振动测量仪器知识.doc

振动测量仪器知识.doc
振动测量仪器知识.doc

振动测量仪器知识

一、概述

(一)用途

振动测量仪器是一种测量物体机械振动的测量仪器。测量的基本量是振动的加速

度、速度和位移等,可以测量机械振动和冲击振动的有效值、峰值等,频率范围从零点

几赫兹~几千赫兹。外部联接或内部设置带通滤波器,可以进行噪声的频谱分析。随着电子技术尤其是大规模集成电路和计算机技术的发展,振动测量仪器的许多功能都通过数字信号处理技术代替模拟电路来实现。这不仅使得电路更加简化,动态范围更宽,而且功能和稳定性也大大提高,尤其是可以实现实时频谱分析,使振动测量仪器的用途更加广泛。

(二)分类与特点

振动测量仪器按功能来分:分为工作测振仪、振动烈度计、振动分析仪、激振器

(或振动台)、振动激励控制器、振动校准器测量机械振动,具有频谱分析功能的称为

频谱分析仪,具有实时频谱分析功能的称为实时频谱分析仪或实时信号分析仪,具有多路测量功能的多通道声学分析仪。

振动测量仪器按采用技术来分:分为模拟振动计、数字化振动计和多通道实时信号

分析仪。

振动测量仪器按测量对象来分:分为测量机械振动的通用振动计,测量振动对人体

影响的人体(响应)振动计、测量环境振动的环境振动仪和振动激励控制器。

工作测振仪特点

通常是手持式,操作简单、价格便宜,只测量并显示振动的加速度、速度和位

移等。以前用电表显示测量值,现在都是用数字显示。通常不带数据储存和打印

功能,用于一般振动测量。振动烈度计是指专用于测量振动烈度(10 Hz~1000 Hz

频率范围的速度有效值)的振动测量仪器。

实时信号分析仪特点

实时信号分析仪是一种数字频率分析仪,它采用数字信号处理技术代替模拟电路来

进行振动的测量和频谱分析。当模拟信号通过采样及A/D转换成数字信号后,进入数字

计算机进行运算,实现各种测量和分析功能。实时信号分析仪可同时测量加速度、速度和位移,均方根、峰值(Peak)、峰-峰值(Peak-Peak)检波可并行工作。不仅分析速度

快,而且也能分析瞬态信号,在显示器上实时显示出频谱变化,还可将分析得到的数据输出并记录下来。

动态信号测试和分析系统特点

包含多路高性能数据采集、多功能信号发生、基本信号分析,还可以选择高级信号分析;以及模态分析、故障分析等应用。尤其适合振动、噪声、冲击、应变、温度等信

号的采集和分析。

人体(响应)振动计特点

主要用于测量和分析振动对人体的影响。人体振动又分为人体全身振动和手

传振动,测量计权振动加速度有效值。仪器性能应符合GB/T 23716-2009《人体对

振动的响应——测量仪器》的要求,对于全身振动(频率计权W c、W d、W e、W j、W k、)

和用于进行轨道车辆舒适度评价的全身振动(频率计权W b)频率范围为0.5 Hz ~80 Hz,对于建筑物内连续与冲击引起的振动(频率计权W m)频率范围为 1 Hz~80 Hz ,

1

对于手传振动(频率计权W h)频率范围为8 Hz ~1000 Hz,对于运动病(频率计权W f)

频率范围为0.1 Hz ~0.5 Hz 。适用于劳动卫生和振动职业病防治人体振动测量。

环境振动计特点

主要用于测量环境振动,适用于按照环境振动国家标准(GB/T 10071 )进行

环境振动的测量和评价,频率范围为 1 Hz ~80 Hz ,通常测量垂向计权振级(以

10

-6 m/s2为参考基准)。

振动激励控制器特点

振动激励控制器适用于电动、液压振动台控制,既可以进行正弦信号激励控制,也可以实现随机信号激励控制和复合控制,也能模拟出产品在运输过程中所经历的复杂振

动环境。振动控制器采用分布式结构体系,闭环控制由DSP 处理器实现,PC 机独立

于控制环之外,保证了控制系统的实时与高效,能及时、快速地响应试验系统的任何变化,确保控制的稳定性和高精度。

(三)产品国内外现状

国内生产振动测量仪器的厂家主要有:杭州爱华仪器、红声器材厂嘉兴分厂、北京东方振动噪声研究所、扬州联能电子等单位。国产振动测量仪器已普遍采用

数字信号处理技术的实时信号分析仪,北京东方振动噪声研究所已形成DASP 系列振动测量分析仪器产品,苏州东菱有限公司在大型振动台和激振器方面在国内

占领先地位,杭州爱华仪器有限公司在环境振动测量仪器和人体振动测量仪器方

面有所专长,杭州亿恒科技在振动激励控制方面优势明显。一般用途的国产振动

测量分析仪器已能满足国内市场需要,并在国内市场占主导地位。高档实验室使

用振动测量仪器,尤其是计量标准几乎被丹麦B&K 公司、美国HP 公司为代表

的外国公司垄断,它们的产品性能、软件,以及产品品种方面都有较大优势,在

大型设备故障监测和诊断方面更具优势。

(四)技术发展趋势

数字化、小体积、多功能已经成为手持式振动测量仪器的发展趋势;

数字信号处理技术和实时信号分析将会得到广泛应用;

机器振动监测已作为机器故障监测和诊断分析的一种重要手段。

二、基本工作原理

通用振动计由加速度传感器、电荷放大器、积分器、高低通滤波器、检波电路及指

示器、校准信号振荡器、电源等组成。工作原理框图如图1所示。

电荷放大器积分器(速

度或位移)

高/低通

滤波器放大器

检波器

(峰值或

有效值)

加速

度计校准

信号

电池/

电源外接滤波器

或外接电源

AC 输出DC 输出图1 振动计工作原理框图

加速度传感器检取的振动信号经电荷放大器,将电荷信号转变为电压信号,送到积

2

分器经两次积分后,分别产生相应的速度和位移信号。来自积分器的信号送到高低通滤波器,滤波器的上下限截止频率由开关选定。然后信号送到检波器,将交流信号变换为直流信号。检波器可以是峰值或有效值检波,在一般情况下,测加速度时选峰值检波,

测速度时选有效值(RMS)检波,测位移时选峰- 峰值检波。检波后信号被送到表头或数字显示器,直接读出被测振动的加速度、速度或位移值。

通用振动计内的校准信号振荡器使得仪器具有自校的功能,还可根据传感器的灵敏度来调节整机灵敏度。而有的振动计具有加速度计灵敏度适调开关,则灵敏度适调功能由该开关完成。振动计还可以外接滤波器进行频率分析。

动态信号分析仪的原理方框图如图 2 所示:

模拟

输出

传感器D/A

适调放大器

程控

放大器

数据

采集

计算机接口数据

打印

显示器

图2 动态信号分析仪原理方框图

动态信号分析仪由传感器、适调放大器、程控放大器、数据采集、计算机、显示

器、接口、D/A、模拟输出、数据打印等部分组成。传感器可以是加速度传感器,也可

以是速度传感器或位移传感器,它们将振动的加速度、速度或位移信号转换成电信号。

适调放大器用来将加速度计的电荷信号转换成电压信号,或者用作阻抗变换。程控放大器由计算机根据信号大小控制增益,使信号在合适的动态范围内。数据采集器将输入信号高速采集,并进行A/D 变换,将模拟信号转换成数字信号。计算机运行相应软件对

数字信号进行各种运算,达到测量和分析目的。测量和分析结果显示在CRT 或LCD 显示器上,也可以经接口输出到打印机打印。D/A 将数字信号转换成模拟信号输出,实现各种信号输出功能。

三、主要技术指标

由于动态信号分析仪代表振动测量仪器的发展趋势,以下叙述动态信号分析

仪的主要技术指标:

通道数

除手持式仪器外,基本上是多通道动态信号分析仪,最多可能达几百个通道。

频率范围

指被测振动信号所能达到的最高带宽,既取决于传感器的频率范围,也取决

于整机电路,以及采样频率。振动测量仪器的频率范围至少为 1 Hz ~10 kHz, 振

动烈度测试要求的频率范围为10 Hz ~1 kHz 。

测量范围

指动态信号分析仪能测量的最高振动值和最低振动值。

最高取样速率

是单位时间内对模拟输入信号的取样次数,取样速率常以每秒取样的次数

(次/s)或频率(Hz )表示。按照奈奎斯特公式,采样频率至少要大于测量上限

3

频率 1 倍。

动态范围

除模拟电路的动态范围外,还取决于A/D 转换器的位数,如A/D 转换器是

16 位或24 位,A/D 位数越高,动态范围越大。

检波特性

RMS (有效值)、Peak(峰值)和Peak-Peak(峰-峰值)。

滤波器带宽

FFT 带宽,倍频程和/或1/3 倍频程。

实时分析速度

一般指每秒钟分析频谱的速度。

信号发生器输出

正弦、三角、方波、随机、窄带随机以及任意合成波形。

应用软件

基本信号分析软件,包括时域分析、自谱FFT、倍频程CPB、波形编辑、数字滤

波、波形公式运算、概率分析、X-Y 图、相关、互功率谱、频响FRF、三维谱阵、长数

据LFFT 和幅域统计。高级信号分析软件,包括了小波(WT) 和小波包(WPT)分析、拟小

波分析、最大熵(MEM) 分析、精熵谱分析、倒谱和倒熵谱(CEE)分析、包络谱和共振解

调分析、雨流法等计数分析、FFT/FT 细化分析、跟踪滤波、冲击响应谱(SRS)、失真度测试、幅频相频曲线测试、阻尼分析、波形重构等。模态分析和试验软件,锤击和

激振器激励试验软件、环境激励和运行状态模态试验软件、工作变形分析软件、

旋转机械测量分析软件、现场动平衡测量软件、机器运行状态监测和故障诊断软

件、桥梁动态测试软件等。

四、选购注意事项

振动计的选择首先要依据测量对象的振动类型(周期振动、随机振动和冲击振动)、振动的幅度,以及对于所研究的振动确定合适的测量项目(加速度、速度、位移、波形

记录和频谱分析),选择合适的振动测量或分析系统。有的振动测量研究只需了解振动

的位移值(如机械轴系的轴向和径向振动),有的研究了解振动的速度值(如机械底座、轴承座的振动),而且常常把振动烈度,即10Hz~1kHz 频率范围内振动速度的有效值,

作为评价机器振动的主要评价量。另外,还需考虑测量的频率范围、幅值的动态范围、

仪器的最小分辨率。对于冲击测量还应考虑振动测量仪的相位特性,因为冲击振动频谱分量所确定的频率范围内,不仅要求测量设备的频率响应必须是线性的,而且要求设备的相位响应不能发生转变。按选购时要考虑的因素逐一排序(如图 3 所示),就不

难选择最适合您测量要求的振动测量仪器。

应用范围

价格通道数测量范围准确度频谱分析功能

是否取得制造计量器具许可证测量分析软件实时分析

图3 振动测量仪器选择排序

4

选购振动测量仪器应考虑因素:

应用范围

振动测量仪器的应用范围非常广,不同的应用范围对仪器的要求千差万别,价格也大不一样,所以首先要根据实际应用来选择振动测量仪器。

价格

选购振动测量仪器首先需要考虑产品价格范围。振动测量仪器的价格取决于许多因素,包括功能、准确度等级、通道数、存储容量等。一般情况下,相同指标的振动测量

仪器,国产比进口产品价格便宜很多。

功能

对于振动测量仪器,测量功能是最重要的指标,它不但决定着振动测量仪器的应用范围,而且与振动测量仪器的价格关系最大。根据测量要求,如果只要测量振动的加速度、速度和位移值,只需选用工作测振仪,一般的手持式仪器即可满足要求。如果需要

对振动信号进行谱分析,需要选择频谱分析仪,对于非稳态信号的测量和频谱分析,则要选择动态信号分析仪。如需要测量人体振动,需选择人体响应振动计,测量环境振

动选择环境振动测量分析仪器。

通道数

一般的振动测量仪器只有 1 个通道,只测量1 路振动。有时需要测量多路振动,就

需要选用多通道,例如动态信号分析仪,多通道动态信号分析仪大大扩展了振动测

量仪器的用途。

准确度

振动测量仪器的准确度:5%和10%。

频谱分析功能

为了对振动进行频谱分析,需要选择频谱分析功能。在振动测量中用得最多的是带通滤波频谱分析。以前频谱分析使用模拟滤波器来实现,现在大多采用数字技术,通过数字滤波器进行实时频谱分析。带通滤波又分为恒带宽滤波和恒百分比带宽滤波,恒带宽滤波典型的是FFT 窄带分析,恒百分比带宽滤波常用倍频程和1/n 分数倍频程分析。

测量范围

振动测量仪器的测量范围有时要考虑它的测量上限,以便测量高振动值,如几

2 以上;有时要考虑它的测量下限,以便测量低振动值,

2

百m/s ,甚至到几千m/s

如0.01 m/s

2 以下。通常通过选择不同灵敏度的振动传感器可以选择不同的测量

范围。

信号发生器输出

根据测量要求选择需要的信号发生器输出。

接口

目前的振动测量仪器一般都含有RS232、USB 等接口,用于连接到微型打印机或

计算机,用户可以根据测试需要选择。

软件

软件是振动测量仪器的重要组成部分,往往决定仪器的性能和应用。振动测量仪器的软件非常丰富,可以根据实际应用需要进行选择,选择不同的软件将会直接影响仪器的价格。

是否取得制造计量器具许可证

工作测振仪、公害振动噪声计、冲击测量仪、基桩动态测量仪等振动冲击测量仪属依法管理的计量器具,根据中华人民共和国计量法规定,制造这类计量器具应取得制造计量器具许可证,国内或本单位未生产过的计量器具新产品应当经形式评价和型式批

5

基本测量仪器的使用

第19讲基本测量仪器的使用 单元复习目的 (一)知识和技能: 1.复习初中物理基本测量仪器的使用,使学生明白实验中一些基本的测量仪器的使用规则。 2.使学生通过复习明确测量仪器的不规则使用会造成的后果,并知道如何改正错误。 3. 熟悉中考在这部分的题型、热点考点的考查形式。 (二)过程和方法 1.通过复习和归纳,学会梳理知识的方法。 2.通过复习活动,进一步了解研究物理问题的方法。 (三)情感态度和价值观 通过教师和学生的双边活动,激发学生的学习的学习兴趣和对科学的求知欲望,使学生乐于探索生活中物理现象和物理原理。 重点、难点 重点:天平和量筒;弹簧测力计;温度计;电流表和电压表。 难点:刻度尺的估读。 复习内容 本专题重点梳理初中物理阶段基本测量仪器的使用,这部分内容在前面的章节复习中都复习过,在本专题中再重新作一个梳理,使学生对测量仪器的使用有一个整体的印象。 复习流程 一、复习引入 二、考点知识梳理

三、重点难点扫描 (一)热学——温度计 1.温度计的原理是。 2.温度计的使用: ⑴使用前,要观察温度计的量程和分度值; ⑵使用时:①温度计的玻璃泡要全部浸入被测液体中,不要碰到容器底和容器壁;②温度计玻璃泡浸入被测液体后要稍候一会儿,待温度计的示数稳定后再读数;③读数时温度计的玻璃泡要继续留在液体中,视线要与温度计液柱的上表面相平。 (二)电学——验电器 1.验电器的原理是:同种电荷互相排斥 2.验电器的结构:金属球、金属杆、金属箔片。 3.验电器的用途:检验物体是否带电。 4.验电器的使用方法:用待检验的物体是接触验电器的金属球,观察金属箔片是否张开。 (三)电学——电流表和电压表 1.天平: ⑴天平的原理:天平的两臂长度相等,当两个盘中物体的相同时,天平就会平衡。 ⑵天平使用的注意事项: ①被测物体的质量不能超过; ②向盘中加减砝码时要用,不能用手接触砝码,不能把砝码弄湿弄脏; ③不能直接放到天平盘中。 ⑶天平的使用方法: ①“放”:把天平放在,把游码放在; ②“调”:调节天平两端的平衡螺母,使指针指在分度盘的中线处,这时天平平衡;

各种测量仪器的使用方法

各种测量仪器的使用方法 水准仪及其使用方法 高程测量就是测绘地形图的基本工作之一,另外大量的工程、建筑施工也必须量测地面高程,利用水准仪进行水准测量就是精密测量高程的主要方法。 一、水准仪器组合: 1、望远镜 2、调整手轮 3、圆水准器 4、微调手轮 5、水平制动手轮 6、管水准器 7、水平微调手轮 8、脚架 二、操作要点: 在未知两点间,摆开三脚架,从仪器箱取出水准仪安放在三脚架上,利用三个机座 螺丝调平,使圆气泡居中,跟着调平管水准器。水平制动手轮就是调平的,在水平镜内通过三角棱镜反射,水平重合,就就是平水。将望远镜对准未知点(1)上的塔尺,再次调平管水平器重合,读出塔尺的读数(后视),把望远镜旋转到未知点(2)的塔尺,调整管水平器,读出塔尺的读数(前视),记到记录本上。 计算公式:两点高差=后视-前视。 三、校正方法: 将仪器摆在两固定点中间,标出两点的水平线,称为a、b线,移动仪器到固定点一端,标出两点的水平线,称为a’、b ’。计算如果a-b≠a’-b’时,将望远镜横丝对准偏差一半的数值。用校针将水准仪的上下螺钉调整,使管水平泡吻合为止。重复以上做法,直到相等为止。

四、水准仪的使用方法 水准仪的使用包括:水准仪的安置、粗平、瞄准、精平、读数五个步骤。 1、安置 安置就是将仪器安装在可以伸缩的三脚架上并置于两观测点之间。首先打开三脚架并使高度适中,用目估法使架头大致水平并检查脚架就是否牢固,然后打开仪器箱,用连接螺旋将水准仪器连接在三脚架上。 2、粗平 粗平就是使仪器的视线粗略水平,利用脚螺旋置园水准气泡居于园指标圈之中。具体方法用仪器练习。在整平过程中,气泡移动的方向与大姆指运动的方向一致。 3、瞄准 瞄准就是用望远镜准确地瞄准目标。首先就是把望远镜对向远处明亮的背景,转动目镜调焦螺旋,使十字丝最清晰。再松开固定螺旋,旋转望远镜,使照门与准星的连接对准水准尺,拧紧固定螺旋。最后转动物镜对光螺旋,使水准尺的清晰地落在十字丝平面上,再转动微动螺旋,使水准尺的像靠于十字竖丝的一侧。 4、精平 精平就是使望远镜的视线精确水平。微倾水准仪,在水准管上部装有一组棱镜,可将水准管气泡两端,折射到镜管旁的符合水准观察窗内,若气泡居中时,气泡两端的象将符合成一抛物线型,说明视线水平。若气泡两端的象不相符合,说明视线不水平。这时可用右手转动微倾螺旋使气泡两端的象完全符合,仪器便可提供一条水平视线,以满足水准测量基本原理的要求。注意?气泡左半部份的移动方向,总与右手大拇指的方向不一致。 5、读数 用十字丝,截读水准尺上的读数。现在的水准仪多就是倒象望远镜,读数时应由上而下进行。先估读毫米级读数,后报出全部读数。 注意,水准仪使用步骤一定要按上面顺序进行,不能颠倒,特别就是读数前的符合水泡调整,一定要在读数前进行。 五、水准仪的测量 测定地面点高程的工作,称为高程测量。高程测量就是测量的基本工作之一。高程测量按所使用的仪器与施测方法的不同,可以分为水准测量、三角高程测量、GPS高程测量与气压高程测量。水准测量就是目前精度最高的一种高程测量方法,它广泛应用于国家高程控制测量、工程勘测与施工测量中。 水准测量的原理就是利用水准仪提供的水平视线,读取竖立于两个点上的水准尺上的读数,来测定两点间的高差,再根据已知点高程计算待定点高程。 如下图所示,在地面上有A、B两点,已知A点的高程为HA、为求B点的高程HB,在A、B两点之间安置水准仪,A、B两点各竖立一把水准尺,通过水准仪的望远镜读取水平视线分别在A、B两点水准尺上截取的读数为a与b,可以求出A、B两点问的高差为:

实验1基本测量仪器的使用

实验1 基本测量仪器的使用 【实验目的】 1.熟悉米尺、游标卡尺、螺旋测微计、测量显微镜的构造、测量原理及使用方法,练习使用分析天平进行精密称衡; 2.学习有效数字和不确定度的计算,掌握误差理论与数据处理方法,熟悉精密称衡中的系统误差补正. 【实验仪器】 米尺、游标卡尺,螺旋测微计,测厚仪,分析天平,球体,圆柱等,金属块、玻璃块、有机被璃块等. 【实验原理】 一、米尺 “米”是国际公认的标准长度单位,历史上由保存在巴黎国际标准度量衡局的米原器二刻线间的长度决定。1983年第十七届国际计量大会通过的“米”的新定义为:1m是光在真空中于1/299792458s的时间内所传播的距离。 常用米尺(包括各种常用直尺)的分度值是1mm毫米,因此用米尺测量长度时可以读准到毫米级,估计到0.1毫米级(1/10毫米位)。 用米尺测量物体长度的要领是紧贴、对准、正视。米尺自身有一定的厚度,若不贴紧待测物,观测者从不同角度看去,将产生读数的差异,测量时应尽量减少视差。为避免端边磨损带来的误差,也可以不用零刻度线,而以某一刻度线(如1.00cm)作为测量起点,考虑到刻度的不均匀,可以不同刻度线为起点作多次测量而取其中平均值。 二、游标卡尺 (1)游标卡尺构造 游标卡尺的构造如图1-4所示,卡钳E和E'同刻有毫米的主尺A相连,游标框W上附有游标B以及卡钳F和F',推动游标框W可使游标B连同卡钳F、F'沿主尺滑动.当两对钳口E与F,E'与F'紧靠时,游标的零点(即零刻度线)与主尺的零点相重合.用游标卡尺测定物体长度时,用卡钳E F或E'F'卡着被测物体,显然此时游标零点与主尺零点间距离恰好等于卡钳E、F间或卡钳E'、F'的距离,所以从游标零点在主尺上的位置,根据游标原理就可测出物体的长度(卡钳E'F'部分是用来测量物体的内部尺寸,如管的内径等).图中螺钉C是用来固定油标框的,防止游标框在主尺上滑动以便于读数.

测量大神的全站仪的使用教程解说

全站仪,即全站型电子速测仪(Electronic Total Station),是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。因其一次安置仪器就可完成该测站上全部测量工作,所以称之为全站仪。广泛用于地上大型建筑和地下隧道施工等精密工程测量或变形监测领域。 电子全站仪由电源部分、测角系统、测距系统、数据处理部分(CPU)、通讯接口、显示屏、键盘等组成。 (1)同轴望远镜 全站仪的望远镜实现了视准轴、测距光波的发射、接收光轴同轴化。 使得望远镜一次瞄准即可实现同时测定水平角、垂直角和斜距等全部基本测量要素的测定功能。

棱镜杆 (2)双轴自动补偿 作业时若全站仪纵轴倾斜,会引起角度观测的误差,盘左、盘右观测值取中不能使之抵消。而全站仪特有的双轴(或单轴)倾斜自动补偿系统,可对纵轴的倾斜进行监测,并在度盘读数中对因纵轴倾斜造成的测角误差自动加以改正(某些全站仪纵轴最大倾斜可允许至 ±6′)。也可通过将由竖轴倾斜引起的角度误差,由微处理器自动按竖轴倾斜改正计算式计算,并加入度盘读数中加以改正,使度盘显示读数为正确值,即所谓纵轴倾斜自动补偿。 (3)键盘 键盘是全站仪在测量时输入操作指令或数据的硬件,全站型仪器的键盘和显示屏均为双面式,便于正、倒镜作业时操作。

(4)存储器 全站仪存储器的作用是将实时采集的测量数据存储起来,再根据需要传送到其它设备如计算机等中,供进一步的处理或利用,全站仪的存储器有内存储器和存储卡两种。 (5)通讯接口 全站仪可以通过BS–232C 通讯接口和通讯电缆将内存中存储的数据输入计算机,或将计算机中的数据和信息经通讯电缆传输给全站仪, 实现双向信息传输。 全站仪的使用步骤 (1)安置全站仪

常用测量仪器的介绍

螺旋测微器 螺旋测微器又称千分尺(micrometer)、螺旋测微仪、分厘卡,是比游标卡尺更精密的测量长度的工具,用它测长度可以准确到0.01mm,测量范围为几个厘米。它的一部分加工成螺距为0.5mm的螺纹,当它在固定套管B的螺套中转动时,将前进或后退,活动套管C和螺杆连成一体,其周边等分成50个分格。螺杆转动的整圈数由固定套管上间隔0.5mm的刻线去测量,不足一圈的部分由活动套管周边的刻线去测量。 螺旋测微器简介 一种机械千分尺(螺旋测微器) 知名品牌:安一量具、哈量、成量、青量、上工、瑞士TESA、日本Mitutoyo等。 右图为一种常见的螺旋测微器。 螺旋测微器的分类 一种电子千分尺(螺旋测微器) 螺旋测微器分为机械式千分尺和电子千分尺两类。①机械式千分尺。简称千分尺,是利用精密螺纹副原理测长的手携式通用长度测量工具。1848年,法国的J.L.帕尔默取得外径千分尺的专利。1869年,美国的J.R.布朗和L.夏普等将外径千分尺制成商品,用于测量金属线外径和板材厚度。千分尺的品种很多。改变千分尺测量面形状和尺架等就可以制成不同用途的千分尺,如用于测量内径、螺纹中径、齿轮公法线或深度等的千分尺。②电子千分尺。也叫数显千分尺,测量系统中应用了光栅测长技术和集成电路等。电子千分尺是20世纪70年代中期出现的,用于外径测量。 螺旋测微器的组成

螺旋测微器组成部分图解 图上A为测杆,它的活动部分加工成螺距为0.5mm的螺杆,当它在固定套管B的螺套中转动一周时,螺杆将前进或后退0.5毫米,螺套周边有50个分格。大于0.5毫米的部分由主尺上直接读出,不足0.5毫米的部分由活动套管周边的刻线去测量。所以用螺旋测微器测量长度时,读数也分为两步,即(1)从活动套管的前沿在固定套管的位置,读出主尺数(注意0.5毫米的短线是否露出)。(2)从固定套管上的横线所对活动套管上的分格数,读出不到一圈的小数,二者相加就是测量值。 螺旋测微器的尾端有一装置D,拧动D可使测杆移动,当测杆和被测物相接后的压力达到某一数值时,棘轮将滑动并有咔咔的响声,活动套管不再转动,测杆也停止前进,这时就可以读数了。 不夹被测物而使测杆和小砧E相接时,活动套管上的零线应当刚好和固定套管上的横线对齐。实际操作过程中,由于使用不当,初始状态多少和上述要求不符,即有一个不等于零的读数。所以,在测量时要先看有无零误差,如果有,则须在最后的读数上去掉零误差的数值。 螺旋测微器原理和使用 螺旋测微器是依据螺旋放大的原理制成的,即螺杆在螺母中旋转一周,螺杆便沿着旋转轴线方向前进或后退一个螺距的距离。因此,沿轴线方向移动的微小距离,就能用圆周上的读数表示出来。螺旋测微器的精密螺纹的螺距是0.5mm,可动刻度有5 0个等分刻度,可动刻度旋转一周,测微螺杆可前进或后退0.5mm,因此旋转每个小分度,相当于测微螺杆前进或推后0.5/50=0.01mm。可见,可动刻度每一小分度表示0.01mm,所以以螺旋测微器可准确到0.01mm。由于还能再估读一位,可读到毫米的千分位,故又名千分尺。

振动基础知识分析

基本概念和基础知识 一、常见的工程物理量 力、压力、应力、应变、位移、速度、加速度、转速等 (一)力:力是物体间的相互作用,是一个广义的概念。物体承受的力可以有加载力,也可以有动态力,我们常测试的力主要是动态力,即给结构施加力,激发结构的某些特性,便于测试了解其结构特性,如模态试验用的力锤。 (二)应力应变:材料或构件在单位截面上所承受的垂直作用力称为应力。在外力作用下,单位长度材料的伸长量或缩短量,称为应变量。在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量或弹性系数。 (三)振动位移:位移就是质量块运动的总的距离,也就是说当质量块振动时,位移就是质量块上、下运动有多远。位移的单位可以用μm 表示。进一步可以从振动位移的时间波形推出振动的速度和加速度值。

可以是静态位移,可以是动态位移。通常我们测试的都是动态位移量。有角位移、线位移等。 (四)振动速度:质量块在振荡过程中运动快慢的度量。质量块在运动波形的上部和下部极限位置时,其速度为0,这是因为质量块在这两点处,在它改变运动方向之前,必须停下来。质量块的振动速度在平衡位置处达到最大值,在此点处质量块已经加速到最大值,在此点以后质量块开始减速运动。振动速度的单位是用mm/s来表示。 (五)振动加速度:被定义为振动速度的变化率,其单位是用有多少个m/s2 或g来表示。由下图可见加速度最大值处是速度值最小值的地方,在这些点处质量块由减速到停止然后再开始加速。 (六)转速:旋转机械的转动速度 (七)简谐振动及振动三要素 振动是一种运动形式――往复运动

d=Dsin(2πt/T+Φ) D――振动的最大值,称为振幅 T――振动周期,完成一次全振动所需要的时间 f――单位时间内振动的次数,即周期的倒数为振动频率, f =1/T (Hz)(1) 频率f 又可用角频率来表示,即 ω=2π/T (rad/s) ω和f的关系为 ω=2πf (rad/s)(2) f =ω/2π(Hz)(3) 将式(1)、(2)、(3)代入式可得 d =D sin(ωt+Φ)=Dsin(2πft+Φ) 可以用正玄或余玄函数描述的振动过程称之为简谐振动

振动分析基础知识讲课教案

旋转机械振动分析基础 汽轮机、发电机、燃气轮机、压缩机、风机、泵等都属于旋转机械,是电力、石化和冶金等行业的关键设备。这些设备出现故障后,大多会带来严重的经济损失。 振动在设备故障中占了很大比重,是影响设备安全、稳定运行的重要因素。振动又是设备的“体温计”,直接反映了设备健康状况,是设备安全评估的重要指标。一台机组正常运行时,其振动值和振动变化值都应该比较小。一旦机组振动值变大,或振动变得不稳定,都说明设备出现了一定程度的故障。振动对机组安全、稳定运行的危害主要表现在: (1)振动过大将会导致轴承乌金疲劳损坏。 (2)过大振动将会造成通流部分磨损,严重时将会导致大轴弯曲。统计数据表明,汽轮发电机组60%以上的大轴弯曲事故就是由于摩擦引起的。 (3)振动过大还将使部件承受大幅交变应力,容易造成转子、联结螺栓、管道、地基等的损坏。 正因为振动对设备安全运行相当重要,人们对振动问题都很重视。目前大型机组上普遍安装了振动监测系统,并将振动信号投了保护。振动超标时,保护动作,机组自动停机,从而保证设备的绝对安全。

一、振动分析基本概念 振动是一个动态量。图所示是一种简单的振动形式-简谐振动,即振动量按余弦(或正弦)函数规律周期性地变化,幅值反映了振动大小;频率反映了振动量动态变化的快慢程度;相位反映了信号在t=0时刻的初始状态。 可见,为了完全描述一个振动信号,必须同时知道幅值、频率和相位这三个参数,人们称之为振动分析的三要素。 振动是一个动态变化量。为了突出反映交变量的影响,振动监测时常取波形中正、负峰值的差值作为振动幅值,又称为峰峰值。 简谐振动是一种简单的振动形式,实际机组上发生的振动比简谐振动要复杂得多。不管振动多么复杂,由信号分析理论可知,都可以将其分解为若干具有不同频率、幅值和相位的简谐分量的合成。 旋转机械振动分析离不开转速,为了方便和直观起见,

光学基本测量仪器

光学基本测量仪器 1 望远镜 1.1 结构 望远镜是用来观察远距离目标的一种助视光学仪器,其结构如图1所示。物镜L l是一块消色差复合正透镜,镶嵌在套筒M1的前端,M1套在镜筒N上,可前后移动。目镜L2通常由两块凸透镜组成,装在目镜筒M2的两端,靠近物镜的透镜称接场镜,靠近眼睛的称接目镜,M2可套入镜筒N并可前后移动。实验用测量望远镜在镜筒N内靠近物镜的一侧还装有十字准线K。 图1 望远镜的结构特点是两分立系统的光学间隔为零,即物镜的后焦平面和目镜的前焦平面重合。这样远处物体经物镜在其后焦平面上成一倒立缩小的实像,此像作为目镜的物再经目镜成一视角放大的虚像为眼睛接受。 1.2 调节方法 1.调节目镜即改变L2和K之间的距离,使得能清晰地看到十字准线像。 2.物镜调焦即改变L l和K之间的距离,使得能清晰地同时看到准线和观察物的像,且无视差。产生视差的原因,是观察物通过物镜所成的像与准线不在同一平面上,当左右或上下稍微改变视线方向时,可看到两个像之间有相对位移,这时称之为有视差。 2 读数显微镜 2.1 结构 和普通观察显微镜不同,测量用显微镜的物镜应在严格而准确的横向放大率下工作。为此,在预先确定放大率的物镜像平面处安置一块分划板,并与物镜固结为一个整体。为使各种视度眼睛的人都能使用,测量用显微镜的目镜必须可以进行视度调节。 读数显微镜由测微螺旋和测量用显微镜组成,可直接用来精密测量微小物体的长度、孔距、直径等。根据不同的测量要求,读数显微镜的量程、分度值和视角放大率等有不同的规格。常用的JCD-Ⅱ读数显微镜结构如图2所示。

图2 JCD-II型读数显微镜 1—目镜 2—调焦旋钮 3—方轴 4—接头轴 5—测微手轮 6—标尺 7—镜筒支架 8—物镜 9—旋手 10—弹簧压片 11—载物台 12—底座 图中1是目镜及显微镜镜筒。旋转测微手轮5,可使镜筒支架带动镜筒沿导轨移动。显微镜用调焦旋钮2调焦。测微装置分度值为0.01mm,其读数方法与螺旋测微计相同。测量架方轴可插入接头轴4的十字孔中,并可前后移动。接头轴可在底座内旋转、升降,并用旋手9固定。 2.2 调节方法 1)将被测物体置于载物台面玻璃上,用弹簧压片压紧,使其处于镜筒下方。 2)调节目镜,至看清十字分划板。 3)转动调焦旋钮调节物镜,使被测物体清晰可见,并消除与分划板的视差。调整被测量物,使其被测部分的横向和显微镜移动方向平行。 4)转动测微手轮,使十字分划板纵丝对准待测长度的起点,记下此时读数A,沿同一方向转动测微手轮,使分划板纵丝恰好止于待测长度的终点,记下读数B,则所测长度 A 。 L=B 2.3 注意事项 1)转动调焦旋钮时,注意应避免使显微镜与被测物相接触。正确的作法是首先使物镜接近被测物,然后调节镜筒缓慢上移。 2)测量过程中,测微手轮只能向一个方向转动,中途不能逆转,以免引入螺距误差。 3 测微目镜 3.1 结构

振动测量仪器知识

振动测量仪器知识 一、概述 (一)用途 振动测量仪器是一种测量物体机械振动的测量仪器。测量的基本量是振动的加速度、速度和位移等,可以测量机械振动和冲击振动的有效值、峰值等,频率范围从零点几赫兹?几千赫兹。外部联接或内部设置带通滤波器,可以进行噪声的频谱分析。随着电子技术尤其是大规模集成电路和计算机技术的发展,振动测量仪器的许多功能都通过 数字信号处理技术代替模拟电路来实现。这不仅使得电路更加简化,动态范围更宽,而且功能和稳定性也大大提高,尤其是可以实现实时频谱分析,使振动测量仪器的用途更加广泛。 (二)分类与特点 振动测量仪器按功能来分:分为工作测振仪、振动烈度计、振动分析仪、激振器 (或振动台)、振动激励控制器、振动校准器测量机械振动,具有频谱分析功能的称为频谱分析仪,具有实时频谱分析功能的称为实时频谱分析仪或实时信号分析仪,具有多路测量功能的多通道声学分析仪。 振动测量仪器按采用技术来分:分为模拟振动计、数字化振动计和多通道实时信号分析仪。 振动测量仪器按测量对象来分:分为测量机械振动的通用振动计,测量振动对人体影响的人体(响应)振动计、测量环境振动的环境振动仪和振动激励控制器。 工作测振仪特点 通常是手持式,操作简单、价格便宜,只测量并显示振动的加速度、速度和位移等。以前用电表显示测量值,现在都是用数字显示。通常不带数据储存和打印功能,用于一般振动测量。振动烈度计是指专用于测量振动烈度(10 Hz?1000 Hz 频率范围的速度有效值)的振动测量仪器。 实时信号分析仪特点 实时信号分析仪是一种数字频率分析仪,它采用数字信号处理技术代替模拟电路来 进行振动的测量和频谱分析。当模拟信号通过采样及A/D转换成数字信号后,进入数字计算机进行运算,实现各种测量和分析功能。实时信号分析仪可同时测量加速度、速度和位移,均方根、峰值(Peak、峰-峰值(Peak-Peak检波可并行工作。不仅分析速度快,而且也能分析瞬态信号,在显示器上实时显示出频谱变化,还可将分析得到的数据输出并记录下来。 动态信号测试和分析系统特点 包含多路高性能数据采集、多功能信号发生、基本信号分析,还可以选择高级信号分析;以及模态分析、故障分析等应用。尤其适合振动、噪声、冲击、应变、温度等信号的采集和分析。 人体(响应、振动计特点 主要用于测量和分析振动对人体的影响。人体振动又分为人体全身振动和手 传振动,测量计权振动加速度有效值。仪器性能应符合GB/T 23716-2009《人体对 振动的响应一一测量仪器》的要求,对于全身振动(频率计权W c、W d、W e、W j、W k、)和用于进行轨道车辆舒适度评价的全身振动(频率计权W b)频率范围为0.5 Hz?80 Hz,对于建筑物内连续与冲击引起的振动(频率计权W m)频率范围为1 Hz?80 Hz,

AWA6256B 型环境振动分析仪

AWA6256B+型环境振动分析仪 一、产品概述: AWA6256B+环境振动分析仪由环境振动加速度计、主机、环境振动测量分析软件组成,主要用于环境振动测量。环境振动可同时符合 ISO8041:1990及GB/T 23716-2009(ISO8041:2005)标准;符合现行GB10070-1988标准中对仪器的要求,也可满足修订中环境振动测量仪器的要求。 AWA6256B+环境振动分析仪安装人体振动测量软件(S6291-01107),符合GB/T13441和ISO8041:2005标准,软件可以对0.5 Hz~100 Hz的全身振动进行7种频率计权、4种时间计权测量及统计分析,配置相应的座垫式加速度计用于全身振动测量;配置相应的手传振动加速度计可对5 Hz~1600 Hz的手传振动进行测量。安装低频1/3 OCT分析软件(S6291-03110) ,满足GB /T 50355-2005 标准对仪器的要求,对中心频率0.5 Hz~200 Hz.低频振动进行实时1/3 OCT分析。 二、主要技术性能: 配置1:环境振动;配置2:环境振动+人体振动;配置3:环境振动+人体振动+低频1/3 OCT; 注:手传振动因使用的传感器不同,需要单独配置。 环境振动测量人体振动测量低频振动测量(新产品) 软件配置人体振动分析软件包 (S 6291-01107) 人体振动分析软件包 (S 6291-01107) 低频1/3 OCT分析软 件包(S 6291- 01310 ) 符合标准ISO 8041: 1990 (JJG921-1996) 可升级符合 GB/T 23716-2009 (ISO 8041:2005) GB/T 23716-2009 (ISO 8041:2005) 全身振动测量符合 GB/T13441 (ISO 2631)标准, 手传振动符合 GB/T 14790.1 (ISO 5349-1), GBZ/T 189.9 GB/T 50355-2005 JGJ/T 170-2009 GB/T 3241-2010 传感器AWA14400型压电加速 度计,灵敏 度: 40 mV/ m·s- 2,质量:550 g 全身振动:AWA84410 型三轴向座垫加速度 计,灵敏度: 约 3 pC/ m·s-2,质 量:250 g 手传振动:AWA84181 传感器,灵敏度: 1 pC m·s-2,质 量:14 g AWA14400型压电加速 度计,灵敏 度: 40 mV/ m·s- 2,质量:550 g

振动检测的仪器

一直秉承军用隔振器专业制造商的经营理念,为改善我国军用装备的振动环境, 振动检测的仪器 【导语】振动检测的仪器好不好?今天小编就针对振动检测的仪器给大家进行了详细的说明和介绍,让大家进一步的了解振动检测的仪器: 振动检测仪是一种手持便携式测振仪,应用于旋转机器的预防与维修工作,一整套装备包括一个仪器与磁铁支持和扩展头组成的振动传感器。振动检测仪的有效振动频率的检测范围誓10~3200赫兹。这个频率范围涵括李大多数发生机器故障和缺陷的可能性。产生振动的具体例子是由于机器放置不平衡、轴或齿轮、汽蚀等流体产生的振动偏差。测量水平的判断很大程度上取决于振动标准。振动标准中各级之间的振动和磨损比较接近实际中正在运行的机器将迅速转化成

标准指标以便参考。测量经验应该由用来优化的操作类型所需要更高的振动以此积累。振动判断的共同标准是ISO10816-3.这也适用于各国饿机器振动检测。ISO10816-3这标准是一个已经应用了九十年并且在国际受到好评且将持续被应用的旧标准的升级,同时它有太多的限制。所以判断一个宽松,良好的振动还应通过实际经验的依据。 安思锐科航空科技有限公司是中国飞机强度研究所的全资子公司。主要业务减隔振产品及相关服务:主要包括系列化的隔振产品、定制特殊环境下隔振产品、隔振技术服务与支持及仿真分析技术服务。航强高科拥有金属丝网、金属橡胶、金属摩擦、高阻尼橡胶等四大类200多个系列的隔振器产品,可满足用户不同的选型需求。公司拥有自主研发的金属类隔振产品专用生产设备以及完整的橡胶隔振产品生产线。隔振器年产量可达10 万余只,广泛应用于各类军民用装备。 一直秉承军用隔振器专业制造商的经营理念,为改善我国军用装备的振动环境,

微振动测试仪设计说明

目录 1概述 (1) 2系统硬件电路设计 (5) 2.1压电瓷传感器的等效电路 (5) 2.2 电荷放大电路 (6) 2.3 测量电路 (8) 2.4 振动测量 (10) 3 总结 (13) 参考资料 (14)

1概述 振动测试仪是一种能测量机械、物体等振动的测量仪器。比如测振仪、动平衡仪、振动测试与模态分析仪都算是振动测试仪。 振动是自然界、工程技术和日常生活中普遍存在的物理现象。各种机器、仪器和设备运行时,不可避免地存在着诸如回转件的不平衡、负载的不均匀、结构刚度的各向异性、润滑状况的不良及间隙等原因而引起受力的变动、碰撞和冲击,以及由于使用、运输和外界环境下能量传递、存储和释放都会诱发或激励机械振动。所以说,任何一台运行着的机器、仪器和设备都存在着振动现象。 在大多数情况下,机械振动是有害的。振动往往会破坏机器的正常工作和原有性能,振动的动载荷使机器加速失效、缩短使用寿命甚至导致损坏造成事故。机械振动还直接或间接地产生噪声,恶化环境和劳动条件,危害人类的健康。因此,要采取适当的措施使机器振动在限定围之,以避免危害人类和其他结构。 随着现代工业技术的发展,除了对各种机械设备提出了低振级和低噪声的要求外,还应随时对生产过程或设备进行监测、诊断,对工作环境进行控制,这些都离不开振动测量。为了提高机械结构的抗振性能,有必要进行机械结构的振动分析和振动设计,找出其薄弱环节,改善其抗振性能。另外,对于许多承受复杂载荷或本身性质复杂的机械结构的动力学模型及其动力学参数,如阻尼系数、固有频率和边界条件等,目前尚无法用理论公式正确计算,振动试验和测量便是唯一的求解方法。因此,振动测试在工程技术中起着十分重要的作用。 微振动测试仪的设计主要组成部分压电式传感器,用于信息的采集;在本设计方案里选择压电瓷传感器做为压电式传感器。通过电路连接把所采集的信息传递给电荷放大器,对微弱的电荷信号进行放大,信号的放大通常有两种:电压放大和电荷放大。这里考虑避免接入电容的影响,

测量仪器地使用方法

水准仪及其使用方法 高程测量是测绘地形图的基本工作之一,另外大量的工程、建筑施工也必须量测地面高程,利用水准仪进行水准测量是精密测量高程的主要方法。 一、水准仪器组合: 1.望远镜 2.调整手轮 3.圆水准器 4.微调手轮 5.水平制动手轮 6.管水准器 7.水平微调手轮 8.脚架 二、操作要点: 在未知两点间,摆开三脚架,从仪器箱取出水准仪安放在三脚架上,利用三个机座螺丝调平,使圆气泡居中,跟着调平管水准器。水平制动手轮是调平的,在水平镜内通过三角棱镜反射,水平重合,就是平水。将望远镜对准未知点(1)上的塔尺,再次调平管水平器重合,读出塔尺的读数(后视),把望远镜旋转到未知点(2)的塔尺,调整管水平器,读出塔尺的读数(前视),记到记录本上。 计算公式:两点高差=后视-前视。 三、校正方法: 将仪器摆在两固定点中间,标出两点的水平线,称为a、b线,移动仪器到固定点一端,标出两点的水平线,称为a’、b ’。计算如果a-b≠a’-b’时,将望远镜横丝对准偏差一

半的数值。用校针将水准仪的上下螺钉调整,使管水平泡吻合为止。重复以上做法,直到相等为止。 四、水准仪的使用方法 水准仪的使用包括:水准仪的安置、粗平、瞄准、精平、读数五个步骤。 1. 安置 安置是将仪器安装在可以伸缩的三脚架上并置于两观测点之间。首先打开三脚架并使高度适中,用目估法使架头大致水平并检查脚架是否牢固,然后打开仪器箱,用连接螺旋将水准仪器连接在三脚架上。 2. 粗平 粗平是使仪器的视线粗略水平,利用脚螺旋置园水准气泡居于园指标圈之中。具体方法用仪器练习。在整平过程中,气泡移动的方向与大姆指运动的方向一致。 3. 瞄准 瞄准是用望远镜准确地瞄准目标。首先是把望远镜对向远处明亮的背景,转动目镜调焦螺旋,使十字丝最清晰。再松开固定螺旋,旋转望远镜,使照门和准星的连接对准水准尺,拧紧固定螺旋。最后转动物镜对光螺旋,使水准尺的清晰地落在十字丝平面上,再转动微动螺旋,使水准尺的像靠于十字竖丝的一侧。 4. 精平 精平是使望远镜的视线精确水平。微倾水准仪,在水准管上部装有一组棱镜,可将水准管气泡两端,折射到镜管旁的符合水准观察窗内,若气泡居中时,气泡两端的象将符合成一抛物线型,说明视线水平。若气泡两端的象不相符合,说明视线不水平。这时可用右手转动微倾螺旋使气泡两端的象完全符合,仪器便可提供一条水平视线,以满足水准测量基本原理的要求。注意?气泡左半部份的移动方向,总与右手大拇指的方向不一致。 5. 读数 用十字丝,截读水准尺上的读数。现在的水准仪多是倒象望远镜,读数时应由上而下进行。先估读毫米级读数,后报出全部读数。 注意,水准仪使用步骤一定要按上面顺序进行,不能颠倒,特别是读数前的符合水泡调整,一定要在读数前进行。 五、水准仪的测量 测定地面点高程的工作,称为高程测量。高程测量是测量的基本工作之一。高程测量按所使用的仪器和施测方法的不同,可以分为水准测量、三角高程测量、GPS高程测量和气压高程测量。水准测量是目前精度最高的一种高程测量方法,它广泛应用于国家高程控制测量、工程勘测和施工测量中。 水准测量的原理是利用水准仪提供的水平视线,读取竖立于两个点上的水准尺上的读数,来测定两点间的高差,再根据已知点高程计算待定点高程。 如下图所示,在地面上有A、B两点,已知A点的高程为HA、为求B点的高程HB,在A、B 两点之间安骨水准仪,A、B两点亡各竖立一把水准尺,通过水准仪的望远镜读取水平视线分别在A、B两点水准尺上截取的读数为a和b,可以求出A、B两点问的高差为:

数据采集使用说明书-振动测量仪器

G01通用数据采集仪和分析系统 使用说明书 中国地震局工程力学研究所

目录 一.功能和用途说明--------------------------------------------------------------3 二.软件安装步骤说明----------------------------------------------------------3 三.软件使用说明-----------------------------------------------------------------4 四.采集仪使用说明------------------------------------------------------------24

一、功能和用途说明 本系统包括采集仪和软件两个部分。采集仪为16位、USB总线、最高采样率可达到400KHz的16通道的数据采集仪器。软件有数据采集、数据触发采集、时域滤波、波形编辑、数据微分、积分和统计、频域分析、自动判断结构固有频率、结构振型分析、多通道信号失真度测量、虚拟电压表和示波器共11个模块组成。提供了多种采集方式、丰富的数据时域分析、频率分析等功能。可用于地脉动、结构脉动、爆破、桥梁、大坝和结构等建筑物的健康诊断和分析、环境振动影响分析、结构振型分析等。 二、安装步骤 1. 先安装驱动程序。解压缩“数据采集驱动程序”文件,解压缩后选择“USB2080”文件里面的“app”文件,打开“app”文件,点击setup。如果已经安装了波速测量软件、挠度测量软件、振动台标定软件中的任何一个驱动程序,在这不需要再安装驱动程序,直接安装应用程序。 2.安装应用软件。打开”数据采集应用软件”文件,点击setup。安装完后。 3.安装完后,连接好仪器和电脑,电脑会自动安装仪器的USB口驱动,按照提示分别选择“自动安装”、“只安装一次”,此过程需要一定的时间,请耐心等待。 4.到电脑的“所有程序”里就可以看到了“中国地震局工程力学研究所数据采集软件”了。 三、软件使用说明

实验1基本测量仪器的使用

实验一基本测量仪器的使用 【实验目的】 1.熟悉米尺、游标卡尺、螺旋测微计、测量显微镜的构造、测量原理及使用方法,练习使用分析天平进行精密称衡; 2.学习有效数字和不确定度的计算,掌握误差理论与数据处理方法,熟悉精密称衡中的系统误差补正. 【实验仪器】 米尺、游标卡尺,螺旋测微计,测厚仪,分析天平,球体,圆柱等,金属块、玻璃块、有机被璃块等. 【实验原理】 一、米尺 “米”是国际公认的标准长度单位,历史上由保存在巴黎国际标准度量衡局的米原器二刻线间的长度决定。1983年第十七届国际计量大会通过的“米”的新定义为:1m是光在真空中于1/299792458s的时间内所传播的距离。 常用米尺(包括各种常用直尺)的分度值是1mm毫米,因此用米尺测量长度时可以读准到毫米级,估计到0.1毫米级(1/10毫米位)。 用米尺测量物体长度的要领是紧贴、对准、正视。米尺自身有一定的厚度,若不贴紧待测物,观测者从不同角度看去,将产生读数的差异,测量时应尽量减少视差。为避免端边磨损带来的误差,也可以不用零刻度线,而以某一刻度线(如1.00cm)作为测量起点,考虑到刻度的不均匀,可以不同刻度线为起点作多次测量而取其中平均值。 二、游标卡尺 (1)游标卡尺构造 游标卡尺的构造如图1-4所示,卡钳E和E'同刻有毫米的主尺A相连,游标框W上附有游标B以及卡钳F和F',推动游标框W可使游标B连同卡钳F、F'沿主尺滑动.当两对钳口E与F,E'与F'紧靠时,游标的零点(即零刻度线)与主尺的零点相重合.用游标卡尺测定物体长度时,用卡钳E F或E'F'卡着被测物体,显然此时游标零点与主尺零点间距离恰好等于卡钳E、F间或卡钳E'、F'的距离,所以从游标零点在主尺上的位置,根据游标原理就可测出物体的长度(卡钳E'F'部分是用来测量物体的内部尺寸,如管的内径等).图中螺钉C是用来固定油标框的,防止游标框在主尺上滑动以便于读数.

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体,甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 ●旋转机械分类: Ⅰ类:为固定的小机器或固定在整机上的小电机,功率小于15KW。 Ⅱ类:为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。 Ⅲ类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 Ⅳ类:为轻型结构基础上的大型旋转机械,如透平发电机组。 ●机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2旋转机械振动模糊诊断法的实现 隶属函数的确定

测量仪器的使用及测量方法

1适用范围 规定关于测量仪器的使用?测量方法。 2测量的概要 2‐1 关于测量与检查 测量就是指将物体的形状、尺寸用测量仪器及装置进行测量使其量化。 检查就是指把对物体测量的结果(数值)与判定用的标准值进行比较,来判断该物体就是否合格。 2‐2 关于测量误差 在测量物体的形状、尺寸时,实际值与测量值或近似值之间会有出入,另外即使在同一条件下,每次测量的值都可能不同,这个就就是测量误差。 测量误差大致可以区分为,由测量者导致的误差、测量误差、由外部条件导致的误差、偶然误差等。 ①由测量者导致的误差 在读取测量值时,因测量者的性格?倾向造成的误差,也可以讲就是因测量者的测量能力的大小、对测量感觉的不同而造成的误差。 ②测量误差 因测量仪器的结构原因所产生的误差,由于摩擦、测量压力等的变化及没有调整好各部分机构而造成的误差。 ③由外部条件导致的误差 由于室温、湿度、照度、震动等测量环境的变化影响而造成的误差。 ④偶然误差 各种不确定的细小因素,在一定的条件下,相互作用而造成的误差。 2‐3 测量仪器使用上的注意事项 ①要选择与测量内容相符的测量仪器。 不同规格型号的测量仪器,其测量的方法、测量的范围、精度等都就是不同的,所以必须选择合适的规格型号的测量仪器。 ②要小心的使用。 测量仪器就是结构精密的仪器,要注意不要使其从高处掉下、不要使其受到挤压、震动与冲撞。 ③使用时要经常保持干净。 要注意清除测量面、滑动面的垃圾、灰尘,防止生锈。 ④要测量静止的物体。 如果测量移动的物体的话,会引起测量仪器的破损,同时也不能进行正确的测量。 ⑤要考虑因视差引起的误差。 由于读取刻度时眼睛的位置不同,会造成很大的误差,所以要从正上方读取刻度。 ⑥开始测量时必须要进行仪器的检查。 要检查测量面、滑动面、零点位置。 ⑦要注意在标准温度下进行测量。 要考虑到被测量物的尺寸会因温度的变化而改变,要考虑温度变化造成的误差。 ⑧要注意测量面的磨损。 要注意测量面、滑动面容易因接触而产生磨损。 ⑨要定期进行校正。 为了能够稳定地进行测量,要定期进行校正、确认精度。 ⑩要保管在环境变化小的场所。 要保管在低湿、恒温、没有震动的场所。 3测量仪器的概要?使用?测量方法 3‐1游标卡尺 1)游标卡尺的概要 游标卡尺(Mosel型)能够进行外测、内测、深度的测量,一般用于测量精度为1/10~1/20mm左右的物品。 2)游标卡尺(Mosel型)各部的名称 用于测量内侧内量爪

基本测量仪器练习有答案.doc

基本测量仪器练习(有答案)(1) 班级姓名 1(09杭州)用量筒量取溶液,视线与量筒内液体的凹液面最低处保持水平,读数为15毫升;倒出部分液体后,俯视凹液面的最低处,读数为9毫升。则该学生实际倒出的溶液体积() A.小于6毫升 B.大于6毫升 C.等于6毫升 D.无法确定范围 2(09江西)完成下列问题: ⑴如图16所示,用A、B两刻度尺测同一木块的边长,就分度值而言,___ A ___尺精密些,就使用方法而言,___ B ___不正确. ⑵如图17所示,电流表的分度值是____0.5mA __,此时示数为__11mA ____. 3 (09济宁小明根据图5所示的情况,把它们的示数、测量结果分别记录在了每个图的下面。其中记录正确的是C

4(09嘉兴)下列所示的实验操作正确的是D 5 (09娄底)下图所示的几项测量,操作错误 ..的是 A.使用刻度尺测量时,让刻度线尽量贴近被测物体 B.使用量筒测量时,视线与凹形液面的底部相平 C.使用温度计测量时,视线与温度计的标尺垂直 D.使用弹簧测力计测量时,将测力计倒置 6 (09安徽)以下说法正确的是 A.使用天平时,调节横梁平衡后,在称量的过程中也可以调节平衡螺母B.滑动变阻器铭牌上的电阻值是指滑动变阻器连入电路部分的电阻大小C.电能表是测量电功或记录用电器消耗电能的仪表. D.使用测电笔(也称试电笔)辨别火线时,手不能接触测电笔上的导体 7(09青岛)下列关于实验仪器使用的说法中,错误的是 A.绝对不允许不经过用电器把电压表直接接在电源两极上

B.使用天平时,物体放在左盘,砝码放在右盘 C.闭合开关前,应将滑动变阻器的滑片P调到阻值最大处 D.使用弹簧测力计时,所测的力不能超过它的测量范围 7 (09柳州)常用的长度测量工具是___________;如图7所示的电压表,3 V量程对应的刻度盘上,每个小格表示_______________V;用电流表测量电路的电流时,如果不能估计电流大小,可以选用较________________(选填“大”或“小”)量程进行快速试触;使用验电笔时,手要接触验电笔__________(选填“尾部”或“前端”)的金属部分。 答案:刻度尺;0.1V;较大;尾部 8 如图11中,寒暑表的读数是23℃,小球的直径是12.0 mm,天平上物体的质量是31.4g

相关文档
最新文档