人研究.矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的. 但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状.随后移动处筹,就可以求出这个方程的解.在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年. 1693年,微积分的发现者之一戈特弗里德?威廉?莱布尼茨建立了行列式论(theory of determinants).1750年,加布里尔?克拉默其后又定下了克拉默法则.1800年,高斯和威廉?若尔当建立了高斯—若尔当消去法. 1848年詹姆斯?约瑟夫?西尔维斯特首先创出matrix 一词.研究过矩阵论的著名数学家有凯莱、威廉?卢云?哈密顿、格拉斯曼、弗罗贝尼乌斯和冯?诺伊曼. 分块矩阵的引进使得矩阵这一工具的使用更加便利,解决问题的作用更强有力,其应用也就更广泛.在矩阵的某些运算中,对于级数比较高的矩阵,常采用分块的方法将一个矩阵分割成若干个小矩阵,在运算过程中将小矩阵看成元素来处理,对问题的解决往往起到简化的作用.本文通过一些例子来说明分块矩阵的一些应用. 预备知识[][]32- 分块矩阵的运算: 矩阵的分块技巧性较强,要根据不通的问题进行不同的分块,常见的方法有四种: (1)列向量分法 ),,2,1(),,,,(21n i a a a a A i n ΛΛ==为A 的列向量. (2)行向量分发 ),,2,1(21n i A i n ΛM =???? ? ? ??????=ββββ为A 的行向量. (3)分成两块 ),,(21A A A =其中21,A A 分别为B 的若干行.

浅谈矩阵在实际生活中的应用

浅谈矩阵在实际生活中的应用 摘要:从数学的发展来看,它来源于生活实际,在科技日新月异的今天, 数学越来越多地被应用于我们的生活,可以说数学与生活实际息息相关。我们在学习数学知识的同时,不能忘记把数学知识应用于生活。在学习线性代数的过程中,我们发现代数在生活实践中有着不可或缺的位置。在本文中,我们对代数中的矩阵在成本计算、人口流动、加密解密、计算机图形变换等方面的应用进行了探究。 关键词:线性代数矩阵实际应用 Abstract:From the development of mathematics, we can see that it comes from our life. With the development of science and technology, the math is more and more being used in our lives, it can be said that mathematics and real life are closely related. While learning math knowledge we can not forget to apply mathematical knowledge to our life. In the process of learning linear algebra, we found that algebra has an indispensable position in life practice. In this article, we explore the application of the matrix in the costing, population mobility, encryption and decryption, computer graphics transform. Keywords: linear algebra matrix practical application

浅谈矩阵的特征值与特征向量的应用(终稿)复习课程

浅谈矩阵的特征值与特征向量的应用(终稿)

浅谈矩阵的特征值与特征向量的应用 摘要 特征值与特征向量在现代科学中有重要的应用。本文介绍了特征值与特征向量的定义以及性质,并且给出了在线性空间中线性变换的特征值、特征向量与矩阵中的特征值、特征向量之间的关系。然后介绍了几种特征值与特征向量的求解方法。最后介绍了特征值与特征向量在实际中的应用,如在数学领域中、物理中以及经济发展与环境污染增长模型中的应用等等。 关键字:特征值;特征向量;应用;矩阵;初等变换 Abstract Eigenvalues and eigenvectors have important applications in modern science. This paper introduces the definition and nature of the eigenvalues and eigenvectors, eigenvalues and gives linear space of linear transformations, eigenvectors and eigenvalues of the relationship matrix, feature vectors. Then introduces several eigenvalues and eigenvectors of solving methods. Finally, the eigenvalues and

eigenvectors in practical application, such as in the fields of mathematics, physics, economic development and environmental pollution growth model and the application, and so on. Keys words:eigenvalue;eigenvector;application;matrix;elementary; 目录 浅谈矩阵的特征值与特征向量的应用 (2) 摘要 (2) Abstract (2) 第1章引言 (4) 1.1 研究背景 (4) 1.2 研究现状 (5) 1.3 本文研究目的及意义 (6) 第2章特征值与特征向量的一般理论 (6) 2.1 特征值与特征向量的定义和性质 (6) 2.1.1 特征值与特征向量的定义 (7) 2.1.2 特征值与特征向量的性质 (7) 2.2 特征值与特征向量的一般求解方法 (8) 2.2.1 一般数字矩阵的简单求解 (8)

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

分块矩阵的应用研究

1引言 在数学名词中,矩阵(英文名Matrix )是用来表示统计数据等方面的各种有关联的数据.这个定义很好的解释了Matrix 代码是制造世界的数学逻辑基础.数学上,矩阵就是方程组的系数及常数所构成的方阵.把它用在解线性方程组上既方便,又直观.例如对于方程组 我们可以构成一个矩阵 因为这些数字是有规则的排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来.数学上,一个*m n 矩阵乃一个m 行n 列的矩形阵列.矩阵由数组成,或更一般的,由某环中元素组成. 矩阵作为数学工具之一有其重要的实用价值,它常用于很多学科中.如:线性代数、线性规划、统计分析,以及组合数学等.在实际生活中有许多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛况表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算的证明中则会是一个很繁琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解决,矩阵分块的思想由此产生,对级数较高矩阵的处理是矩阵的相关内容中重要的一部分,分块矩阵形象的揭示了一个复杂或是特殊矩阵的内部本质结构.本文即是通过查阅相关文献和学习相关知识后总结并探讨分块矩阵在各方面的应用,以计算和证明两大方面为主. 在已有的相关文件中,分块矩阵的一些应用如下: (1)从行列式的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明中的应用. (2)分块矩阵在线性代数中是一个基本工具,研究许多问题都需要它.借助分块矩阵的初等变换可以发现分块矩阵在计算行列式、求逆矩阵及矩阵秩方面的应用. 如:设A B M C D ??=???? 是一个四分块n 阶矩阵,其中A 、B 、C 、D 分别是,r r ?(),r n r ?-(),n r r -?()n r -?()n r -阶矩阵,若A 可逆,可证M =AD - 1CA B -,另若D 可逆,则可证得1M D BD C -=-.

矩阵特征值和特征向量在实际中的应用及其实现

第39卷 第7期 高 师 理 科 学 刊 Vol. 39 No.7 2019年 7月 Journal of Science of Teachers′College and University Jul. 2019 文章编号:1007-9831(2019)07-0008-03 矩阵特征值和特征向量在实际中的应用及其实现 周琴 (湖南涉外经济学院 信息与机电工程学院,湖南 长沙 410205) 摘要:矩阵的特征值和特征向量是矩阵理论中的重要内容,在实际问题中的应用也很广泛.研究了矩阵的特征值和特征向量在循环比赛的排名问题和预测分析中的应用,并利用MATLAB软件实现了这些问题的快速求解. 关键词:特征值;特征向量;排名问题;预测分析 中图分类号:O151.2 文献标识码:A doi:10.3969/j.issn.1007-9831.2019.07.003 Application and realization of matrix eigenvalue and eigenvector in practical problems ZHOU Qin (School of Information,Mechanical and Electrical Engineering,Hunan International Economics University,Changsha 410205,China) Abstract:The eigenvalues and eigenvectors of matrices are important contents in matrix theory and are widely used in practical problems.Studies on the application of eigenvalues and eigenvectors of matrices in ranking of cyclic competitions and prediction analysis,and use software MATLAB to realize the rapid solution of these problems. Key words:eigenvalue;eigenvector;ranking issues;predictive analysis 1 引言及预备知识 矩阵的特征值和特征向量在矩阵理论体系中具有举足轻重的作用,并且在实际问题中的应用也很广泛.文献[1-2]探索了特征值和特征向量的几何意义;文献[3]利用特征值与特征向量研究了纤维及大分子的可视化显示.在一些常用的数学建模方法如马尔可夫链模型、偏最小二乘回归模型、层次分析法和主成分分析法中,特征值和特征向量均有应用[4-6]. 定义[7-9]设A是n阶矩阵,如果数l和n维非零列向量a满足l A a a,那么数l称为矩阵A的特征 = 值,a称为A对应于特征值l的特征向量. 在实际教学中,由于矩阵特征值和特征向量的计算方法较为繁琐,学生需要较长的计算时间.如需进一步将计算结果应用到实际问题中,冗长的过程会使学生理解起来比较困难.为了解决此问题,可以利用MATLAB软件[10]自带的函数eig(A)实现矩阵A的特征值和特征向量的快速计算,再将其与实际应用相结合.本文介绍矩阵特征值和特征向量在排名问题和预测分析中的应用,给出了求解实际问题的MATLAB实现方法. 收稿日期:2019-03-02 基金项目:湖南省教育厅科学研究项目(18C1097);2017年度湖南涉外经济学院教学改革研究项目——数学实验在地方本科院校非数学专业 教学中的应用研究 作者简介:周琴(1984-), 女, 湖南长沙人,讲师,硕士,从事计算数学和数学教育研究.E-mail:19891881@https://www.360docs.net/doc/6c17745215.html,

分块矩阵在高等代数中的应用

本科生毕业设计(论文) 题目:分块矩阵在高等代数中的应用 Title: Block Matrix Of Application in Advanced Algebra 学号 0508060357 姓名邹维喜 学院数信学院 专业数学与应用数学 指导教师甘爱萍 完成时间 2008.4.15

分块矩阵在高等代数中的应用 【摘要】高等代数以其独特的理论体系而引人入胜,其基础知识抽象,解题方法技巧性强,稍有不慎就会陷入困境。作为高等代数中的一个工具——分块矩阵,分块矩阵是高等代数中的一个重要内容,在高等代数中有着很重要的应用,本文详细且全面论述了分块矩阵阵的概念和其的初等变换以及证明了矩阵的分块在高等代数中的应用,包括用分块矩阵来算矩阵的乘积,利用分块矩阵求逆矩阵的问题,用分块矩阵求矩阵的行列式问题. 【关键词】:分块矩阵;矩阵乘积得秩;逆矩阵;行列式

Block Matrix in Advanced Algebra Application 【Abstract】 Higher Algebra for its unique and fascinating theoretical system based on abstract knowledge, skills and strong problem-solving approach, a little carelessness will be in trouble. Advanced Algebra as a tool - sub-block matrix, block matrix is of higher algebra an important share in higher algebra very important applications, this paper discusses the detailed and comprehensive array block matrix of the concept and its elementary transformation matrix, as well as the sub-block in the application of higher algebra, including matrices to count the product matrix, the use of sub-block matrix inverse matrix problem, with sub-block matrix of the determinant of the matrix problem. 【Key words】: sub-block matrix; matrix product of a rank; inverse matrix; determinant

相关文档
最新文档