联想笔记本电脑电源适配器原理分析与检修

联想笔记本电脑电源适配器原理分析与检修
联想笔记本电脑电源适配器原理分析与检修

该电源适配器(型号为92P1107),输入电压为交流1OOV~240V市电;输出直流20V;最大输出功率有90W

和65W两种。其核心控制芯片为贴片式脉宽调制集成电路(3843),该芯片内含振荡器、脉宽调制比较器、逻辑控制

器;具有过流、欠压等保护控制功能;工作电压为7V~34V;最高工作频率可达500MHz;启动电流仅需1mA。

该芯片的各引脚功能如下:①脚是内部误差放大器的输出端。②脚是反馈电压输入端,作为内部误差放大器的

反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。

③脚为过流检测输入

端,当该脚的电压高于1V时,禁止驱动脉冲的输出。④脚为RT/CT定时电阻和电容的公共接入端,用于产生锯齿振

荡波。⑤脚为接地端。⑥脚为脉宽调制信号输出端。⑦脚为工作电压输入端(7V>Vi≤34V)。

⑧脚为内部基准电压

(VREF=5V)输出端。

根据实物绘制了其电路原理图如附图所示。经比较,两种输出功率的电原理图完全相同,只是过流保护电路取

样电阻R20~R23的取值以及20V直流电压输出滤波电容C11及C12的容量有所不同。

一、整流滤波电路

交流市电经1A保险管F1及电容C1进入整流电路,BD1全桥整流后,经主滤波电容C7滤波,在C7两端得到约

300V的直流电压,作为适配器的工作电压。该适配器的输入电路只有一个高频滤波电容C1

进行简单的滤波处理,因此对外部电磁脉冲的抗干扰能力和防止自身的高频电磁信号向外辐射的能力较弱。

二、启动与稳压电路

由整流滤波电路产生的300V电压:一路经开关变压器T1的初级①~②绕组加到功率开关管Q1(FS5KM)的漏

极;另一路经启动电阻R3~R6并联串联后加到U1(3843)的⑦脚,作为主控制芯片(3843)的启动电压。在电路加电

的瞬间,300V直流电通过R3~R6对C8进行充电,当U1的⑦脚电压达到7V以上时,U1的⑧脚输出5V基准电压

Vref,同时3843内部的振荡电路开始工作,其⑥脚开始输出脉宽调制信号,通过R17驱动功率开关管Q1工作于交替

导通、截止的工作状态。开关变压器T1的初级①~②绕组流过高频脉冲电流,同时由于交流互感的作用,在开关变

压器T1的次级③~④绕组两端产生的感应电压经R16限流、D3整流、C8滤波后得到UI持续工作所需的电压。脉宽调

制信号的频率由R11和C3决定(本电路中.R11为5.6k,C3为4700pF),其振荡频率大约为70kHz。T1的⑤~⑥

绕组产生的感应电压经D2整流,C11和C12滤波,输出20V的直流电压。

稳压电路由精密可调基准电压集成器件U3(KA431Z)、电阻R26、R27、R28、R29、电容C以及光电耦合器

U2(PC817)组成。输出的20V电压经R27与R28、R29分压后加到U3的①脚。当由于某种原因导致输出20V电压升

高时,U3的①脚电压升高,③脚的电压降低,导致流过光耦合器U2内部发光二极管的电流增大,使U2内部发光二

极管的亮度增强。U2内部光电三极管的内阻降低,将U1的①脚电位拉低,使U1内误差放大器的输出电压降低,经

内部自动控制电路的作用,自动将U1的⑥脚输出的脉冲宽度调窄,使开关管Q1的导通时间缩短,经开关变压器的

作用,使适配器输出的电压自动降低。当适配器输出20V电压变低时,其稳压过程与上述相反,将输出电压调整到

稳定的20V。

三、保护电路

1.功率管的保护:该保护电路由R13~R15、C6及D1组成,接在开关变压器T1的初级①~②绕组间。由于功

率开关管Q1交替工作在饱和导通与截止状态之间,当开关管由饱和导通变为截止状态时,在①~②绕组之间会产生瞬

间反向尖峰高电压,如果没有泄放电路,功率管的漏(D)、源(S)极很可能会被高压击穿。通过该保护电路可以将反

向尖峰电压吸收掉,从而起到保护功率开关管Q1的作用。

2.过流保护:电路由R20~R23、R18组成,当功率管的电流突然增大时,电阻R20~R23并联后的一端对热地

端电压升高,该电压经R18加到U1的③脚,当该电压高于1V时,U1(3843)内部控制电路控制⑥脚停止输出脉宽调

制信号,使Q1截止,保护功率管不因电流过大而被热击穿。

另外在输出整流二极管D2两端接有由R24、R25、C10组成的高频振荡脉冲RC吸收网络,以降低绕组之间的尖

峰脉冲干扰。

四、故障检修

故障1:加电后指示灯不亮,输出电压为OV。据用户反映,使用中不小心将适配器掉到地上,随后就没电了。

检修与分析:打开外壳,取出电路板,观察电路板发现保险管爆裂,线路板背面全桥引脚附近有明显打火烧蚀

的痕迹,交流输入到保险管之间的铜箔被烧断;保险管到全桥的一个输入脚之间的铜箔线也被烧断,显然电路发生

了严重的高压短路。于是将全桥及功率开关管Q1(FS5KM)焊下来。经测量全桥未损坏,功率开关管(FS5KM)也正

常,测量电阻R20~R23均正常,于是用酒精仔细清洗被烧蚀的线路板,在清洗线路板的过程中发现主滤波电容C7

的正极焊盘与线路断裂。于是用导线将被烧断的铜箔连接好,更换保险管,焊接好主滤波电容C7的正极焊盘,并

对其他焊点进行补焊。试加电,电路竟然工作,测量输出20V正常,接入笔记本使用一个多月未见异常。分析认

为:引起故障的原因可能是,在适配器掉到地上时,线路板上未清理掉的焊锡珠或元件引脚等导体掉落,将高压元

件的引脚短路造成高压短路,引起烧保险管和线路板铜箔。所幸未造成元件大面积损坏。

故障2:加电后指示灯不亮,输出电压为OV。

检修与分析:打开外壳,取出电路板,观察电路板发现保险管爆裂,保险管到全桥的一个输入脚之间的铜箔连

线被烧断。测量全桥未损坏,检测功率开关管一(FS5KM)的漏极(D)与源极(S)间短路,漏极(D)与栅极(G)之间也短

路,过流保护电阻R20~R23全被烧断,电阻R17断路。测量U1的⑥脚对地正向电阻为4k,反向电阻为4.5k,在R17

断路的情况下,U1(3843)的⑥脚对地正反向电阻应为4.4k和200k,因此怀疑U1(3843)也损坏。测试光耦合器

U2(PC817)以及精密三端稳压器U3(KA431)均正常,检查其他相关阻容元件均正常。于是更换以上损坏的元件,加

电试机,适配器工作,测输出20V电压正常,经长时间工作未出现异常。分析认为:该故障可能由于输入交流电源

过压或长时间在过重负载下工作,导致功率开关管(FS5KM)被热击穿短路,导致300V高压将相关的一系列元件击

穿损坏。

笔记本电脑供电电路故障的诊断方法

笔记本电脑供电电路故障的诊断方法 笔记本电脑的主板供电电路是笔记本电脑不可或缺的一部分,其出现问题通常会导致不能开机、自动重启以及死机等种种故障现象的产生。 学习笔记本电脑主板供电电路故障的诊断与排除,首先应掌握其基本工作原理,其次要对主板供电电路出现问题后导致的常见故障现象进行了解,最后要不断总结和学习主板供电电路的检修经验和方法。 1 笔记本电脑主板供电电路基本知识 笔记本电脑主板的供电方式有两种,一种是笔记本电脑采用的专用可充电电池供电,另一种是能够将220V市电转换为十几伏或二十几伏供电的电源适配器供电。笔记本电脑的专用可充电池提供的供电电压通常要低于电源适配器的输入供电电压。 无论是笔记本电脑的专用可充电电池还是电源适配器,其输入笔记本电脑主板上的供电并不能被所有芯片、电路以及硬件设备等直接采用,这是因为笔记本电脑主板上的各部分功能模块和硬件设备对电流和电压的要求不同,其必须经过相应的供电转换后才能被采用。所以,笔记本电脑主板上的各种供电转换电路,成为了笔记本电脑不可或缺的一部分。同时,笔记本电脑的主板供电电路出现问题后,就会导致不能开机、自动重启以及死机等种种故障现象的产生。 学习笔记本电脑主板供电电路故障的诊断与排除方法,必须首先掌握其工作原理和常见故障现象,这样才能够在笔记本电脑的检修过程中做到故障分析合理、故障排除迅速且准确。 1.1笔记本电脑主板供电机制 笔记本电脑主板上的供电转换电路主要采用开关稳压电源和线性稳压电源两种。 开关稳压电源是笔记本电脑主板中应用最为广泛的一种供电转换电路。笔记本电脑主板上的系统供电电路、CPU供电电路、芯片组供电电路以及内存和显卡供电电路中,都广泛采用了开关稳压电源。 开关稳压电源利用现代电子技术,通过电源控制芯片发送控制信号控制电子开关器件(如场效应管)的“导通”和“截止”,对输入供电进行脉冲调制,从而实现供电转换以及自动稳压和输出可调电压的功能。 笔记本电脑主板上应用的开关稳压电源电路通常由电源控制芯片、场效应管、滤波电容器、储能电感器以及电阻器等电子元器件组成。

戴尔笔记本电脑电源适配器电路原理浅析与维修

戴尔笔记本电脑电源适配器电路原理浅析与维修 近日修了几台戴尔笔记本电脑PA-12系列HA65NS2-00型电源适配器,版本号REV A01。其标称输入电压为100~240V(50-60Hz).输出电压为直流19.5V,输出电流为3.34A,额定输出功率65W。戴尔Latitude、lnsipron 系列笔记本电脑均可使用该电源适配器,社会保有量较大。 HA65NS02-00型电源适配器大量使用了表面安装器件,如图1所示。 由于元器件密度高、工作电压高、电流大,发生故障的几率较大。若没有电路原理图维修相当困难。这里给出根据实物绘出的电路原理图(见图2),浅析其工作原理,给出两个维修实例。图2中:器件编号与实物一致,贴片电容未标注容量,电阻R12和R18阻值为实测值(缺省标注数值的电阻单位为欧姆,缺省标注数值的电容单位为微法)。 一、电路组成与主要元器件作用 1.电磁干扰抑制电路与整流滤波电路L1、R1A、R1B、CXl、L2组成差模和共模低通滤波器,通常称作电磁干扰抑制电路(EMI),用来抑制开关电源产生的电磁干扰;BDl和C1组成桥式全波整流滤波电路,为直流/直流变换电路提供平滑的直流电源(主电源)。 2.直流/直流变换电路 集成电路IC1及外围元器件、功率场效应开关管Ql、开关变压器T1等构成直流/直流变换电路。ICl是HA65NS02-00电源适配器的核心器件,采用SOP-8封装,顶部有两行标记,一行为“1D07N25",一行为"5528"。在查阅了大量资料后排除了NCPl207、LD7575等 芯片,最终确认该芯片为富士电机(Fuji Electric)生产的FA5528。FA5528是采用CMOS制程的电流模式脉宽调制控制芯片,典型工作电流仅1.4mA。该芯片额定工作频率60kHz,轻载时自动降低工作频率,图3是FA5528的内部电路框图。 电阻R5A、R5D、c5和D1构成消尖峰电路。用来削除开关管导通与夹断时T1初级绕组产生的高压尖峰脉冲(用来保护开关管Q1)。遇Q1击穿故障时,应检查消尖峰电路。D2和R1构成IC1的启动电路。启动电流大约7mA。IC1启动后,芯片启动电路关闭,改由辅助电源供电,启动电路电流降至251uA左右。开关变压器T1-1、T1-2绕组、R7、D3、R8、C3、C10和R4组成18V辅助电源为ICI提供电能。开关管Q1源极与高压地之间的电阻R18和R14为开关电源过载保护取样电阻。当流经过载保护电阻的峰值电流大于IC1内部设定的保护阀值电平时,IC1内部过载保护比较器翻转关闭脉宽调制器输出.功率场效应开关管Q1夹断,达到保护目的。 3.输出整流滤波电路 开关变压器T1A、T1B绕组产生的低压脉冲电压,经共阴极双肖特基二极管D31A整流、C21A~C21C滤波后,产生平滑的+19.5V电源供电脑使用。电阻R21和电容C21组成的网络用来吸收开关变压器产生的尖峰脉冲,保护整流器件。高亮度发光二极管LED和电阻R13相串用来指示电源适配器工作状态。 4.输出电压稳压控制电路 线性光电耦合器PH1和精密并联型可调整稳压器IC32及其外围元器件与IC1内部误差放大器、脉宽控制电路共同构成输出电压稳压控制电路。 由于IC32的存在,PHI②脚的电位是恒定的,当+19.5V电压变化时。PH1内部发光二极管的发光强度发生变化,PH1内部光电三极管集电极和发射极间的电压UCE随之发生变化,UCE的变化经ICI内部误差放大器放大后,调

笔记本AC电源适配器设计方案

笔记本AC电源适配器设计方案[图] 作者:安森美半导体|出处:21IC中国电子网| 2011-05-31 16:16:17 |阅读:1182次 笔记本AC电源适配器设计方案[图],笔记本电脑的应用非常广泛,且市场规模持续快速增长。相应地,笔记本电脑电源适配器的市场也非常可观。用户 笔记本电脑的应用非常广泛,且市场规模持续快速增长。相应地,笔记本电脑电源适配器的市场也非常可观。用户往往要求高性能、小尺寸或低重量的笔记本,同时价格适宜。对于电源适配器设计人员而言,就要选择适合的控制器,用于开发高能效、集成丰富保护特性、尺寸小巧的适配器。 有利的是,安森美半导体推出了新的NCP1250/NCP1251固定频率6引脚脉宽调制(PWM)反激控制器,极佳地满足设计人员的需求,使他们能够开发高性能、高功率密度的电源转换器,用于笔记本/上网本电源适配器,并可用于DVD或机顶盒(STB)的低功率开放式电源等应用。 笔记本电脑电源适配器要求 从大多数用户的使用情况来看,笔记本电脑有相当的时间内会处在轻载或待机条件下。与提高25%、50%、75%或100%负载条件下的能效相比,降低极低负载条件甚至是待机条件下的能耗及提升能效更具挑战性。这就要求电源控制器具备极佳的轻载或待机能耗性能。 此外,用于笔记本的AC-DC适配器也要求具备以下几种保护特性: .短路保护(SCP):必须能够承受输出持续短路而不会损坏。当故障消失时,适配器必 须能够从保护模式下恢复,并重新提供额定功率。 .过压保护(OVP):在环路被破坏的情况下,如光耦合器损坏或TL431分压网络受到影响,适配器必须立即停止工作,并在用户重新启动适配器前保持在此状态。 .过温保护(OTP):如果适配器的温度超过某个温度值,适配器就存在损坏的风险。为了避免出现这种情况,就需要使用热传感器来持续监测温度,并在温度超过设计人员设定的限制值的情况下,适配器就持续关闭。当用户重新启动电源且温度下降时,适配器复位。 .过功率保护(OPP):对某些电源而言,重要的是在最坏条件下——如负载消耗的电流过大,最大输出电流保持在受控状态,而不会实际出现短路。 NCP1250/1关键特性及功能解析 NCP1250/1是采用极小的6引脚TSOP封装的固定频率PWM控制器。除了尺寸极小,还提供即便是其它更高端控制器可能都不具备的众多优势。在最简单的应用(5个功能引脚)中,NCP1250/1非常合适于设计紧凑、保护功能减至最少的离线电源。由于还有第6个多功能引

简易频谱分析仪

简易频谱分析仪[ 2005年电子大赛二等奖] 摘要:本设计以凌阳16位单片机SPCE061A为核心控制器件,配合Xilinx Virtex-II FPGA及Xilinx公司提供的硬件DSP高级设计工具System Generator,制作完成本数字式外差频谱分析仪。前端利用高性能A/D对被测信号进行采集,利用FPGA高速、并行的处理特点,在FPGA内部完成数字混频,数字滤波等DSP 算法。 SPCE061A单片机是整个设计的核心控制器件,根据从键盘接受的数据控制整个系统的工作流程,包括控制FPGA工作以及控制双路D/A在模拟示波器屏幕上描绘频谱图。人机接口使用128×64液晶和4×4键盘。本系统运行稳定,功能齐全,人机界面友好。 关键字:SPCE061A 简易频谱分析仪 一、方案论证 频谱分析仪是在频域上观察电信号特征,并在显示仪器上显示当前信号频谱图的仪器。从实现方式上可分为模拟式与数字式两类方案,下面对两种方案进行比较: 方案一:模拟式频谱分析仪 模拟方式的频谱仪以模拟滤波器为基础,通常有并行滤波法、顺序滤波法,可调滤波法、扫描外差法等实现方法,现在广泛应用的模拟频谱分析仪设计方案多为扫描外差法,此方案原理框图如图1.1:

图 1.1 模拟外差式频谱仪原理框图 图中的扫频振荡器是仪器内部的振荡源,当扫频振荡器的频率在一定范围内扫动时,输入信号中的各个频率分量在混频器中产生差频信号 (),依次落入窄带滤波器的通带内(这个通带是固定的),获得中频增益,经检波后加到Y放大器,使亮点在屏幕上的垂直偏移正比于该频率分量的幅值。由于扫描电压在调制振荡器的同时,又驱动X放大器,从而可以在屏幕上显示出被测信号的线状频谱图。这是目前常用模拟外差式频谱仪的基本原理。模拟外差式频谱仪具有高带宽和高频率分辨率等优点,但是模拟器件调试复杂,短期实现有难度,尤其是在对频谱信息的存储和分析上,逊色于新兴的数字化频谱仪方案。 方案二:数字式频谱分析仪 数字式频谱仪通常使用高速A/D采集当前信号,然后送入处理器处理,最后将得到的各频率分量幅度值数据送入显示器显示,其组成框图如图1.2: 图 1.2 数字式频谱仪组成框图

频谱分析仪的原理及应用

频谱分析仪的原理及应用 (远程互动方式) 一、实验目的: 1、熟悉远程电子实验系统客户端程序的操作,了解如何控制远地服务器主机,操作与其连接的电子综合实验板和PCI-1200数据采集卡,具体可参照实验操作说明。 2、了解FFT 快速傅立叶变换理论及数字式频谱分析仪的工作原理,同时了解信号波形的数字合成方法以及程控信号源的工作原理。 3、在客户端程序上进行远程实验操作,由程控信号源分别产生正弦波、方波、三角波等几种典型电压波形,并由数字频谱分析仪对这几种典型电压波形进行频谱分析,并对测量结果做记录。 二、实验原理: 1、理论概要 数字式频谱分析仪是通过A/D 采样器件,将模拟信号转换为数字信号,传给微处理器系统或计算机来处理和显示,与模拟仪器相比,数据的量化更精确,而且很容易实现存储、传输、控制等智能化的功能。电压测量的分辨率取决于A/D 采样器件的位数,例如12位A/D 采样的分辨率是1/4096。在对交流信号的测量中,根据奈奎斯特采样定理,采样速率必须是信号频率的两倍以上,采样频率越高,时间轴上的信号分辨力就越高,所获得的信号就越接近原始信号,在频谱上展现的频带就越宽。 本实验系统基于虚拟仪器构建,数字频谱分析仪是通过PCI-1200数据采集卡来实现的。通过虚拟仪器软件提供的网络通信功能,实现客户端与服务器之间的远程通信。由客户端程序发出操作请求,由服务器接受并按照要求控制硬件实验系统,然后将采集到的实验数据发给客户端,由客户端程序进行处理。 频谱分析仪是在频域进行信号分析测量的仪器之一,它采用滤波或傅立叶变换的方法,分析信号中所含各个频率份量的幅值、功率、能量和相位关系。频谱仪按工作原理,大致可分为滤波法和计算法两大类,本实验所用的数字频谱分析仪采用的是计算法。 计算法频谱分析仪的构成如图1所示: 图1 计算法频谱分析仪构成方框图 数据采集部分由数据采集部分由抗混低通滤波(LP )、采样保持(S/H )和模数转换(A/D )几个部分组成。 数字信号处理(DSP )部分的核心是FFT 运算。 有限离散序列Xn 和它的频谱X m 之间的傅立叶变换可表示如下: N-1 nm X m = ∑ Xn ·W N n=0 -j2π/N 式中W N = C n,m = 0,1,……,N-1 1 N-1 -nm Xn = - ∑ X m ·W N N m=0 X m 有N 个复数值,由它可获得振幅和相位谱∣X m ∣,φm 。由于时间信号Xn 总是实函数,X m 的N 个值的前后半部分共轭对称。 由于数据采集进行的是有限时间内的信号采集,而不是无限时间信号,在进行FFT 变

USB电源适配器的电路保护方案

USB电源适配器的电路保护方案 -------AEM科技应用工程师郭田青 随着当今社会人们手中的手机、平板电脑等智能手持设备功能的不断升级强大,娱 乐和个性化的应用也使得设备的电池的续航能力成为其中的一个死角。现实生活中我们可 能经常会看到我们周边的朋友随身带个移动电源,没有随身电源就只能随时找地方对设备 充电了。因此电源适配器作为标配产品一直成了人们的必需品。 以苹果手机的USB电源适配等为代表的小型化适配器越来越受人亲睐,越来越多的电路元器件的SMD小型化封装让以往常见的电源充电器能够做到更加的小巧玲珑,集美观与便 携于一体。本文从内部电路重要的安规器件——保险丝的应用角度,说明AEM科技推出的创新型SMD 250VAC FUSE——MF2410系列适应潮流,如何布局在这类小尺寸 AC/DC电源适配器上的交流应用,并如何做到我们倡导的“该断时及时断,不该断是不能断,时时保障安全!”的要求呢。 作为一款UMF通用模块型保险丝,必须让工程师在设计初考虑满足下述要求。 一、结构上最大限度满足小尺寸电源适配器对器件的小体积要求 以USB power Adapter为例,在这个层面上,结构限制了内部元件的体积,例如硬币大小的PCB面积也让SMD元件成了工程师的首选。 图1 整体设计的PCB面积均如硬币大小,可以让外观做到迷你型。 作为安规元件的保险丝,MF2410通用模块保险丝满足了上面的小体积和SMD工艺的需求。相对于传统保险丝的尺寸,MF的体积小优势十分明显。 我们来看看市面上常用的几种保险丝尺寸大小比例:

表1 常见保险丝尺寸比较 MF2410 6.1mm 2.5mm 2.2mm 15.3mm 图2 可以看出MF 通用模块保险丝最大限度满足对体积的要求。 二、适合回流焊与波峰焊的SMT工艺 从生产工艺上讲,AEM 的MF保险丝材料与结构独具特点,这种SMT生产工艺不单省却了不少人工与辅材成本,根据我们对采用SMD fuse的客户原因调查,插件的引脚弯折加工导致fuse本体坏也是其中一种原因。 其次,由于电源电路插件的元件必不可少,因此生产工厂有采用波峰焊焊接的方式,保险丝需要承受波峰焊锡高温,与业界其它SMD陶瓷保险丝相比,AEM 的UMF通用模块式保险丝以环氧树脂为基体,电镀通孔的连接方式使熔丝与端头形成可靠的电连接和机械连接,不存在端头焊接受热脱帽现象,耐高温的能力突出。 图3 满足波峰焊、回流焊或手工焊的焊接工艺

5V1A电源适配器充电器6级能效正确选取和使用方法

12V/9V/5V-1A/2A/3A电源适配器/充电器6级能效正确选取和使用方法 生活中电源适配器就像是日用品一样被普遍应用,如随身携带的手机、需照明的LED灯、路由器、以及经常使用的笔记本计算机和打印机等等。但是很多人选择电源适配器的时候都很迷惑,下面小编来分享选择电源适配器需符合的三个条件。 电源适配器,简单的说可以理解成为一个变压器,当然内部结构不是简简单单的一个变压器。那么如何辨知电源适配器能不能给移动设备充电?我先给出三个符合适配条件,后面解释为什么需要这样。 符合三个适配条件 1、适配器的接口与设备匹配。 2、输出电压必须与负载(移动设备)的额定输入电压相同,或者在负载(移动设备)可承受的电压范围,否则,可能烧毁负载(移动设备)的。 3、电源适配器的输出电流应等于、大于负载(移动设备)的电流,以提供足够的电力。 原理解释 1、第一条不需要解释,不匹配的接口在没有专业知识的情况下千万不要乱插。 2、对于为什么需要电压一致,从原理上讲是这样的——电压不足,不足以驱动负载,电池无法正常充电,说的通俗点就是供不应求。 3、对于为什么需要这样的电流配置,这要涉及到电路的原理,大家都知道电源是有内阻的,内阻越大损耗越大。因此厂家在生产这个适配器的时候就会根据内阻大小,确定空载输出电压在一定范围内,而电压临界值对应的电流临界值即为我们看到的电流标称值,电流标称值越大说明适配器带载能力越好。所以你选择电流略大的适配器不但不会伤害你的电池,反而会让你的充电变得更快。 注意事项: 注意三个原则,但这不是绝对的,电路充斥着我们的日常生活,了解基本的电路常识大有裨益。 正确的选择电源适配器,正确使用,才不会对电子设备造成损坏,不会缩短正常使用寿命。

史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。 现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。 有两种技术方法可完成信号频域测量(统称为频谱分析)。 1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。这种仪器同样能分析周期和非周期信号。FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。 2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。

图1 信号的频域分析技术 快速傅立叶变换频谱分析仪 快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。 FFT分析仪能够完成多通道滤波器式同样的功能,但无需使用许多带通滤波器,它使用数字信号处理来实现多个独立滤波器相当的功能。从概念上讲,FFT方法

频谱分析仪使用注意

正确使用频谱分析仪需注意的几点 首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。 其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。 三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。 当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分

Surface笔记本电源适配器哪里有卖

维力创科技专注充电器和快充数据线厂商,其产品已经成功进入了多家品牌电脑和手机供应链。在Surface充电器方面,维力创推出全系列型号: 13W / 24W / 36W / 48W / 44W / 65W / 90W / 102W等充电器。 一、让你的Surface Pro电脑如何购买合适的Surface充电器 产品规格型号:A1706,输入:100-240V-1.6A,50/60Hz,输出:15V-4A/USB:5V-1A,功率:65W 目前微软最新推出电脑机型Surface Pro6官方低配置为15V-2.58A 44W,高配置为 15V-4A 65W充电器。功率区分充电接口还是统一的Surface Connect磁吸接头! 二、Surface Pro6电源适配器具有丰富技术方案,让安全匹配充电带来完整的Surface 体验

适用于Surface Pro 及Surface Laptop,为您的Surface 快速充电。带有USB 端口,可同时为其他设备充电。 三、拆解更多了解15V-2.58A充电器品质标准 1:概述 2:同步整流可提高效率,同时也能够极大地帮助瞬态负载调节。它为电源预加载提供了一

种高效的方法。另外,相比摆动电感,它还拥有更加稳定的控制环路特性。它提高了传统降压转换器,以及所有其他能够使用同步整流的拓扑结构的动态性。 现在的电源进一步提高了性能要求,效率就是最高的评价标准。以前常用的方案最高的效率就是85%横队哦电源度达不到,想要提高一点度很难。就是提高1%的效率在成本上面都会自己很多。同步整流功能还是很强大的,内部集成的同步整流管。我们以前的同步整流功能比较难的。电路复杂性比较高,调试维修比较难,现在他那不与基层的电路功能了,我们只要在外面接上管子就可以了! 深圳维力创科技电源适配器定制厂家,公司直销:电源适配器定制,笔记本电源适配器,电

一文弄懂电源适配器基础知识

一文弄懂电源适配器基础知识 什么是电源适配器?电源适配器,也称为外部电源,一般是当作体积小的便携式电子设备和电子设备的电源电压转换设备来进行使用的。它通常用于小型电子产品,如手机,液晶显示器和笔记本电脑等。它的功能是将家用的220伏高压转换成这些电子产品可以工作的约5伏至20伏的稳定低电压,以便它们能够正常工作。 有两种主要类型的电源适配器,开关电源和线性电源。 1、关电源是一种利用现代电子技术控制开关时间比并保持稳定输出电压的电源。电源适配器的开关电源一般由脉宽调制(PWM)控制IC和MOSFET组成。 优点:效率高,体积小,可在宽电压范围内工作。缺点:对电源电路的干扰很大,故障发生时难以排除故障。 2、性电源通过变压器,整流电路整流滤波器转换AC,以获得不稳定的直流电压。为了实现高精度直流电压,电源适配器必须通过电压反馈电路调节输出电压。 优点:电源技术成熟,电路简单,开关电源无干扰和噪声。缺点:电压反馈电路处于在线状态。由于使用了电感变压器,调节器的功耗很大,转换效率低,设备重量大。 像这种电源转换设备,通常用的时间长了,难免会出现许多问题,线路容易出现故障、电压不稳定等症状就会频发,那么当出现故障的时候,应该怎样处理呢? 1、首先我们可以根据指示来判断情况,可以看电源适配器指标灯,如果指示灯亮,一般认为从电源到适配器之间没有问题,必须保证是指示灯本身没坏。 2、电源线尽量避免弄断内部电缆形成断路。如果外置电源不供电,这时可以插上电池试试,如果机器可以正常启动,就有可能是电源线或者适配器有问题。然后用万用表检测,查明电源线是否有问题,以简化维修难度,不要一开始就尝试打开电源适配器外壳。打开电源适配器外壳的难度真的是太大了。 3、如果原装适配器有问题,无法维修或者来不及维修,可以先使用其他适配器替代,只要输出电压和功率大致相当即可。笔记本电脑内部还有稳压电路撑着,不要太过于担心输出电压不匹配的问题。

电源适配器安规常识

安规认识 1. 安规简介: 安规也就是安全标准规格,安规对制造的装置与电组件有明确的陈述与指导,以提供具有安全与高品质的产品给终端使用者其目的主要是用来防止electric shock, energy hazards, fire, mechanical and heat hazards, radiation hazards chemical hazards等对人体造成的伤害. 一般地,每一个国家都可以建立自己本国的电气安全标准,但是大多数的电源供给器制造厂商都是使用IEC,VDE,UL,CSA安全标准作为解决安全之需求.UL与VDE的安全标准有本质上的差异,UL规格比较集中在防止失火的危险,而VDE规格则比较关于操作人员的安全,对于电源供给器而言,VDE乃是最严厉的电气安全标准. 安规政策:高压测试和接地测试零缺点. 2. 电源供给器结构安全需求 (1) 空间需求(spacing requirements) UL, CSA与VDE安全规格在活性组件之间,以及活性组件与固定金属组件之间,强制规定特定的空间需求,空间需求包括空间距离和沿面距离,空间距离在VDE中又叫间隙距离, 而在UL中则叫分离距离, VDE标准规格中的沿面距离在UL标准规格中则称为分隔距离. 空间距离(Creepage distance):在两个导电组件之间或是导电组件与物体界面之间经由空气分离测得最短直线距离; 沿面距离(clearance):沿绝缘表面测得两个导电组件之间或是导电组件与物体界面之间的最短距离. (2).电介质测试承受度(dielectric test withstand) 当装置上的额定电压为250Vac或是更小时在UL与CSA标准规格中需要做输入至输出与输入至地端的高电位隔离测试(HI-POT isolation test).

笔记本电脑电源适配器应对效率挑战

笔记本电脑电源适配器—应对效率挑战 引言 不久之前,笔记本电脑的功能有限,如功率要求仅为50-70瓦(W)。近年来,功率要求攀升到100 W范围以上,但重量和尺寸的期望没有相应地改善。此外,需要满足规范中的低待机功率性能、外部电源(EPS)效率要求和IEC1000-3-2对75 W以上输入功率的谐波要求使这一挑战更加难应对。本文探索能使电源制造商应对这些挑战的新近趋势,并提供不同替代解决方案以供选择。 随着笔记本电脑的功能日益丰富,其功率要求也提高了。此外,因为电池容量(或密度)提高了,充电要求也提高了——因此,笔记本电脑适配器的功率要求提高了一倍。然而,对于世界各地上百万携带笔记本电脑的用户来说,更大和/或更热的电源适配器并非太具吸引力的选择。能够吸引人的是拥有一个轻巧小型,但能立即充电的笔记本电脑适配器。当然,它不会产生热量,而且不会花费太多。近年来电子产品的发展并 未增加我们在这方面的希望,而且未来的革命是否能够实现依然是一个悬而未决的问题。我们也想要用一个笔记本适配器就能在全球使用,而无需110/220伏工作电压选择开关——因此,笔记本电脑适配器必须为真正通用的线路电压工作设计。同时,监管方和OEM的期望也起到一定的作用。 监管机构希望笔记本电脑适配器不会浪费能源或在用电线路中加入谐波。第一个因素是适配器不带任何负载插入插头后,它应该尽可能少的吸收功率(待机要求)。人们一般习惯将笔记本电脑适配器插在插座上,却并未连接电脑,该要求就可防止此情况下产生的损耗。第二个因素是近期的规定,它要求在不同负载条件下(25%、50%、75%和100%)有特定的平均电源工作效率,并由全球各规范机构执行,以便推动遵从该规范并降低间接费用。最后,欧盟和日本强制执行的降低谐波要求已开始应用于笔记本电脑电源适配器,因为它们已经超过了这些标准规范的75 W输入功率门限。在某种意义上,笔记本电脑适配器的移动/通用特性使其成为受IEC1000-3-2规范的首个量产电源产品。 现有的解决方案和方法 现有的笔记本电脑转换器一般采用反激拓扑结构进行脉冲宽度调制(PWM) 转换。这是多年来最有效的解决方案(在成本和技术上)。如图1所示,用于笔记本电脑适配器的典型反激转换器在通用输入电压范围

超外差频谱分析仪的原理及组成

显示器 扫描产生器 3.1 超外差式频谱分析仪的原理及组成 3.1.1 超外差频谱分析仪的原理结构图 图3-1所示,为超外差频谱分析仪的简单原理结构图。 图3-1 超外差频谱分析仪的简单原理结构图 由图3-1可知:超外差频谱分析仪一般由射频输入衰减器、低通滤波器或预选器、混频器、中频增益放大器、中频滤波器、本地振荡器、扫描产生器、检波器、视频滤波器和显示器组成。 超外差频谱分析仪的工作原理是:射频输入信号通过输入衰减器,经过低通滤波器或预选器到达混频器,输入信号同来自本地振荡器的本振信号混频,由于混频器是一个非线性器件,因此其输出信号不仅包含源信号频率(输入信号和本振信号),而且还包含输入信号和本 第3章 超外差式频谱分析仪的原理

振信号的和频与差频,如果混频器的输出信号在中频滤波器的带宽内,则频谱分析仪进一步处理此信号,即通过包络检波器、视频滤波器,最后在频谱分析仪显示器CRT 的垂直轴显示信号幅度,在水平轴显示信号的频率,从而达到测量信号的目的。 3.1.2 RF 输入衰减器 超外差频谱分析仪的第一部分就是RF 输入衰减器。可变输入衰减器的作用是保证混频器有一个合适的信号输入电平,以防止混频器过载、增益压缩和失真。由于衰减器是频谱分析仪的输入保护电路,因此基于参考电平,它的设置通常是自动的,但是也可以用手动的方式设置频谱分析仪的输入衰减大小,其设置步长是10dB 、5dB 、2dB ,甚至是1dB ,不同频谱分析仪其设置步长是不一样的。如Agilent 8560系列频谱分析仪的输入衰减的设置步长是10dB 。 图3-2是一个最大衰减为70dB ,步长为2dB 的输入衰减器电路的例子。电路中的电容器是用来避免频谱分析仪被直流信号烧毁,但可惜的是它不仅衰减了低频信号,而且使某些频谱分析仪最小可使用频率增加到100Hz ,而其他频谱分析仪增加到9kHz 。 图3-2 RF 输入衰减器电路 图3-3所示,当频谱分析仪RF 输入信号和本振信号加到混频器的输入时,可以调整RF 输入衰减器,使混频器的输入信号电平合适或最佳,这样就可以提高测量精度。 0到70dB 衰减,步长2dB 电容器

笔记本电源适配器的构造及原理

笔记本电源适配器的构造及原理 构造 笔记本电脑电源适配器主要由以下几个部件构成: 1:压敏电阻,其功能是当外界电压过高时,压敏电阻阻值迅速变得很小,与压敏电阻串联的保险丝被熔断,从而保护其它电路不被烧坏。 2:保险丝,规格为2.5A/250V,当电路中的电流过大时,保险丝会熔断以保护其它元件。3:电感线圈(又称扼流圈),主要功能是降低电磁干扰。 4:整流桥,规格为D3SB,作用是把220V交流电变为直流电。 5:滤波电容,规格为180uF/400V,作用是滤除直流电中的交流纹波,使电路工作更可靠。6:运放IC(集成电路),保护电路、电压调节的重要组成部分。 7:温度探头,用于探测电源适配器的内部温度,当温度高于某一设定值时(不同品牌的电源适配器,其设定的温度阀值略有不同),保护电路会切断适配器的电压输出,从而保护适配器不受损坏。 8:大功率开关管,是开关电源中的核心元件之一,开关电源能“一开一关”地工作,开关管功不可没。 9:开关变压器,开关电源中的核心元件之一。 10:次级整流管,功能是把低压交流电变为低压直流电。在IBM的电源适配器中,整流管往往是由两个大功率并联工作的,以获得较大的电流输出。 11:次级滤波电容,规格为820uF/25V,共有两个,起滤除低压直流电中的纹波的作用。 除上述元件外,电路板上还有可调电位器及其它阻容元件。 工作原理 适配器是将220V交流电压转变为19V的直流电压,输出电流为3A。220V交流电压经D2整流,C1滤波得到300V直流电压。该电压一路经开关变压器T1的1、2脚绕组加到场效应开关管Q1(K2543)的D极,另一路经R4降压后得到约17V启动电压给ICI(KA3842)⑦脚供电,并从ICl内部基准电压发生器产生5V基准电压从第⑧脚输出。此时其内部振荡器起振,从第⑥脚输出调宽脉冲(PWM),驱动开关管Q1,使其工作在开关状态。Q1的D极输出电流在开关变压器Tl初级绕组上产生感应电压,经磁芯耦合到T1次级,在次级⑤、⑥脚绕组上产生的感应电压经肖特基二极管Q2、电容C4整流滤波后得到19V直流电压输出。

频谱分析仪的工作原理

频谱分析仪的工作原理 频谱分析仪对于信号分析来说是不可少的。它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。下面结合我台DSNG卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍一下频谱分析仪的工作原理。 科学发展到今天,我们可以用许多方法测量一个信号,不管它是什么信号。通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复一个非正弦波信号F,从理论上来说,它是由频率F1、电压V1与频率为F2、电压为V2信号的矢量迭加(见图1)。从分析手段来说,示波器横轴表示时间,纵轴为电压幅度,曲线是表示随时间变化的电压幅度。这是时域的测量方法,如果要观察其频率的组成,要用频域法,其横坐标为频率,纵轴为功率幅度。这样,我们就可以看到在不同频率点上功率幅度的分布,就可以了解这两个(或是多个)信号的频谱。有了这些单个信号的频谱,我们就能把复杂信号再现、复制出来。这一点是非常重要的。 对于一个有线电视信号,它包含许多图像和声音信号,其频谱分布非常复杂。在卫星监测上,能收到多个信道,每个信道都占有一定的频谱成份,每个频率点上都占有一定的带宽。这些信号都要从频谱分析的角度来得到所需要的参数。 从技术实现来说,目前有两种方法对信号频率进行分析。 其一是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。我们把这种方法叫作动态信号的分析方法。特点是比较快,有较高的采样速率,较高的分辨率。即使是两个信号间隔非常近,用傅立叶变换也可将它们分辨出来。但由于其分析是用数字采样,所能分析信号的最高频率受其采样速率的影响,限制了对高频的分析。目前来说,最高的分析频率只是在10MHz或是几十MHz,也就是说其测量范围是从直流到几十MHz。是矢量分析。 这种分析方法一般用于低频信号的分析,如声音,振动等。 另一方法原理则不同。它是靠电路的硬件去实现的,而不是通过数学变换。它通过直接接收,称为超外差接收直接扫描调谐分析仪。我们叫它为扫描调谐分析仪。

联想笔记本电脑电源适配器原理分析与检修

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 联想笔记本电脑电源适配器原理分析与检修 该电源适配器(型号为 92P1107),输入电压为交流 1OOV~240V 市电;输出直流 20V;最大输出功率有 90W 和 65W 两种。 其核心控制芯片为贴片式脉宽调制集成电路(3843),该芯片内含振荡器、脉宽调制比较器、逻辑控制器;具有过流、欠压等保护控制功能;工作电压为 7V~34V;最高工作频率可达 500MHz;启动电流仅需 1mA。 该芯片的各引脚功能如下:①脚是内部误差放大器的输出端。 ②脚是反馈电压输入端,作为内部误差放大器的反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。 ③脚为过流检测输入端,当该脚的电压高于 1V 时,禁止驱动脉冲的输出。 ④脚为 RT/CT 定时电阻和电容的公共接入端,用于产生锯齿振荡波。 ⑤脚为接地端。 ⑥脚为脉宽调制信号输出端。 ⑦脚为工作电压输入端(7V>Vi≤34V)。 ⑧脚为内部基准电压(VREF=5V)输出端。 根据实物绘制了其电路原理图如附图所示。 经比较,两种输出功率的电原理图完全相同,只是过流保护电 1/ 7

路取样电阻 R20~R23 的取值以及 20V 直流电压输出滤波电容C11 及 C12 的容量有所不同。 一、整流滤波电路交流市电经 1A 保险管 F1 及电容 C1 进入整流电路,BD1 全桥整流后,经主滤波电容 C7 滤波,在 C7 两端得到约 300V 的直流电压,作为适配器的工作电压。 该适配器的输入电路只有一个高频滤波电容 C1

修理笔记本电脑电源适配器我有绝招

修理笔记本电脑电源适配器我有绝招 《中国电脑教育报》今年第38-39期“经验交流”栏目为大家介绍了笔记本电脑电源适配器的原理,这次,我们再为大家介绍几个笔记本电脑电源适配器的维修实例,希望对大家有所帮助。 电源适配器比较常见的故障是无低压直流电输出、输出电压不稳定或偏差较大以及内部有较响的“吱吱”工作噪声等,其中以无电压输出最为常见。 例1:一台IBM笔记本电脑在使用中,因380V的动力线掉落上220V的民用照明线上,致使电源适配器烧坏无电压输出。 检修过程:这块IBM电源适配器的输入端电压范围为100V~240V,超过240V的电压将有可能烧坏适配器。打开适配器外壳后,发现保险丝已熔断,压敏电阻R1(图1为适配器简要原理图)也已烧焦,其中一个引脚被烧断。拆下压敏电阻,换上同规格的保险丝,用万用表测量电路无明显短路现象,给适配器接上电源想做进一般检查,竟意外地发现适配器已正常工作。看来IBM电源适配器中的保护电路还是比较完善的。如果手头没有相同规格的压敏电阻,可以暂时不安装,不过这仅限于应急使用,等购买到了压敏电阻后应及时安装,因为如果再次遭遇此类高压窜入事件的话,就起不到应有的保护功能了,届时电路中的元件有可能被大量烧坏。 图1 要把拆开的电源适配器外壳复原,我们可以借助环氧树脂胶来粘合,如果没有环氧树脂胶,也可以用黑色的电工胶带在适配器外壳上缠绕几圈来解决(图2)。 图2 例2:一台IBM T23笔记本电脑在插着交流电使用时,突然自动切换为电池工作模式,检查电源插头接触良好,电源适配器与主机之间也连接正常,判定电源适配器已损坏。 检修过程:用万用表测量电源适配器输出端,发现没有电压输出。拆开电源适配器后,发现大功率整流桥附近的电路板上有烧焦的痕迹。把适配器接上电源,按照开关电源的检修步骤,首先用万用表测量输入端电压,为正常的交流220V;第二步测A点(即开关大功率管Q1的C极,见图7)的电压,实测为0V,再测B点(滤波电容C1正极端)电压也为0V(正常的话应该有310V左右的直流电压),说明整流回路有故障;接着测得C、D两点

频谱仪使用

频谱分析仪系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectru m Analyzer).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(Switching Time).最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系.影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能就是量测时常见到的解析频宽(R BW,ResolutionBandwidth).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RB W密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念. 频谱分析仪的使用 一、什么是频谱分析仪在频域内分析信号的图示测试仪。以图形方式显示信号幅度按频率的分布,即 X轴表示频率,Y轴表示信号幅度。 二、原理:用窄带带通滤波器对信号进行选通。 三、主要功能:显示被测信号的频谱、幅度、频率。可以全景显示,也可以选定带宽测试。 四、测量机制: 1、把被测信号与仪器内的基准频率、基准电平进行对比。因为许多测量的本质都是电平测试,如载 波电平、A/V、频响、C/N、CSO、CTB、HM、CM以及数字频道平均功率等。 2、波形分析:通过107选件和相应的分析软件,对电视的行波形进行分析,从而测试视频指标。如 DG、DP、CLDI、调制深度、频偏等。 五、操作: (一)硬键、软键和旋钮:这是仪器的基本操作手段。 1、三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。旋动旋钮时,中心频率、扫描宽度(起始、终止频率)、和幅度的dB数同时显 示在屏幕上。 2、软键:在屏幕右边,有一排纵向排列的没有标志的按键,它的功能随项目而变,在屏幕的右侧对 应于按键处显示什么,它就是什么按键。 3、其它硬键:仪器状态(INSTRUMNT STATE)控制区有十个硬键:RESET清零、CANFIG配置、CAL校准、AUX CTRL辅助控制、COPY打印、MODE模式、SAVE存储、RECALL调用、MEAS/USE R测量/用户自定义、SGL SWP信号扫描。光标(MARKER)区有四个硬键:MKR光标、MKR 光标移动、RKR FCTN光标功能、PEAK SEARCH峰值搜索。控制(CONTRL)区有六个硬键:SWEEP扫描、BW带宽、TRIG触发、AUTO COVPLE自动耦合、TRACE跟踪、DISPLAY显示。在数字键区有一个B KSP回退,数字键区的右边是一纵排四个ENTER确认键,同时也是单位键。大旋钮上面的三个硬键是窗

相关文档
最新文档