(机械制造行业)机械设计形位公差表示

(机械制造行业)机械设计形位公差表示
(机械制造行业)机械设计形位公差表示

概况

xingwei gongcha

形位公差

包括形状公差和位置公差。任何零件都是由点、线、面构成的,这些点、线、面称为要素。机械加工

形位公差

后零件的实际要素相对于理想要素总有误差,包括形状误差和位置误差。这类误差影响机械产品的功能,设计时应规定相应的公差并按规定的标准符号标注在图样上。20世纪50年代前后,工业化国家就有形位公差标准。国际标准化组织(I SO)于1969年公布形位公差标准,1978年推荐了形位公差检测原理和方法。中国于1980年颁布形状和位置公差标准,其中包括检测规定。

形状公差和位置公差简称为形位公差

形状公差

形状公差是指单一实际要素的形状所允许的变动全量。

形状公差用形状公差带表达。形状公差带包括公差带形状、方向、位置和大小等四要素。

形位公差

形状公差项目有:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度等6项。

通俗点就是,和形状有关的要素。

位置公差

位置公差是指关联实际要素的位置对基准所允许的变动全量。定向公差定向公差是指关联实际要素对基准在方向上允许的变动全量。这类公差包括平行度、垂直度、倾斜度3项。

跳动公差

跳动公差是以特定的检测方式为依据而给定的公差项目。跳动公差可分为圆跳动与全跳动。

定位公差

定位公差是关联实际要素对基准在位置上允许的变动全量。这类公差包括同轴度、对称度、位置度3项。

零件的形位公差图标及其涵义

零件的形位公差共14项,其中形状公差6个,位置公差8个,列于下表。

零件的形位公差图标

直线度直线度是表示零件上的直线要素实际形状保持理想直线的状况。也就是通常所说的平直程度。

直线度公差是实际线对理想直线所允许的最大变动量。也就是在图样上所给定的,用以限制实际线加工误差所允许的变动范围。

平面度平面度是表示零件的平面要素实际形状,保持理想平面的状况。也就是通常所说的平整程度。

平面度公差是实际表面对平面所允许的最大变动量。也就是在图样上给定的,用以限制实际表面加工误差所允许的变动范围。

动圆跳动公差是:被测实际要素绕基准轴线,无轴向移动地旋转一整圈时,在限定的测量范围内,所允

许的最大变动量。

全跳动全跳动是指零件绕基准轴线作连续旋转时,沿整个被测表面上的跳动量。

全跳动公差是:被测实际要素绕基准轴线连续的旋转,同时指示器沿其理想轮廓相对移动时,所允许的最大跳动量。

形位公差的标注应注意以下问题

形位公差标注

(1) 形位公差内容用框格表示,框格内容自左向右第一格总是形位公差项目符号,第二格为公差数值,第三格以后为基准,即使指引线从框格右端引出也是这样.

(2) 被测要素为中心要素时,箭头必须和有关的尺寸线对齐.只有当被测要素为单段的轴线或各要素的公共轴线,公共中心平面时,箭头可直接指在轴线或中心线,这样标注很简便,但一定要注意该公共轴线中没有包含非被测要素的轴段在内.

(3) 被测要素为轮廓要素时,箭头指向一般均垂直于该要素.但对圆度公差,箭头方向必须垂直于轴线.

(4) 当公差带为圆或圆柱体时,在公差数值前需加注符号"Φ",其公差值为圆或圆柱体的直径.这种情况在被测要素为轴线时才有.同轴度的公差带总是一圆柱体,所以公差值前总是加上符号"Φ";轴线对平面的垂直度,轴线的位置度一般也是采用圆柱体公差带,需在公差值前也加上符号"Φ"。

形位公差标注举例

(5) 对一些附加要求,常在公差数值后加注相应的符号,如(+)符号说明被测要素只许呈腰鼓形外凸,(-)说明被测要素只许呈鞍形内凹,(>)说明误差只许按符号的小端方向逐渐减小.如形位公差要求遵守最大实体要求时,则需加符号○M.在框格的上,下方可用文字作附加的说明.如对被测要素数量的说明,应写在公差框格的上方;属于解释性说明(包括对测量方法的要求)应写在公差框格的下方.例如:在离轴端300mm处;在a,b 范围内等.

形位公差是为了满足产品功能要求而对工件要素在形状和位置方面所提出的几何精度要求。以形位公差带来限制被测实际要素的形状和位置。

机械零件设计中形位公差的确定性方法研究

机械零件设计中形位公差的确定性方法研究 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

机械零件设计中形位公差的确定性方法研究随着正确地选择和确定形位公差的项目、基准及数值对机械零件的设计是十分重要的。依据机械零件的功能要求。并考虑其使用性、工艺性和经济性的综合效果,详细分析了确定形位公差时公差项目、基准和公差数值的选择方法。零件的功能特性是选择形位公差项目、基准和公差数值的基础;公差间的关系可作为进一步精选它们的依据;同时还应兼顾经济性和测量的方便性。 在机械零件的设计过程中,正确地选择形位公差项目以及合理地确定形位公差数值,不仅直接影响到机器的使用性能和质量,而且关系到零件加工的难易程度和成本高低。形位公差的国家标准规定了l4项并列的形位公差,项目较多,而且有些公差项目之间还存在着从属和包容等关系。因此,机械零件的形位公差设计一直是机械零件设计中的难点。本文将根据形位公差的理论与多年的机械零件设计经验,分析形位公差项目及公差值大小等公差内容的选择依据。为设计者提供参考。 1.形位公差项目的选择 1.依据零件的功能特性初选形位公差项目

选择形位公差项目首先应满足零件的功能要求,主要考虑形位误差对零件使用性能的影响。这种使用性能一般指零件的配合性质、装配互换性、工作精度、可靠性及运动平衡性等。设计时了解和明确所设计零件的使用性能,才能确定为保证这些性能必须选用的形位公差项目。 以下为一些常见的零件功能特性与所需的公差项目:(1)在圆柱形零部件的运动配合中,如果圆柱面接触不良,就会造成局部过早磨损,扩大了配合间隙,降低定心精度,这就需要选择圆度和圆柱度等形状公差限制形状误差,以避免过大的形状误差带来的危害。(2)在移动配合中,形状误差会降低导向精度或破坏密封性;在过盈定位配合中,形状误差会降低连接强度和可靠性;曲面形状误差直接影响机械的工作性能,如汽轮机叶片的曲面等;这些都需要选择相应的形状公差加以限定。(3)位置误差直接影响机器的装配精度和运转精度。例如,发动机中的曲轴和变速器中的齿轮轴,为了保证它们的装配精度和工作性能,就要规定它们的两端支承孔的同轴度,否则就会影响齿轮的啮合精度,产生振动和噪声。 2.依据公差间的关系精选形位公差项目 (1)由尺寸公差控制形位公差。形位公差与尺寸公差具有一定的关联性,有些形位误差可自然地控制在尺寸公差内,就不必再给出形位公差要求。

机械设计中形位公差的确定及选择

机械设计中形位公差的确定及选择 摘要:在进行机械设计时,如何保证机械产品零件的精度,是设计人员必须要考虑的问题。形位公差是控制机械产品零件几何精度技术的条件。正确选择形位公差项目和合理确定其公差等级及公差值,能保证零件的使用要求,提高经济效果。文章就机械设计过程中如何合理选用形位公差进行了一些探讨。 关键词:机械设计;形状公差;位置公差;标注公差;选择;控制 在机械与仪器仪表设计及制造工艺的设计中,公差配合与技术测量与设计、制造及质量控制等方面密切相关,其精度的要求是靠尺寸公差、形状公差、位置公差来保证的,是优化产品质量的可靠保障。在现代工业飞速发展、产品换代频繁的新形势下,其重要性尤为明显。如何合理并正确地确定被测要素的形状位置公差公差值,是一项十分慎重的工作。 1 形位公差和位置公差的关系及选择 经过加工的机械零件表面,不但会有尺寸偏差,而且会有形状和相对位置的误差,这些误差会影响零件的互换性。为此,国家标准规定了形状和位置的允许变动量。 位置公差是关联实际要素的方向或位置对基准所允许的变动全量,形状公差是单一实际要素的形状所允许的变动全量,位置公差的公差带包容整个被测要素,因此,在很多情况下,位置公差是能够控制形状误差的。如在定位公差中,同轴度可以控制轴线的形状误差,对称度和位置度可以控制平面度误差。又如在跳动公差中,端面全跳动可以控制平面度误差,径向跳动可以控制圆度误差,径向全跳动可以控制圆度、直线度,圆柱度误差。所以.在确定形状公差和位置公差过程中,一旦位置公差给定后,当作用上已能够控制相应的形状误差,且能满足使用要求时,就不必再提形状公差的要求了。 2 形位公差值的确定 正确选择形位公差项目和合理确定其公差等级及公差值,能保证零件的使用要求,提高经济效果。 确定形位公差值的方法,有类比法和计算法两种。常用的是类比法。计算法一般很少使用.只有在高精度要求的场合才用。在零件加工中,由于受到机床精度的限制,故在己加工完成的零件上,所有要素都存在形位误差,但不是所有要素都要在图纸上规定形位公差。只对高精度要求的要素才注公差值,而对精度要求比未注公差值还低的也应注出,表示不必提高要求。在选用公差值时,以满足零件的功能要求为前提,兼顾经济性和测量条件等因素,尽量选用较大的公差值。并应注意以下的一些问题。

机械零件设计中形位公差的合理选择

机械零件设计中形位公差的合理选择 形位公差是评定机械零件的一项重要的技术经济指标。在机械零件的设计过程中正确地选择形位公差项目以及合理地确定形位公差数值,对提高产品的质量和降低制造成本,具有十分重要的意义。 标签:机械零件;设计;形位公差;合理选择 1.引言 零件在加工过程中不仅有尺寸误差,同时由于机床精度、加工方法等多种原因,使得零件的加工表面、轴线对称中心平面等的实际形状和位置相对于设计所要求的理想形状和位置,也不可避免地存在着误差,我们称它为形状和位置误差(简称形位误差)。形位误差对机械产品的制造、机械零部件的使用和工作性能的影响不容忽视。为保证机械产品的质量和零件的互换性,在对零件的尺寸误差加以控制的同时,必须对形位误差也加以控制,规定合理的形位公差,才能真正的保证产品质量。 2.形位公差项目的选择 2.1根据零件的几何特征来考虑。零件的几何特征不同,会产生不同的形位误差。例如:回转类(轴类、套类)零件中的阶梯轴,它的轮廓要素是圆柱面、端面、中心要素是轴线。圆柱面选择圆柱度是理想项目,因为它能综合控制径向的圆度误差、轴向的直线度误差和素线的平行度误差。也可选用圆度和素线的平行度。从项目特征看,同轴度主要用于轴线,是为了限制轴线的偏离。跳动能综合限制要素的形状和跳动公差。其他诸如平面零件,选用平面度项目,槽类零件选用对称度项目,均基于零件存在不同的几何特征的原因。 2.2根据零件的功能要求来考虑。机器对零件不同功能的要求,决定零件需选用不同的形位公差项目。若阶梯轴两轴承位置明确要求限制轴线问的偏差,应采用同轴度。但如果阶梯轴对形位精度有要求,而无需区分轴线的位置误差与圆柱面的形状误差,则可选择跳动项目。其他诸如箱体类零件,轴承孔轴线之间平行度的要求都是基于保证运动件之间的正常啮合,提高承载能力的性能要求而确定的,给定结合面的平面度要求是为保证平面的良好密封性。 2.3从方便检测来考虑。在满足功能要求的前提下,为了方便检测,应该选用测量简便的项目代替难于测量的项目,有时可将所需的公差项目用控制效果相同或相近的公差项目来代替。如与滚动轴承内孔相配合的轴颈位置公差的确定,为了保证可装配性和运动精度,应控制两轴颈的同轴度误差,但考虑到两轴颈的同轴度在生产中不便于检测,可用径向圆跳动公差来控制同轴度误差。不过应注意,径向跳动是同轴度误差与圆柱面形状误差的综合结果,故当同轴度用径向跳动代替时,给出的跳动公差应略大于同轴度公差值,否则要求过严。

机械设计中公差与配合经验交流给大家(特别好,一定要下)要点

13.什么称为基本偏差? 答:是用来确定公差带相对于零线位置的上偏差或下偏差,一般指靠近零线的那个偏差。当公差带位于零线上方时,其基本偏差为下偏差;位于零线下方时,其基本偏差为上偏差。见图1 图1 14.什么称为标准公差? 答:国标规定的,用以确定公差带大小的任一公差。 15.什么称为配合? 答:是指基本尺寸相同的、互相结合的孔和轴公差带之间的关系。 16.什么称为基孔制? 答:是基本偏差为一定的孔的公差带,与不同基本偏差的轴的公差带形成 种配合的一种制度。 17.什么称为基轴制? 答:是基本偏差为一定的轴的公差带,与不同基本偏差的孔的公差带形成各种配合的一种制度。18.什么称为配合公差? 答:是允许间隙的变动量,它等于最大间隙与最小间隙之代数差的绝对值,也等于互相配合的孔公差带与轴公差带之和。 19.什么称为间隙配合? 答:孔的公差带完全在轴的公差带之上,即具有间隙的配合(包括最小间隙等于零的配合)。20.什么称为过盈配合? 答:孔的公差带完全在轴的公差带之下,即具有过盈的配合(包括最小过盈等于零的配合)。21.什么称为过渡配合? 答:在孔与轴的配合中,孔与轴的公差带互相交迭,任取其中一对孔和轴相配,可能具有间隙,也可能具有过盈的配合。 22.基孔制配合为H11/c11或基轴制基孔制配合为C11/h11时,优先配合特性是什么? 答:间隙很大,用于很松的、转动很慢的动配合;要求大公差与大间隙的外露组件;要求装配方便的很松的配合。相当于旧国标的D6/dd6。 23.基孔制配合为H9/d9或基轴制基孔制配合为D9/h9时,优先配合特性是什么? 答:间隙很大的自由转动配合,用于精度非主要要求时,或有大的温度变动、高转速或大的轴颈压力时。相当于旧国标D4/de4。 24.基孔制配合为H8/f7或基轴制基孔制配合为F8/h7时,优先配合特性是什么? 答:间隙不大的转动配合,用于中等转速与中等轴颈压力的精确转动;也用于装配较易的中等定位配合。相当于旧国标D/dc。 25.基孔制配合为H7/g6或基轴制基孔制配合为G7/h6时,优先配合特性是什么? 答:间隙很小的滑动配合,用于不希望自由转动、但可自由移动和滑动并要求精密定位时,也可用于要求明确的定位配合。相当于旧国标D/db。 26.基孔制配合为H7/h6; H8/h7; H9/h9; H11/h11或基轴制基孔制配合为H7/h6; H8/h7; H9/h9;

GB1804-m一般公差

一般公差 线性尺寸的未注公差 本标准等效采用国际标准ISO 2768-1:1989《一般公差——第1部分:未注出公差的线性和角度尺寸的公差》中未注出公差的线性尺寸的公差部分。 1 范围 本标准规定了线性尺寸的一般公差等级和极限偏差。 本标准适用于金属切削加工的尺寸,也适用于一般的冲压加工的尺寸。非金属材料和其他工艺方法加工的尺寸可参照采用。 本标准规定的极限偏差适用于非配合尺寸。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡不注日期的引用文件,其最新版本适用于本标准。 GB/T 1804-92 一般公差线性尺寸的未注公差 GB6403.4-86 零件倒圆与倒角 3 术语 3.1 一般公差 一般公差系指在车间一般加工条件下可保证的公差。采用一般公差的尺寸,在该尺寸后不注出极限偏差。 4 线性尺寸的一般公差 4.1 线性尺寸的一般公差规定四个公差等级。线性尺寸的极限偏差数值表见表1;倒圆半径和倒角高度尺寸的极限偏差数值见表2。 4.2 规定图样上线性尺寸的未注公差,应考虑车间的一般加工精度,选取本标准规定的公差等级,由相应的技术文件或标准作出具体规定。 4.3 本公司图样上线性尺寸的未注公差,选取GB1804-m。 1

表1 线性尺寸的极限偏差数值 尺寸分段 公差等级 >0.5~3 >3~6 >6~30 >30~120>120~400>400~1000 >1000~2000>2000~4000 f(精密级) ±0.05 ±0.05 ±0.1 ±0.15 ±0.2 ±0.3 ±0.5 - m(中等级) ±0.1 ±0.1 ±0.2 ±0.3 ±0.5 ±0.8 ±1.2 ±2 c(粗糙级) ±0.2 ±0.3 ±0.5 ±0.8 ±1.2 ±2 ±3 ±4 v(最粗级) - ±0.5 ±1 ±1.5 ±2.5 ±4 ±6 ±8 表2 倒圆半径与倒角高度尺寸的极限偏差数值 尺寸分段 公差等级 0.5~3 >3~6 >6~30 >30 f(精密级) ±0.2 ±0.5 ±1 ±2 m(中等级) c(粗糙级) ±0.4 ±1 ±2 ±4 v(最粗级) 注:倒圆半径与倒角高度的含义参见GB6403.4。 5 线性尺寸的一般公差的表示方法 采用GB/T1804规定的一般公差,在图样上、技术文件或标准中用国家标准号和公差等级 符号表示。例如选用中等级时,表示为:GB/T1804-m 2

机械设计中尺寸标注.

机械设计中尺寸标注 机械设计中尺寸标注类知识,毕业前一定读懂它 1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。 2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。如图中所示就增加了一个

左视图,以表达带圆角的方形凸缘和四个均布的通孔。 在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。 3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。

机械专业形位公差表

形位公差 加工后的零件不仅有尺寸误差,构成零件几何特征的点、线、面的实际形状或相互位置与理想几何体规定的形状和相互位置还不可避免地存在差异,这种形状上的差异就是形状误差,而相互位置的差异就是位置误差,统称为形位误差。 形位公差 tolerance of form and position 包括形状公差和位置公差。任何零件都是由点、线、面构成的,这些点、线、面称为要素。机械加工后零件的实际要素相对于理想要素总有误差,包括形状误差和位置误差。这类误差影响机械产品的功能,设计时应规定相应的公差并按规定的标准符号标注在图样上。20世纪50年代前后,工业化国家就有形位公差标准。国际标准化组织(ISO)于1969年公布形位公差标准,1978年推荐了形位公差检测原理和方法。中国于1980年颁布形状和位置公差标准,其中包括检测规定。 形状公差和位置公差简称为形位公差

(1)形状公差:构成零件的几何特征的点,线,面要素之间的实际形状相对与理想形状的允许变动量。给出形状公差要求的要素称为被测要素。 (2)位置公差:零件上的点,线,面要素的实际位置相对与理想位置的允变动量。用来确定被测要素位置的要素称为基准要素。 形位公差的研究对象是零件的几何要素,它是构成零件几何特征的点,线,面的统称.其分类及含义如下: (1) 理想要素和实际要素 具有几何学意义的要素称为理想要素.零件上实际存在的要素称为实际要素,通常都以测得要素代替实际要素. (2) 被测要素和基准要素 在零件设计图样上给出了形状或(和)位置公差的要素称为被测要素.用来确定被 测要素的方向或(和)位置的要素,称为基准要素. (3) 单一要素和关联要素 给出了形状公差的要素称为单一要素.给出了位置公差的要素称为关联要素. (4) 轮廓要素和中心要素 由一个或几个表面形成的要素,称为轮廓要素.对称轮廓要素的中心点,中心线,中 心面或回转表面的轴线,称为中心要素 形状公差有直线度,平面度,圆度和圆柱度.其含义和标注如下: 1) 直线度 2) 平面度 平面度公差带只有一种,即由两个平行平面组成的区域,该区域的宽度即为要求的公差值. 3) 圆度 在圆度公差的标注中,箭头方向应垂直于轴线或指向圆心. 4) 圆柱度 形位公差的标注应注意以下问题: (1) 形位公差内容用框格表示,框格内容自左向右第一格总是形位公差项目符号,第二格为公差数值,第三格以后为基准,即使指引线从框格右端引出也是这样. (2) 被测要素为中心要素时,箭头必须和有关的尺寸线对齐.只有当被测要素为单段的轴线或各要素的公共轴线,公共中心平面时,箭头可直接指在轴线或中心线,这样 标注很简便,但一定要注意该公共轴线中没有包含非被测要素的轴段在内. (3) 被测要素为轮廓要素时,箭头指向一般均垂直于该要素.但对圆度公差,箭头方向必须垂直于轴线. (4) 当公差带为圆或圆柱体时,在公差数值前需加注符号"Φ",其公差值为圆或圆 柱体的直径.这种情况在被测要素为轴线时才有.同轴度的公差带总是一圆柱体,所以 公差值前总是加上符号"Φ";轴线对平面的垂直度,轴线的位置度一般也是采用圆柱体 公差带,需在公差值前也加上符号"Φ".

机械设计公差部分

机械设计-公差部分 一、形位公差的基础知识 1、形位公差符号 2、形位公差代号 3、一般规定 4、形位公差带的定义 5、公差原则 二、具体零部件实例讲解

一、形位公差的基础知识 所谓形位公差是指形状公差和位置公差两种1、形位公差符号 (同心)

2、形位公差代号 形位公差代号包括: ①形位公差有关项目的符号(例:直线度—,平行度等) ②形位公差框格和指引线(分为两格或多格) ③最大实体状态 ④ 3、一般规定 ①要素、构成零件几何特的点、线、面 (1)理想要素:具有几何学意义的要素(如下图) (2)实际要素:零件上实际存在的要素 (3)被测要素:给出了形状或位置公差的要素 (4)基准要素:用来确定被测要素方向或位置的要素(5)单一要素:仅对其本身给出形状公差要求的要素

(6)关联要素:对其它要素有功能关系的要素 ②公差与公差带 (1)形状公差:单一实际要素的形状所允许的变动全量(2)位置公差:关联实际要素的位置对基准所允许的变动全量 I)定向公差:关联实际要素对基准在方向上允许的变动全量II)定位公差:关联实际要素对基准在位置上允许的变动全量III)跳动公差:关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量 ③形状和位置的公差带: 限制实际要素变动的区域 1)公差带的主要形式有下列十种: a)两平行直线 b)两等距曲线 c)两同心圆 d)一个圆 e)一个球 f)一个圆柱 g)一个四棱柱 h)两同轴圆柱 i)两平行平面 j)两等距曲面

4、形位公差带的定义 在给定方向上公差带是距离为公差值t的两平被测圆柱面的任一素线必须位于距离为公差值0.1的两平 如在公差值前加注Ф则公差带是直径为t 的圆柱面的区域被测圆柱面的轴线必须位于直径为公差值Ф0.05 面内

机械设计中公差与配合经验

答:是用来确定公差带相对于零线位置的上偏差或下偏差,一般指靠近零线的那个偏差。当公差带位于零线上方时,其基本偏差为下偏差;位于零线下方时,其基本偏差为上偏差。见图1 图1 14.什么称为标准公差? 答:国标规定的,用以确定公差带大小的任一公差。 15.什么称为配合? 答:是指基本尺寸相同的、互相结合的孔和轴公差带之间的关系。16.什么称为基孔制? 答:是基本偏差为一定的孔的公差带,与不同基本偏差的轴的公差带形成种配合的一种制度。 17.什么称为基轴制? 答:是基本偏差为一定的轴的公差带,与不同基本偏差的孔的公差带形成各种配合的一种制度。 18.什么称为配合公差? 答:是允许间隙的变动量,它等于最大间隙与最小间隙之代数差的绝对值,也等于互相配合的孔公差带与轴公差带之和。

答:孔的公差带完全在轴的公差带之上,即具有间隙的配合(包括最小间隙等于零的配合)。 20.什么称为过盈配合? 答:孔的公差带完全在轴的公差带之下,即具有过盈的配合(包括最小过盈等于零的配合)。 21.什么称为过渡配合? 答:在孔与轴的配合中,孔与轴的公差带互相交迭,任取其中一对孔和轴相配,可能具有间隙,也可能具有过盈的配合。 22.基孔制配合为H11/c11或基轴制基孔制配合为C11/h11时,优先配合特性是什么? 答:间隙很大,用于很松的、转动很慢的动配合;要求大公差与大间隙的外露组件;要求装配方便的很松的配合。相当于旧国标的D6/dd6。23.基孔制配合为H9/d9或基轴制基孔制配合为D9/h9时,优先配合特性是什么? 答:间隙很大的自由转动配合,用于精度非主要要求时,或有大的温度变动、高转速或大的轴颈压力时。相当于旧国标D4/de4。 24.基孔制配合为H8/f7或基轴制基孔制配合为F8/h7时,优先配合特性是什么? 答:间隙不大的转动配合,用于中等转速与中等轴颈压力的精确转动;也用于装配较易的中等定位配合。相当于旧国标D/dc。 25.基孔制配合为H7/g6或基轴制基孔制配合为G7/h6时,优先配合特性是

机械制图常用形位公差符号表示方法

机械制图常用形位公差符号表示方法

一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 标注符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。

定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差

机械设计轴承与轴的公差配合轴承与孔的公差配合修订版

机械设计轴承与轴的公差配合轴承与孔的公差 配合修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

做非标这么久,轴承与轴的公差配合,以及轴承与孔的公差配合,一直都是用微小间隙配合即能实现功能,且好装好拆。但是局部零件还是需要有一定的配合精度。 配合公差(fit tolerance)是指组成配合的孔、轴公差之和。它是允许间隙到过盈的变动量。 孔和轴的公差带大小和公差带位置组成了配合公差。孔和轴配合公差的大小表示孔和轴的配合精度。孔和轴配合公差带的大小和位置表示孔和轴的配合精度和配合性质。 一、公差等级的选择 与轴承配合的轴或轴承座孔的公差等级与轴承精度有关。 与P0级精度轴承配合的轴,其公差等级一般为IT6,轴承座孔一般为IT7。对旋转精度和运转的平稳性有较高要求的场合(如电动机等),应选择轴为IT5,轴承座孔为IT6。 二、公差带的选择 当量径向载荷P分成“轻”、“正常”和“重”载荷等几种情况。 其与轴承的额定动载荷C之关系为:轻载荷P≤0.06C 正常载荷 0.06C <P≤ 0.12C 重载荷 0.12C<P 1) 轴公差带 安装向心轴承和角接触轴承的轴的公差带参照相应公差带表。

就大多数场合而言,轴旋转且径向载荷方向不变,即轴承内圈相对于载荷方向旋转的场合,一般应选择过渡或过盈配合。静止轴且径向载荷方向不变,即轴承内圈相对于载荷方向是静止的场合,可选择过渡或小间隙配合(太大的间隙是不允许的)。 2)外壳孔公差带 安装向心轴承和角接触轴承的外壳孔公差带参照相应公差带表。 选择时注意对于载荷方向摆动或旋转的外圈,应避免间隙配合。当量径向载荷的大小也影响外圈的配合选择。 3) 轴承座结构形式的选择 滚动轴承的轴承座除非有特别需要,一般多采用整体式结构。 剖分式轴承座只是在装配上有困难,或在装配上方便的优点成为主要考虑点时才采用,但它不能应用于紧配合或较精密的配合,例如K7和比K7更紧的配合,又如公差等级为IT6或更精密的座孔,都不得采用剖分式轴承座。 三、轴承与轴的配合公差标准 ①当轴承内径公差带与轴公差带构成配合时 在一般基孔制中原属过渡配合的公差代号将变为过赢配合,如k5、k6、m5、m6、n6等,但过赢量不大;当轴承内径公差代与h5、h6、g5、g6等构成配合时,不在是间隙而成为过赢配合。 ②轴承外径公差带由于公差值不同于一般基准轴

(机械制造行业)机械设计形位公差表示

概况 xingwei gongcha 形位公差 包括形状公差和位置公差。任何零件都是由点、线、面构成的,这些点、线、面称为要素。机械加工 形位公差 后零件的实际要素相对于理想要素总有误差,包括形状误差和位置误差。这类误差影响机械产品的功能,设计时应规定相应的公差并按规定的标准符号标注在图样上。20世纪50年代前后,工业化国家就有形位公差标准。国际标准化组织(I SO)于1969年公布形位公差标准,1978年推荐了形位公差检测原理和方法。中国于1980年颁布形状和位置公差标准,其中包括检测规定。 形状公差和位置公差简称为形位公差 形状公差 形状公差是指单一实际要素的形状所允许的变动全量。 形状公差用形状公差带表达。形状公差带包括公差带形状、方向、位置和大小等四要素。

形位公差 形状公差项目有:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度等6项。 通俗点就是,和形状有关的要素。 位置公差 位置公差是指关联实际要素的位置对基准所允许的变动全量。定向公差定向公差是指关联实际要素对基准在方向上允许的变动全量。这类公差包括平行度、垂直度、倾斜度3项。 跳动公差 跳动公差是以特定的检测方式为依据而给定的公差项目。跳动公差可分为圆跳动与全跳动。 定位公差 定位公差是关联实际要素对基准在位置上允许的变动全量。这类公差包括同轴度、对称度、位置度3项。 零件的形位公差图标及其涵义

零件的形位公差共14项,其中形状公差6个,位置公差8个,列于下表。 零件的形位公差图标 直线度直线度是表示零件上的直线要素实际形状保持理想直线的状况。也就是通常所说的平直程度。 直线度公差是实际线对理想直线所允许的最大变动量。也就是在图样上所给定的,用以限制实际线加工误差所允许的变动范围。 平面度平面度是表示零件的平面要素实际形状,保持理想平面的状况。也就是通常所说的平整程度。 平面度公差是实际表面对平面所允许的最大变动量。也就是在图样上给定的,用以限制实际表面加工误差所允许的变动范围。

机械设计中尺寸几何公差标注类知识.

一、关于尺寸 (1 功能尺寸系指对于机件的工作性能、装配精度及互换性起重要作用的尺寸。功能尺寸对于零件的装配位置或配合关系有决定性的作用, 因而常具有较高的精度。这些尺寸是尺寸链中重要的一环,常为了满足设计要求而直接注出。例如, 有装配要求的配合尺寸,有连接关系的定位尺寸、中心距等。 (2 非功能尺寸系指不影响机件的装配关系和配合性能的一般结构尺寸。这些尺寸一般精度都不高。例如, 无装配关系的外形轮廓尺寸、不重要的工艺结构 (如倒角、倒圆、退刀槽、凹槽、凸台、沉孔的尺寸等。 (3 公称尺寸是某一要素或零件尺寸的名义值。例如, 平垫圈的公称尺寸是与之相配的螺栓的公称直径,而实际上该垫圈的孔径要大于这个公称尺寸。 (4 基本尺寸是设计时给定的、用以确定结构大小或位置的尺寸。基本尺寸又是确定尺寸公差的基数,它与公称尺寸的性质是不同的。 (5 参考尺寸是指在图样中不起指导生产和检验作用的尺寸。它仅仅是为了便于看图方便而给出的参考性尺寸。参考尺寸只有基本尺寸而不带公差, 为了区别于其他未注公差的尺寸,标注时应加圆括号表示。 (6 重复尺寸是指某一要素的同一尺寸在图样中重复注出, 或对机件的结构尺 寸注成封闭的尺寸链, 因其中一环由图样中的其他尺寸和存在的几何关系可以推算出来, 此时又不加圆括号者, 这都称为重复尺寸。机件每一要素的尺寸一般都只能标注一次,不应重复出现,以避免尺寸之间产生不一致或相互矛盾的错误。 二、正确地选择尺寸基准 要合理标注尺寸, 必须恰当地选择尺寸基准, 即尺寸基准的选择应符合零件的设计要求并便于加工和测量。零件的底面、端面、对称面、主要的轴线、中心线等都可作为基准。 图 7-7 轴承座的尺寸基准

机械设计中形位公差的重要性及选择

机械设计中形位公差的重要性及选择 形位公差和尺寸公差、表面粗糙度一样都是评定产品质量的重要技术指标。形位公差对机器、仪表等各种产品的性能―工作精度、连接强度、密封性、运动平稳性、耐磨性、噪声等都有一定影响。对于在高速、高温、重载条件下工作的精密机器与仪器提出合理的形位公差要求就更为重要。形位公差在机械设计中起着举足轻重的作用,作为一名优秀的机械设计师必须能够灵活运用形位公差在自己的设计中,以此来提高产品的性价比,满足企业现代化生产的要求。 1、形位公差标准简介 我国最新的国家标准是GB/T1182-2008《产品几何技术规范(GPS)几何公差形状、方向、位置和跳动公差标注》,等同采用ISO1101:2004《产品几何技术规范(GPS)几何公差形状、方向、位臂和跳动公差标注》(英文版)。该标准对形位公差的标注及应用进行了规范性的要求。检测标准是GB/T1958-2004《产品几何技术规范(GPS)形状和位置公差检测规定》。形状、方向、位置和跳动公差一般统称为形位公差。 2、形位公差形成原因及原理 从设计图样到零件的形成,必须经过加工的过程、无论

设备的精度和操作工人的技术水平多么高,要使加工的零件达到理想的形状和完全准确的位置,仍然是不可能的,零件的实际形状和位置与理想形状和位置总是存在一定的偏离量,该偏离量就是该零件的形状和位置误差,即形位公差。 形位公差包括要素、公差带和基准(形状公差没有基准,位置公差一般都有基准)三部分。要素由点、线、面组成,形位公差就是对这些要素在形状和其相互间方向或位置的 精度要求。限制实际要素的变动范围是公差带,公差带之间的间距便是公差值,设计时确定公差值后,其零件的被测实际要素则必须在规定的公差带里。凡是要确定两个(或多个)要素的方向、位置关系时,都要涉及到基准,当基准确定后,被测要素的要求也就确定下来了。 3、形位公差的选择原则 选择形位公差应充分保证零件的品质要求,尽可能方便生产,同时获得最佳经济效益。 3.1形位公差项目的选择 形位公差项目选择的出发点随要素的几何特征、零件的结构特点和使用要求不同而变化。同一被测要素通常有若干个形位公差项目可供选择,对圆柱面就有圆度、圆柱度、素线的直线度、同轴度、位置度、圆跳动等形位公差项目可供使用。给定不同的形位公差项目,对零件的功能、加工方法、检测方法及评定方法都会产生不同的影响。所以,在保证零

机械制图尺寸标注讲解

机械设计中尺寸标注类知识 1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。 2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。

在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。 3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。

机械设计尺寸标注规范

机械设计中尺寸标注类知识,毕业前一定读懂它 1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。 2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。如图中所示就增加了一个左视图,以表达带圆角的方形凸

缘和四个均布的通孔。 在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。 3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。

机械设计及公差

机械设计及公差 课 程 设 计 姓名: 学号: 班级: 指导老师:

目录 一、序言…………………………………………………… 二、减速器传动轴的分析………………………………… 三、减速器传动轴精度分析……………………………… 1.1与轴承配合的轴颈处精度设计………………… 2.轴环左右两轴肩处精度设计……………………… 3.与齿轮配合处精度设计…………………………… 4.与带轮配合处精度设计…………………………… 5.键槽精度设计……………………………………… 6.未注公差…………………………………………… 四、光滑极限量规设计…………………………………… 1.轴用光滑极限量规设计…………………………… 2.孔用光滑极限量规设计…………………………… 五、零件图………………………………………………… 六、设计总结……………………………………………… 七、参考文献资料…………………………………………

一、序言 通过课程设计使学生学会综合运用机械设计基础课程及其它相关的先修课程知识,起到巩固、加强、融会及拓展有关机械设计方面知识的作用。 通过课程设计的实践,培养学生分析和解决工程实际问题的能力,使学生掌握机械零件、机械传动装置或简单机械的基本设计方法和步骤,初步培养学生独立分析、解决设计工程设计问题的能力,树立正确的设计思想,为以后进行设计工作打下良好的基础。 提高学生的有关设计能力、绘图能力、计算机辅助设计能力以及计算机应用能力,使学生能够熟练的应用设计资料(手册、图册等),熟悉有关标准、规范、经验估算等机械设计的基本知识。 二、减速器传动轴的分析 减速器的传动轴属于台阶类零件,由齿轮、圆柱面、圆锥面、轴肩、螺纹、螺尾退刀槽和键槽等组成。轴肩一般采用来确定安装在轴上零件的轴向位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递扭矩;螺纹用于安装各种锁紧螺母和调整螺母。 轴的结构设计就是要根据轴的具体工作条件,确定出轴的合理形状和结构尺寸。 减速器中的轴在工作时既受弯矩又受转矩,属于转轴。其

机械制图的公差与配合及其标注方法

机械制图的公差与配合及其标注方法 机械制图, 公差与配合, 机械加工, 模具, 数控加工 机械制图的公差与配合及其标注方法一、公差与配合的概念(一)零件的互换性在成批生产进行机器装配时,要求一批相配合的零件只要按零件图要求加工出来,不经任何选择或修配,任取一对装配起来,就能达到设计的工作性能要求,零件间的这种性质称为互换性。零件具有互换性,可给机器装配、修理带来方便,也为机器的现代化大生产提供了可性。(二)公差的有关术语零件在加工过程中,足球机床精度、刀具磨损、测量误差等的影响,不可能把零件的尺寸加工得绝对准确。为了保证互换性,必须将零件尺寸的加工误差限制在一定范围内,为例,说明公差的有关术语(轴,类同)。 1、基本尺寸根据零件的强度和结构要求,设计时确定的尺寸。其数值应优先用标准直径或标准长度。 2、实际尺寸通过测量所得到的尺寸。 3、极限尺寸允许尺寸变动的两个界限值。它是以基本尺寸为基数来确定的。两个界限值中较大的一个称为最大极限尺寸;较小的一个称为最小极限尺寸。 4、尺寸偏差(简称偏差)某一尺寸减去其基本尺寸所得的代数差。尺寸偏差有:上偏差=最大极限尺寸—基本尺寸下偏差=最小极限尺寸—基本尺寸上、下偏差统称为极限偏差,上、下偏差可以是正值、负值或零。国家标准规定:孔的上偏差代号为ES,孔的下偏差代号为EI;轴的上偏差代号为es,轴的下偏差代号为ei. 5、尺寸公差(简称公差)允许尺寸的变动量。尺寸公差=最大极限尺寸—最小极限尺寸=上偏差—下偏差因为最大极限尺寸总是大于最小极限尺寸,亦即上偏差总是大于下偏差,所以尺寸公差一定为正值。如图1a所示的孔径:基本尺寸=Ø30最大极限尺寸=Ø30.010最小极限尺寸= Ø29.990上偏差ES=最大极限尺寸—基本尺寸 =30.010-30=+0。010下偏差EI=最小极限尺寸—基本尺寸 =29.990-30=-0.010公差=最大极限尺寸—最小极限尺 寸 =3。010-29.990=0.020 =ES-EI=+0.010-(-0.010)=0。020 如果实际尺寸在Ø30.010与Ø29.990这间,即为合格。6、零线、公关带和公差带图如图1b所示,零线是在公差带图中用以确定偏差的一条基准线,即零偏差线。通常零线表示基本尺寸。在零线左端标上“0”“+”、“—”号,

机械设计轴承与轴的公差配合轴承与孔的公差配合

机械设计轴承与轴的公差配合轴承与孔的公差配合 This model paper was revised by the Standardization Office on December 10, 2020

做非标这么久,轴承与轴的公差配合,以及轴承与孔的公差配合,一直都是用微小间隙配合即能实现功能,且好装好拆。但是局部零件还是需要有一定的配合精度。 配合公差(fit tolerance)是指组成配合的孔、轴公差之和。它是允许间隙到过盈的变动量。 孔和轴的公差带大小和公差带位置组成了配合公差。孔和轴配合公差的大小表示孔和轴的配合精度。孔和轴配合公差带的大小和位置表示孔和轴的配合精度和配合性质。 一、公差等级的选择 与轴承配合的轴或轴承座孔的公差等级与轴承精度有关。 与P0级精度轴承配合的轴,其公差等级一般为IT6,轴承座孔一般为IT7。对旋转精度和运转的平稳性有较高要求的场合(如电动机等),应选择轴为IT5,轴承座孔为IT6。 二、公差带的选择 当量径向载荷P分成“轻”、“正常”和“重”载荷等几种情况。 其与轴承的额定动载荷C之关系为:轻载荷P≤0.06C 正常载荷 0.06C <P≤ 0.12C 重载荷 0.12C<P 1) 轴公差带 安装向心轴承和角接触轴承的轴的公差带参照相应公差带表。 就大多数场合而言,轴旋转且径向载荷方向不变,即轴承内圈相对于载荷方向旋转的场合,一般应选择过渡或过盈配合。静止轴且径向载荷方向不变,即轴承内圈相对于载荷方向是静止的场合,可选择过渡或小间隙配合(太大的间隙是不允许的)。 2)外壳孔公差带 安装向心轴承和角接触轴承的外壳孔公差带参照相应公差带表。 选择时注意对于载荷方向摆动或旋转的外圈,应避免间隙配合。当量径向载荷的大小也影响外圈的配合选择。 3) 轴承座结构形式的选择 滚动轴承的轴承座除非有特别需要,一般多采用整体式结构。 剖分式轴承座只是在装配上有困难,或在装配上方便的优点成为主要考虑点时才采用,但它不能应用于紧配合或较精密的配合,例如K7和比K7更紧的配合,又如公差等级为IT6或更精密的座孔,都不得采用剖分式轴承座。 三、轴承与轴的配合公差标准 ①当轴承内径公差带与轴公差带构成配合时 在一般基孔制中原属过渡配合的公差代号将变为过赢配合,如k5、k6、m5、m6、n6等,但过赢量不大;当轴承内径公差代与h5、h6、g5、g6等构成配合时,不在是间隙而成为过赢配合。 ②轴承外径公差带由于公差值不同于一般基准轴 也是一种特殊公差带,大多情况下,外圈安装在外壳孔中是固定的,有些轴承部件结构要求又需要调整,其配合不宜太紧,常与H6、H7、J6、J7、Js6、Js7等配合。 附:一般情况下,轴一般标0~+0。005 如果是不常拆的话,就是+0。005~+0。01的过盈配合就可以了,如果要常常的拆装就是过渡配合就可以了。 我们还要考虑到轴材料本身在转动时候的热胀,所以轴承越大的话,最好是-0。005~0的间隙配合,最大也不要超过0。01的间隙配合。还有一条就是动圈过盈,静圈间隙。 轴承配合一般都是过渡配合,但在有特殊情况下可选过盈配合,但很少。因为轴承与轴配合是轴承的内圈与轴配合,使用的是基孔制,本来轴承是应该完全对零的,我们在实际使用中也完全可以这样认为。

相关文档
最新文档