水泵风机功率计算方法

水泵风机功率计算方法

风机的有效能=风量(m/s)×风压(KPa)=kW;电机功率=1.731×电流(安培)×电压(KV)×COSθ;其中电机功率COSθ=0.7214;

电机输入功率COSθ=0.8~0.82之间,一般取0.8;效率=有效功率÷电机轴功率;电能利用率=有效功率÷电机输入功率。

水泵风机功率计算方法

水泵的有效能=流量(m/s)×杨程(米)×g=kW;其中g=9.81电机功率=1.731×电流(安培)×电压(KV)×COSθ;其中电机功率COSθ=0.7214;电机输入功率COSθ=0.8~0.82之间,一般取0.8;效率=有效功率÷电机轴功率;电能利用率=有效功率÷电机输入功率。

风机水泵节能分析

风机水泵节能分析 LH-300型节电装置,是我公司研制生产的具有国内领先水平的最新一代中低压电动设备专用节电产品,它是目前独具特色的高智能化节电装置,可广泛用于水泵、风机、电机、制冷机、空压机、注塑机、中央空调系统等电动设备。该产品是集国际先进的可编程技术、变频技术、智能化控制技术为一体,采用专门设计的节电控制软件和节能波形,自动调节电动设备的供电参数并进行优化控制,使系统始终保持在最佳经济运行状态,最大限度的节约电能,从而达到减少电费开支的目的。 1、节电原理:当电动设备处于空载、半载、轻载、满载、超载时,通过主板控制系统,根据负载的工作状态,变频调速动态调整供给电动设备的电压、电流、有功量、无功量、频率、功率、功率因数等达到转距与负载精确匹配,使电动设备保持在最佳、最经济的运行状态。 2、设备保护 1)、节电装置本身具有软启动功能,能使电机在设置好的V/F曲线上平滑调速和起制动,保持V/F比值基本不变,这样在相当小的电流下也能达到高启动转距,保持设备正常启动,启动电流的降低,可以消除高启动电流对设备的冲击,使齿轮和传动带平稳运转,延长其使用寿命。 2)、节电装置具有完善的故障诊断系统和保护功能,其内部设有电子过热过载继电器能根据节电装置输出电流/频率时间的模拟来监视电动机的缺相、过压、过流、过载及过热,及时停止节电装置输出,保护电动机免遭过热烧毁。 3)、节电装置对电源方面的过压、欠压、缺相等进行检测并显示,可帮助维修人员及时找到故障点。 4)、可通过对载波频率的设置,有效的减少电机噪声,减少电机漏电流。 3、节电装置带有市电(正常用电,非节电状态)和节电的转换装置,当节电状态出现故障时,将开关打到市电状态,生产设备仍可正常运转,对生产不会产生影响。 低压风机水泵节能装置的节能原理 1、变频节能 由流体力学可知,P(功率)=Q(流量)╳H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,如果水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。即水泵电机的耗电功率与转速近似成立方比的关系。例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%. 2、功率因数补偿节能 无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式P=S╳COSФ,Q=S╳SINФ,其中S-视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用节电装置后,由于节电装置内部滤波电容的作用,COSФ≈1,从而减少了无功损耗,增加了电网的有功功率。 3、软启动节能 由于电机为直接启动或Y/D启动,启动电流等于(4-7)倍额定电流,这样会对机电设备和供电电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用节能装置后,利用变频技术的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。节省了设备的维护费用。 系统特点: 1.输入功率因数高,在整个速度范围内典型值为95%或更高,电流谐波少,无须功率因数补偿/谐波抑制装置 2.输出阶梯正弦PWM波形,无须输出滤波装置,可接普通电机,对电缆、电机绝缘无损害,电机谐波少,减少轴承、叶片的机械震动,输出线可以长达100米 3.标准操作面板配置或LED屏操作界面 4.功率电路模块化设计,如果需要,可在数分钟内更换损坏的模块,维护简单 5.完整的故障检测电路,精确的故障报警保护

风机单位风量耗功率和冷热水系统循环水泵的耗电输冷(热)比计算报告书

风机单位风量耗功率和冷热水系统循环水泵的耗电 输冷(热)比计算报告书 1.项目概况 本工程为秦皇岛市排水有限责任公司建设的秦皇岛市海港区西部污水处理厂及配套管网工程的污水处理厂综合楼,工程位于秦皇岛市经济技术开发区。2.计算依据 根据《绿色建筑评价标准》(GB/T50378-2014)条文5.2.5的要求:通风空调系统风机的单位风量耗功率符合现行国家标准《公共建筑节能设计标准》GB50189等的有关规定,空调冷热水系统循环水泵的耗电输冷(热)比比现行国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736规定值低20%。 《公共建筑节能设计标准》(GB50189-2005)条文5.3.26的要求:空气调节风系统的作用半径不宜过大。风机的单位风量耗功率(Ws)应按下式计算,并不应大于表5.3.26的规定。 W s=P/(3600ηt) 式中:W s——单位风量耗功率[W/(m3/h)]; P——风机全压值(Pa); ηt——包含风机、电机及传动效率在内的总效率(%)《民用建筑供暖通风与空气调节设计规范》(GB 50736-2012)条文8.5.12的要求:在选配空调冷热水系统的循环水泵时,应计算循环水泵的耗电输冷(热)比EC(H)R,并应标注在施工图的设计说明中。耗电输冷(热)比应符合下式要求: EC(H)R=0.003096Σ(G?H/ηb)/ΣQ≤A(B+ɑΣL)/ΔT 式中:EC(H)R——循环水泵的耗电输冷(热)比; G——每台运行水泵的设计流量,m3/h; H——每台运行水泵对应的设计扬程,m; ηb——每台运行水泵对应设计工作点的效率; Q——设计冷(热)负荷,kW; ΔT——规定的计算供回水温差,按表8.5.12-1选取,℃; A——与水泵流量有关的计算系数,按表8.5.12-2选取; B——与机房及用户的水阻力有关的计算系数,按表8.5.12-3选 取; ɑ——与ΣL有关的计算系数,按表8.5.12-4或表8.5.12-5选取;

风机水泵变频节能计算

■风机水泵工作特性 风机水泵特性: H=H0-(H0-1)*Q2 H-扬程 Q-流量 H0-流量为0 时的扬程 管网阻力: R=KQ2 R-管网阻力 K-管网阻尼系数 Q-流量 注:上述变量均采用标准值,以额定值为基准,数值为1 表示实际值等于额定值风机水泵轴功率P: P= KpQH/ηb P-轴功率 Q-流量; H-压力; ηb-风机水泵效率; Kp-计算常数; 流量、压力、功率与转速的关系: Q1/Q2 = n1/n2; H1/H2 =(n1/n2)2; P1/P2 =(n1/n2)3 ■变阀控制 变阀调节就是利用改变管道阀门的开度,来调节泵与风机的流量。变阀调节时,泵或风机的功率基本不变,泵或风机的性能曲线不变,而管道阻力特性曲线发生变化,泵或风机的性能曲线与新的管道阻力特性曲线的交点处就是新的工作点。 ■变频控制 变频调节就是利用改变性能曲线方法来改变工作点,变速调节中没有附加阻力,是比较理想的一种调节方法。通过变频器改变电源的工作频率,从而实现对交流电机的无级调速。泵和风机采用变速调节时,其效率几乎不变,流量随转速按一次方规律变化,而轴功率按三次方规律变化。同时采用变频调节,可以降低泵和风机的噪声,减轻磨损,延长使用寿命。 ■节能计算示例 假设电动机的效率=98% IPER 高压变频器的效率=97%(含变压器) 额定风量时的风机轴功力:1000kW 风机特性:风量Q 为0 时,扬程H 为标么值,以额定值为基准) ;设曲 线特性为H=年运行时间为:8000 小时 风机的运行模式为:风量100%,年运行时间的20% 风量70%,年运行时间的50% 风量50%,年运行时间的30% 变阀调节控制风量时 假设P100 为100%风量的功耗,P70 为70%风量的功耗,P50 为50%风量的功耗 P100=1000/ = 1020kW P70=1000 x x = 860kW P50=1000 x x = 663kW

风机与泵的各种调节方式和节能计算_节能培训材料

节能培训材料: 风机与泵的各种调节方式及其节能计算 节约能源是我国的一项基本国策。我国人均能源占有量,在全世界194个国家和地区中,大约排位在100另几位。人均能源十分缺乏。因此,节约能源是今后我国的长期战略任务。 我国电力工业所消耗的一次能源占有很大的比例,初步估计在35-40%左右。另一方面,我国的能源利用率不高,单位产值的能耗约为日本的8倍左右,是美国的5-6倍。因此,电能的节约在整个节能工作中,占有十分重要的地位。 风机、泵是通用的耗电量大的设备,它们被广泛用于国民经济的各个部门和生活设施的各个方面。它们数量多、分布广、总耗电量巨大,且有很大的节能潜力。目前我国使用的风机、泵,其本身效率要比先进工业国家的效率低3-5%,而其运行效率低10-30%。因此,开展风机、泵的节电工作,有着十分深远的意义。 第一部分:风机、泵调速的节能原理 一、叶片式风机、泵(包括离心式、轴流式、混流式、旋流式的风机、泵)的相似性原理: (一)、风机与泵的工作原理: 叶片式风机与泵的工作原理,就是通过旋转叶轮上的叶片,将能量传递给流体。 (二)、风机与泵的相似性原理:

1、同一台风机与泵的相似定律: Q1/Q2=n1/n2; H1/H2=(n1/n2)2,p1/p2=(n1/n2)2; P /P2=(n1/n2)3。 1 式中:P1、P2——同一台叶片风机、泵在两种操作状况下的功率; H1、H2——同一台叶片风机、泵在两种操作状况下的扬程; p1、p2——同一台叶片风机、泵在两种操作状况下的压力; Q1、Q2——同一台叶片风机、泵在两种操作状况下的流量; n1、n2——同一台叶片风机、泵在两种操作状况下的转速。 2、几何相似,但尺寸不同的两台叶片式风机、泵间的相似关系为: Q1/Q2=(D1/D2)3; H1/H2=(D1/D2)2,p1/p2=(D1/D2)2; P /P2=(D1/D2)5。 1 式中:D——叶片式风机、泵的旋转叶轮外径,其余同上。 二、叶片风机、泵的特性曲线: 描述叶片风机、泵额定及运行中的Q-H、Q-p、Q-η、Q-P等关系的曲线。要分风机、泵的云性工况,进行节能计算,必须把握各种型号、规格的风机、泵的特性曲线。 (一)、通用风机、泵的特性曲线: 1、离心泵的特性曲线:

节能原理及节能计算

节能原理及计算方法 一、节能原理 风机和水泵,前者工作介质为液体,均属于流体机械设备。下面以风机为例说明它们的工作特性。特别是离心式风机及水泵,工作特性基本相同。以下就以风机为例说明他们的调速工作原理。 风机的工作特性图如下: 风机的工作特性图 由上图可以看出,风机工作的位置,即风机的风量是由风机特性曲线(风压特性)和管网特性曲线(风阻特性)决定的,无论是改变风机的特性曲线,或者是改变管网特性曲线,都可以达到改变风量的目的。 图中:风机特性曲线 H A =kQ 1 2 K——风机特性系数; 管网特性曲线 H A =Hc-λQ 1 2 λ——管网特性系数。 (一)工频工作方式 工频工作方式是指泵的特性曲线保持不变,而改变管网特性曲线。通常采取的方式是保持风机的特性曲线不变,即不改变风机的转速,而用调节挡板改变出

风口的大小,达到改变风量的目的。如下图所示: 工频工作方式时风机的工作特性图 从图中可以看出,风机工作在A点时,风量为Q 1,风压为H 1 。保持风机的转 速不变,用挡板将风量调节为Q 2时,风压将上升到H 2 ,风机工作点变为B点。 由于挡板的节流作用,风道的阻力曲线变为OB。 风机工作在A点时,其功率为P A =H 1 ×Q 1 /102; 风机工作在B点时,其功率为P B =H 2 ×Q 2 /102。 虽然Q 2H 1 ,所以P A 与为P B 的值变化不大,说明采用工频工作方式 时,改变风机的风量,风机的轴功率减小有限。 (二)变频工作方式 变频工作方式是指管网特性曲线保持不变,而改变风机的特性曲线。通常采取的方式是保持管网特性曲线不变,即不改变风机出口的大小,而改变风机的特性曲线,即改变风机的转速,达到改变风量的目的。如下图所示: 风机工作在A点时,其功率为P A =H 1 ×Q 1 /102; 风机工作在B点时,其功率为P B =H 2 ×Q 2 /102。 Q 2H 1 ,所以P A 与为P B 的值变化较大,说明采用变工频工作方式 时,改变风机的风量,风机的轴功率减小很大,节能效果显著。

泵轴功率和电机配置功率之间的关系

泵轴功率和电机配置功率之间的关系 额定功率即铭牌功率,也是电动机的轴输出功率,也是负荷计算所采纳的数据。Pe=1.732*0.38*Ie*额定功率因数*电动机效率。因此,电动机额定电流Ie=Pe/(1.732*0.38*额定功率因数*电动机效率)电动机的输入功率P1=Pe/电动机效率。P1跟我们关系不大,一般不再换算此值。例如:一台YBF711-4小型电机的铭牌数据:额定功率250W,额定电压380V,额定电流0.85A,功率因数0.68,无效率数据。 如果不算效率,额定电流=0.25/(1.732*0.38*0.68)=0.56A,跟0.85A 不符。如果算效率:额定电流=0.85=0.25/(1.732*0.38*0.68*效率)。由此可以反算效率为:0.25/(1.732*0.38*0.68*0.85)=0.66。 水泵所需功率与电动机额定功率的关系。假设水泵的扬程为H (m),流量为Q(L/s),那么很容易推算其实际需要的有效功率P3为:P3=H*Q*g(g=9.8,常数)(W);因为水泵本身也存在效率,因此需要提供给水泵的实际功率P2=P3/水泵效率。P2算出来往往跟电机的额定功率不会正好相等,因此就选择一个大于(但接近)P2的一个电机功率Pe。比如P3=10KW,水泵效率为0.7,电机功率为0.9,那么P2=P3/0.7=14.3kw,可选择Pe=15KW或18.5KW的配套电机;电机的实际输入功率P1=15/0.9=16.7kw(或18.5/0.9=20.1KW)。 泵轴功率是设计点上原动机传给泵的功率,在实际工作时其工况点会变化,另电机输出功率因功率因数关系会有变化。因此,原动机传给泵的功率应有一定余量,经验作法是电机配备功率大于泵轴功率。轴功率余量见下表,并根据国家标准Y系列电机功率规格选配。

水泵的耗能及节能问题

如何降低水泵电单耗? 水泵广泛应用于工农业生产和居民生活的各个领域,每年消耗在水泵机组上的电能占全国总电耗的21%以上,在供水企业中占生产成本的30%-60%,在我公司水泵电耗占到全公司用电的40%-50%, 因此水泵的节能问题具有重要意义。因为在工业生产中广泛使用循环水泵,即水泵从水池中吸水,经换热设备后温度升高,通过冷却塔把热量散入空气中,降温后再回入水池,如此循环使用。 下面则研究一下循环泵的节能使用水泵实际扬程H(Q,t)是流量Q 和时间t 的函数,它的大小同工艺要求和设备自身的调节能力有关,在带有调速装置的泵站系统中,通过调节水泵转速或开泵台数,H(Q,t)可以按照工艺要求(如管网特性要求,生产工艺的要求)提供。在没有调速装置的情况下,由于设备自身特性同工艺要求不匹配,泵输出的H(Q,t)也不一定等于工艺要求的扬程,这样将有一些富裕扬程被浪费,比如通过开关泵调节供水扬程时,水泵单耗与其出口流量、压力、效率有关,其轴功率(输入功率)可用下式计算: N=9.81×Q×H/η 式中Q—循环水泵流量,m3/s;H—水泵扬程,m; η—效率,%。 可见影响水泵轴功率N 大小,即水泵电耗高低的主要因素是出口流量Q、扬程H 以及泵效率。

降低水泵电单耗的措施: 1. 采用变频调速技术 目前,变频器技术已很成熟,在市场上有很多国内外品牌的变频器,这为变频调速供水提供了充分的技术和物质基础。通过变频调速技术,改变水泵转速,从而改变水泵的供水流量,则不会存在富裕扬程,具有优良的节能效果。我国国家科委和国家经贸委在《中国节能技术政策大纲》中把泵和风机的调速技术列为国家九五计划重点推广的节能技术项目。我公司实行多泵并联恒压供水,其中一台泵是变频泵,其余全是工频泵,可以实现恒压变量供水。 2. 循环水泵的合理配备 根据生产工艺需要,循环水量是不断变化的,只靠变频调速装置有时还做不到合理用能,比如平均用水量1900 吨/小时,开两台1200 吨/小时的水泵在生产用量大时(最大流量2500 吨/小时)达不到生产要求,只能开三台1200吨/小时的水泵,除带变频的一台泵,另两台水泵的出口阀门只能开一半,这时就只能采取扬程富裕的运行方式,虽然可以做到让阀后满足工艺要求,但阀前水泵提供的富裕扬程却被浪费了。为了使循环水泵运行方式经济合理,把一台1200 吨/小时的工频水泵改为1500 吨/小时,这样只开1 台1200 吨/小时的变频泵和一台1500 吨/小时的工频泵,实现大、小流量搭配,

泵与风机的性能计算

泵与风机的性能 1、某台IR125-100-315型热水离心泵的流量为240m 3/h ,扬程为120m ,泵效率为77%,热水温度为80℃,密度为970kg/m 3,试计算该泵有效功率和轴功率的大小。 解: (m 3/s ) 该泵有效功率为:(kW ) 该泵轴功率为:(kW ) 2、 某台离心通风机的额定参数为:流量44090 m 3/h ,全压105mmH2O ,风机效率0.88。采用联轴器直联传动,ηtm =0.98,取电动机容量富余系数k=1.15,问该风机应选用多大容量的电动机? 解: (m 3/s ) (Pa ) 电动机的容量应为: (kW ) 说明: 电动机的容量一般是指电动机的铭牌额定输出功率,在工程实际中,进行了上述计算后,应查阅有关电动机产品系列,选用容量等级等于或略大于16.8kW 的电动机,对于 本题可选用容量为18.5 kW 的电动机。 风机全压单位换算是1 mmH2O 等于9.797Pa ,工程计算时可取10Pa 。 3、 某电厂循环水泵的电动机输入功率为1720 kW ,电动机效率为0.90,直联传动效率为0.98,泵的扬程为20m ,循环水的密度为1000 kg/m3,问该循环水泵的流量为多少立方米/小时(取泵的效率为0.78)? 解: 由公式得: (m 3/s ) (m 3/h ) 4、若水泵流量qV 为25L /s ,泵出口压力表读数p B 为32×104Pa ,入 口处真空表读数p m 为4×104Pa ,吸入管直径d 1为100cm ,出水管直径 d 2为75cm ,电动机功率表读数p g 为12.6kW ,电动机效率η1为0.9,传 动效率η2为0.97。试求泵的轴功率、有效功率及泵的总效率。

风机水泵压缩机变频调速控制节能与应用(含工频节流功率计算公式)

风机水泵负载变频调速节能原理 相似定律:两台风机或水泵流动相似,在任一对应点上的统计和尺寸成比例,比值成相等,各对应角、叶片数相等,排挤系数、各种效率相等。 流量 按照相似定律,由连续运动方程流量公式: φπη η ????? =?? =d D A v m v m v v v q 流速公式: 60 π ??= n D v m 式中: q v ——体积流量,s m 3 ; η v ——容积效率,实际容积效率约为0.95; A ——有效断面积(与轴面速度v m 垂直的断面积),m2; D ——叶轮直径,m ; n ——叶片转速,r/mi n ; b ——叶片宽度,m ; v m ——圆周速度,m/s ; φ——排挤系数,表示叶片厚度使有效面积减少的程度,约为0.75~0.95; 按照电机学的基本原理,交流异步电动机转速公式: p f s n ??-=60)1( 式中: s ——滑差; P ——电机极对数; f ——电机运行频率。 流量、转速和频率关系式: f n q v ∞∞? 可见流量和转速的一次方成正比,和频率的一次方成正比。 扬程 按照流体力学定律,扬程公式:22 1 v m H ??= ρ 扬程、转速和频率关系式: 可见扬程和转速的二次方成正比,和频率的二次方成正比。 式中:H ——水泵或风机的扬程,m ; 功率 风机水泵的有效功率:每秒钟流体经风机水泵获得的能量。 水泵:H g q P v e ???=ρ 或 风机: P q P v e ?= 可见有效功率和转速的三次方成正比,和频率的三次方成正比。 式中: P e ——有功功率,w ; ρ——流体质量密度,m Kg 3 ;

风机水泵的变频调速节能分析

风机水泵的变频调速节能分析 节能降耗、增加效益是全社会应为之努力的方向。我国的电动机用电量占全国发电量 的60%~70%,风机、水泵设备年耗电量占全国电力消耗的1/3。应用于风机、水泵等设备的传统方法是通过调节出口或入口的挡板、阀门开度来控制给风量和给水量,其输出功 率大量消耗在挡板、阀门地截流过程中。另外,由于在通常的设计中为了满足峰值需求, 水泵选型的裕量往往过大,也造成了不应有的浪费。根据风机、水泵类的转矩特性,采用 变频调速器来调节流量、风量,将大大节约电能。下面就分析一下在风机水泵类负载中使 用变频器所能达到的效果。 一,通过变频调速达到的一次节能。 下面以水泵为例来说明,由图1可以看到: 流量Q正比于转速n 压力H正比于n2 转矩T正比于n2 功率P正比于n3 图1 水泵流量、压力、功率曲线…

在普通的水泵流量控制中使用阀门来调节,如图2所示: 图2 阀门控制水泵流量 管道阻力h与流量Q的关系为h正比于RQ2,其中R为阻力系数 电机在恒速运行时,流量为100%情况下(工作点为A),水泵轴功率相当于Q1AH1O 所包容的面积。 电机在恒速运行时,采取调节阀门的办法获得70%的流量(工作点为B),将导致 管阻增大,水泵轴功率相当于Q2BH2O所包容的面积,所以轴功率下降不大。 采用变频调速控制流量时,由于管道特性没有改变,水泵特性发生变化(工作点为C),轴功率与Q2CH3O所包容的面积成正比。故其节能量与CBH2H3所包容的面积成正比, 输入功率大大减小。如图3所示: 图3 变频调节水泵流量

正如前面提到的,轴功率P与转速n的三次方成正比。采用变频器进行调速,当流量 下降到80%时,转速也下降到80%,而轴功率N将下降到额定功率的51.2%,如果流量下降到60%,轴功率N可下降到额定功率的21.6%,当然还需要考虑由于转速降低会引起的效 率降低及附加控制装置的效率影响等.即使这样,这个节能数字也是很可观的,因此在装有风机水泵的机械中,采用转速控制方式来调节风量或流量,在节能上是个有效的方法。 二,变频调速所实现的二次节能 变频调速自动根据负载情况调整输出电压,通过对电机的最佳励磁,有效地降低了无 功损耗,提高系统功率因数,降低电机工作噪音, 延长电机使用寿命。 电动机的总电流(IS)为电机励磁电流(IM)与电机力矩电流(IT)的矢量和, IS和IM夹角的余弦值即为电动机的功率因数; 电机励磁电流决定于加在电机线圈上的电压, 在工频状态下, 交流电压为380V恒定不变, 因此励磁电流也不会改变; 在变频状态下, 变频器自动检测负载力矩, 根据实际负载决定输出电压, 因此在负载较低的时候自动降低输出电压, 以维持最高的功率因数. 由于变频器自动降低了电机励磁电流, 使得输出总电流明显低于工频工作的总电流, 节约了线路中的损耗和无功功率的损失; 这个功能在丹佛斯VLT系列变频器中称为AEO功能(Automatic Energy Optimization, 自动节能功能). 声明:上海津信电气有限公司拥有此篇技术文档的所有权,任何人如需转载,必须表明出处。

水泵的功率、流量、扬程间的关系

102是单位整理常数。流量单位:升/秒;扬程单位:米;密度单位:千克/升;重力加速度:9.81米/(秒×秒);功率单位:千瓦。 功率=流量×扬程×密度×重力加速度=(升/秒)(米)(千克/升)(9.81米/(秒×秒))=9.81牛顿×米/秒=9.81瓦; 功率(千瓦)=(立方米/1000秒)(米)(吨/立方米)(9.81米/(秒×秒))=9.81/1000千瓦=千瓦/102 如果流量单位:立方米/小时,则功率(千瓦)=(立方米/3600秒)(米)(吨/立方米)(9.81米/(秒×秒))=9.81/3600千瓦=千瓦/367 1. 流量水泵的流量又称为输水量,它是指水泵在单位时间内输送水的数量。以符号Q来表示,其单位为升/秒、立方米/秒、立方米/小时。 2. 扬程水泵的扬程是指水泵能够扬水的高度,通常以符号H来表示,其单位为米。离心泵的扬程以叶轮中心线为基准,分由两部分组成。从水泵叶轮中心线至水源水面的垂直高度,即水泵能把水吸上来的高度,叫做吸水扬程,简称吸程;从水泵叶轮中心线至出水池水面的垂直高度,即水泵能把水压上去的高度,叫做压水扬程,简称压程。即水泵扬程= 吸水扬程+ 压水扬程应当指出,铭牌上标示的扬程是指水泵本身所能产生的扬程,它不含管道水流受摩擦阻力而引起的损失扬程。在选用水泵时,注意不可忽略。否则,将会抽不上水来。 3. 功率在单位时间内,机器所做功的大小叫做功率。通常用符号N来表示。常用的单位有:公斤·米/秒、千瓦、马力。通常电动机的功率单位用千瓦表示;柴油机或汽油机的功率单位用马力表示。动力机传给水泵轴的功率,称为轴功率,可以理解为水泵的输入功率,通常讲水泵功率就是指轴功率。 由于轴承和填料的摩擦阻力;叶轮旋转时与水的摩擦;泵内水流的漩涡、间隙回流、进出、口冲击等原因。必然消耗了一部分功率,所以水泵不可能将动力机输入的功率完全变为有效功率,其中定有功率损失,也就是说,水泵的有效功率与泵内损失功率之和为水泵的轴功率。 流量与转速成一次方关系:Q1/Q2 = n1/n2; 扬程与转速成二次方关系:H1/H2 = ( n1/n2 ) 2 电机轴功率与转速成三次方关系:P1/P2 = ( n1/n2 ) 3 由上述推导可以知道,采用转速调节法的节能效果很明显。随着变频调速技术不断成熟,恒压供水采用变频器来控制水泵转速。由电机转速公式:n=60f/p,其中,n为电机同步转速,f为供电频率,p为电机极对数,可知电机供电频率f与转速成正比。这样,采用变频器调速时,变频器的输出频率与流量、扬程及电机轴功率也有上述的n次方(n=123)比例关系。 水泵变频运行的图解分析方法 2006-12-29 来源:中国自动化网浏览:41 1 引言 水泵采用变频调速可以达到很好节能效果,这同行业中已经有很多人写了大量论文进行论述。但其结果却有很多不尽人意方,有很多结论是错误和无法解释清楚,本文以简易图解分析法来进行进一步解释和分析。 2 水泵变频运行分析误区 2.1 有很多人水泵变频运行分析中都习惯引用风机水泵中比例定律

变频器的节能计算方法

现有一台250KW风机,现采用星--三角起动运行,工作电流太约在360A左右,如果改成变频器, 一个小时能节多少电,太概多长时间能收回成本. 变频器节能计算方法 例如:当从50Hz降至45Hz得 公式:P45/P50=45(3次方)/50(3次方) P45=0.729P50 (2)当从50Hz降至45Hz得 已知:单台冷却器在工频耗电功率为250KW/h。 (3)∵P45=0.729P50=0.729×250=182.28 KW/h (4)单台电机节能:250-182.25=67.75 KW/h;为原耗电量节约为67.75/250×100%=27.1% (5)年节能:250kw×24h×30d×12m×27.1%=585360KW;按1KW/h电费0.45元计算年节约共计585360×0.45=263412元。 2. 公式:P45/P50=45(3次方)/50(3次方) P45=0.729P50 我想知道这个叫什么公式,这个公式怎么来的? 公式:P45/P50=45(3次方)/50(3次方) 这个公式是由风机工作特性决定的,由于风机是二次方负载,轴功率与转速的三次方成正比。 风机水泵类负载使用高压变频器节能计算 风机水泵工作特性 风机水泵特性:H=H0-(H0-1)*Q2 H-扬程 Q-流量 H0-流量为0 时的扬程 管网阻力:R=KQ2 R-管网阻力 K-管网阻尼系数 Q-流量 注:上述变量均采用标么值,以额定值为基准,数值为1 表示实际值等于额定值 风机水泵轴功率P:P= KpQH/ηb P-轴功率 Q-流量; H-压力; ηb-风机水泵效率; Kp-计算常数; 流量、压力、功率与转速的关系: Q1/Q2 = n1/n2; H1/H2 =(n1/n2)2; P1/P2 =(n1/n2)3 ■变阀控制 变阀调节就是利用改变管道阀门的开度,来调节泵与风机的流量。变阀调节时,泵或风机的功率基本不变,泵或风机的性能曲线不变,而管道阻力特性曲线发生变化,泵或风机的性能曲线与新的管道阻力特性曲线的交点处就是新的工作点。 ■变频控制 变频调节就是利用改变性能曲线方法来改变工作点,变速调节中没有附加阻力,是比较理想的一种调节方法。通过变频器改变电源的工作频率,从而实现对交流

3-40_泵与风机计算题

第一章计算题 1-1.已知某离心风机的转速n=1450r/min,叶轮外径D2=600mm,内径D1=480mm,叶片进口安装角β1y∞=60°,出口安装角β2y∞=120°,叶片出口径向分速υ2r∞=19m/s,叶片进口相对速度w2r∞=25m/s,设流体沿叶片的型线运动,空气密度ρ=1.2kg/m3,求该风机叶轮产生的理论全压p T∞。 1-2.某前弯离心风机,叶轮的外径D2=500mm,转速n=1000r/min,叶片出口安装角β2y∞=120°,叶片出口处空气的相对速度w2r∞=20m/s,设空气以径向进入叶轮,空气的密度ρ=1.293kg/m3,试求该风机叶轮产生的理论全压p T∞。如叶轮尺寸、转速、空气密度及出口相对速度均相同,且空气仍径向流入叶轮,但叶片型式改为后弯β2y∞=60°,问这时的理论全压将如何变化? 1-3.已知离心式水泵叶轮的直径D2=400mm,叶轮出口宽度b2=50mm,叶片厚度占出口面积的8%,流动角β2=20°,当转速n=2135r/min时,理论流量q V T=240L/s,求作叶轮出口速度三角形。 1-4.某轴流风机转速为1450r/min时,理论全压p T=866Pa(p T=ρuυ2u),在叶轮半径r2=380mm处,空气以33.5m/s的速度沿轴向流入叶轮,若空气密度ρ=1.2㎏/m3,求该处的几何平均相对速度w∞。 1-5.已知某离心泵工作叶轮直径D2=0.335m,圆周速度u2=52.3m/s,水流径向流入,出口速度的径向分速为υ2r∞=4.7m/s,叶片出口安装角β2y∞=30°,若泵的叶轮流量为5.33 m3/min,设为理想流体并忽略一切摩擦力,试求泵轴上的转矩。 1-6.某前向式离心风机、叶轮的外径D2=500mm,转速n=1000r/min,叶片出口安装角β2y=120°,叶片出口处空气的相对速度w2∞=20m/s。设空气以径向进入叶轮,空气的密度ρ=1.2㎏/m3,试求该风机叶轮产生的理论全压。 1-7.有一离心式风机,其叶轮出口直径为500mm,叶轮出口宽度为75mm,叶片出口安装角为70°,当转速n为900r/min时,测得该风机流量为3.1m3/s,进、出口处的静压差为323.6Pa。设空气径向流入叶轮,该风机的轴功率为1.65kW,机械效率为0.93。如果空气密度为ρ=1.25㎏/m3,忽略叶片厚度的影响,试求流动效率、总效率及三种损失。 1-8.有一输送冷水的离心泵,当转速为1450r/min时,流量为q V =1.24m3/s,扬程H =70m,此时所需的轴功率P sh=1100kW,容积损失q=0.093m3/s,机械效率ηm=0.94,求:该泵的有效功率、容积效率、流动效率和理论扬程各为多少?(已知水的密度ρ=1000kg/m3)。 1-9.离心式水泵叶轮的外径D2=220mm,转速n=2980r/min,叶轮出口处液流绝对速度的径向速度υ2r∞=3.6m/s,β2y=15°,设液流径向进入叶轮,求离心泵的理论扬程并绘制出口速度三角形;若滑移系数K=0.8,则H T为多少?

(整理)几种典型负载(风机、水泵)的节电率计算方法

几种典型负载的节电率计算方法 发布时间:2008-10-24 访问次数: (1)各种风机、泵类因为p∝n的三次方,节电效果显著,应首先应用变频器,具体值见表1。 表1 应用变频器节电效果 -------------

计算时可用 式中p%——实际消耗功率百分值; s——实际转速百分值; k——系数,k=0.0001。 节电率n%=1-p% 举例,转速n为90%时,相应频率值为45hz,则p%=0.0001×(90)3=73%。所以n%=1 -73%=27%。一般风机、泵类节电率在30%以上。 (2)空压机、挤出机、搅拌机因为p∝n,所以节电率与允许减速范围成正比,n%=n%。 (3)波动负载如破碎机、粉碎机、冲床、落料机、剪切机等9这种负载具有周期波动性,且波动功率较大,控制方式以闭环为好,相对节电率 -------------

也大些,功率波动负载如图所示。 (4)阶梯负载如间歇工作有储气罐的空压机、定容积水箱、水池、水塔等,工作时间t1是满负载ph,一定压力后自动卸载,电动机空载po时间为t1,采用降速降流量,用适当延长工作时间t1、缩短空载时间t2的方法来实现节电。经实际运行,约有15%~20%的节电率。而且t2

(5)间歇负载如高位水箱、水池、水塔等。工作时间t1为满负载,不工作时间为t2,且t2≥t1,现采用降速降流量,延长工作时间t1,缩短不工作时间t2,这样改变后节电效果也明显,约有20%~30%的节电率。间歇工作负载的功率变化情况(po=0)如图所示。 -------------

风机功率与风量对照表

风机功率与风量对照表 风机水泵类负载是典型的变转距负载,即风量与转速成正比,转距或风压与转速平方成正比,轴功率与转速立方成正比,故在低速运行时,负载转距非常小。通常风机水泵类负载多是根据满负荷工作需用量来选型,实际应用中大部分时间并非工作于满负荷状态,当采用电机直接方式,由于转速无法调节,常用挡风板、阀门来调节风量或流量,这样不仅造成能源的浪费而且由于过大的启动电流造成电网冲击和设备的震动和水锤现象。采用变频调速器控制风机、泵类负载是一种理想的控制方法,当电机在额定转速的80%运行时,理论上其消耗的功率为额定功率的(80%)的三次方,即50%左右(理论依据:流量:q2/q1=n2/n1;扬程:h2/h1=(n2/n1)2;输入功率:p2/p1=(q2/q1)*(h2/h1)=(n2/n1)3;其中:q:流量,n:转速;h:扬程,p功率。举例:当前转速下降到额定转速80%时,n2=0.8n,功率p2=0.8*0.8*0.8p=0。512p,即当前速度下降到80%,所需要的功率只需要原来的51%。 风机的风压、风量、功率与转速的关系 通风机的转速n可用转速表直接测量,其数值用每分钟多少转(转/分)来表示。小型风机的转速一般较高,往往与电动机直

接相连。大型风机的转速较低,一般用皮带传动与电动机相连,改变皮带轮的直径即可调节风机的转速,其关系如下:n1/n2=d2/d1 式中:n1,n2——风机;电动机的转速d1,d2——风机和电动机的皮带轮的直径。如要改变风机的转速,只要改变通风机或电动机中任意一个皮带轮的直径即可。当改变风机转速时,风机的特性参数;特性曲线也随之改变,亦即,风机在每一转速下都有其相应的特性曲线。当转速改变时,风机的特性参数Q,H,N的变化可按下式计算:Q/Q`=n/n` H/H`=(n/n`)2 N/N`=(n/n`)3

风机水泵轴功率与配置电机功率

一二 风机水泵轴功率与配置电机功率简介电机功率、效率计算简介 电机额定功率即电动机的轴输出功率,也是负载计算时所采用的数据。当一台三相交流电机的输入额定电压为380V,输入额定电流为le时: 电机额定功率:Pe=1.732*380*Ie*额定功率因数*电动机效率; 电动机额定电流:Ie=Pe/(1.732*380*额定功率因数*电动机效率); 电动机的输入功率:P1=Pe/电动机效率。P1在负载计算中作用不大,一般不再进行换算。 例如一台小型电机的铭牌数据:额定功率250W,额定电压380V,额定电流0.85A,功率因数0.68。 如果不算效率时,额定电流=250/(1.732*380*0.68)=0.56A,跟0.85A不符; 如果算效率,额定电流=0.85=250/(1.732*380*0.68*效率); 由上式计算效率为:电动机效率=250/(1.732*380*0.68*0.85)=0.66。 水泵所需功率与电动机额定功率的计算 假设水泵的扬程为H(m),流量为Q(L/s),那么很容易推算其实际需要的有效功率P3为: P3=H*Q*g(g=9.8,常数)(W) 因为水泵本身也存在效率,因此需要提供给水泵的实际功率: P2=P3/水泵效率 P2算出来往往跟电机的额定功率不会正好相等,因此就选择一个大于P2(接近于)的电机功率Pe。 比如P3=10KW,水泵效率为0.7,电机效率为0.9,那么P2=P3/0.7=14.3kw,可选择Pe=15KW的配套电机,电机的实际输入功率P1=15/0.9=16.7kw。 泵轴功率是原动机(拖动电机)传给泵的功率,在实际工作时其工况点会变化,另电机输出功率因功率因数关系也会有变化。因此,原动机传给泵的功率应有一定余量,经验作法是电机配备功率大于泵轴功 率。轴功率余量见下表,并根据国家标准Y系列电机功率规格选配。 轴功率余量 根据API 610标准电动机的额定功率,至少应等于下面给出的额定条件下泵功率的百分数。

风机泵功率与空气密度计算

风机水泵轴功率的计算方法 1风机轴功率的计算 由原动机或传动装置传到风机轴上的功率,称为风机的轴功率,用P 表示,单位为kW 。 f r f r p Q g p Q P ηηηη1021000?=??= 式中:Q---风机风量 (m 3/s ,Nm 3/s ); p---风机全压 (kg/m 2); f η-风机效率; “1/102” = g/1000----由kg.m/s 变换为kW 的单位变换系数。 r η-传动装置效率; (由于气体的体积受温度和压力的影响很大,所以风量分为体积流量(m 3/s )和质量流量(Nm 3/s ),即所谓的“标准方”:指的是气体在摄氏0o C 和标准大气压时的流量(体积);这时的空气密度为1.293 kg/m 3,当温度为摄氏80O C ,压力为1大气压时空气密度可取为1 kg/m 3,实际应通过理想气体状态方程进行温度和压力折算。用实测的风压“p ”计算轴功率时,因为风压中已经包含了密度数据,所以不必考虑空气密度的变化。) 说明 (1)若风量的单位用“m 3/h ”, 风压的单位用“kg/m 2”的话,则

还要除以3600: f r g p Q P ηη000,600,3??= (2) 若风量的单位用“m 3/s ”,风压的单位用“MPa ”的话,则: f r f r p Q p Q P ηηηη??=???=100010001000000 (3)若风量的单位用“m 3/h ”,风压的单位用“MPa ”的话,则还要除以3600: f r f r p Q p Q P ηηηη6.336001000?=??= (4)若风量的单位用“m 3/s ”,风压的单位用“kPa ”的话,则: f r f r p Q p Q P ηηηη?=??=10001000 (5)电动机容量选择: d d P P η= d η-电动机效率 2水泵轴功率的计算 由原动机或传动装置传到水泵轴上的功率,称为水泵的轴功率,用P 表示,单位为kW : b r b r H Q gH Q P ηηρηηρ1021000== 式中:Q---水泵风量 (m 3/s ); H---水泵扬程 (m, gH p ρ=,);

风机水泵压缩机变频调速控制节能与应用(含工频节流功率计算公式)

风机水泵负载变频调速节能原理 相似定律:两台风机或水泵流动相似,在任一对应点上的统计和尺寸成比例,比值成相等,各对应角、叶片数相等,排挤系数、各种效率相等。 流量 按照相似定律,由连续运动方程流量公式: φπη η ????? =?? =d D A v m v m v v v q 流速公式: 60 π ??= n D v m 式中: q v ——体积流量, s m 3 ; η v ——容积效率,实际容积效率约为0.95; A ——有效断面积(与轴面速度v m 垂直的断面积),m2; D ——叶轮直径,m ; n ——叶片转速,r/mi n ; b ——叶片宽度,m ; v m ——圆周速度,m/s ; φ——排挤系数,表示叶片厚度使有效面积减少的程度,约为0.75~0.95; 按照电机学的基本原理,交流异步电动机转速公式: p f s n ??-=60)1( 式中: s ——滑差; P ——电机极对数; f ——电机运行频率。 流量、转速和频率关系式: φππφππ ηη????????-?=???????= ?d D p f s D d D n D v v v q 60 60)1(60 f n q v ∞∞? 可见流量和转速的一次方成正比,和频率的一次方成正比。

扬程 按照流体力学定律,扬程公式:2 2 1 v m H ??=ρ 扬程、转速和频率关系式: 2 22 1 2 1 6060)1(602 2 f n H H p f s D n D ∞∞???=??=?? ? ? ?????-?? ? ? ????ππρρ 可见扬程和转速的二次方成正比,和频率的二次方成正比。 式中:H ——水泵或风机的扬程,m ; 功率 风机水泵的有效功率:每秒钟流体经风机水泵获得的能量。 水泵:H g q P v e ???=ρ 或 风机: P q P v e ?= ? ? ? ?????-?? ? ? ????????????????-?? ?=????????????=6060)1(602 2 21 6060)1(21 60πηπηρφππρρφππρp f s D n D P d D p f s D g d D n D g v v e f n P e 3 3 ∞ ∞? 可见有效功率和转速的三次方成正比,和频率的三次方成正比。 式中: P e ——有功功率,w ; ρ——流体质量密度,m Kg 3 ; P ——压力,Pa ;

三元流水泵、风机节能(新)1

水泵、风机节能(射流—尾迹全三元改造) 上海牛尔节能科技有限公司

第一章全三元技术概述………………………………………2~6 一、公司简介 (2) 二、射流—尾迹全三元技术概述……………………………………………2~3 三、全三元技术在水泵改造中的优势及特点 (3) 四、水泵节能改造方式的比较………………………………………………3~4 五、水泵节能改造项目实施方法 (4) 六、水泵节能改造项目实施方式……………………………………………4~5 七、我们的承诺 (5) 八、水泵节能改造工作流程 (6) 第二章全三元技术基本原理、部分案例及分析报告……7~22 一、射流—尾迹全三元技术基本原理………………………………………7~8 二、部分案例…………………………………………………………………8~22

第一章 全三元技术概述 一、公司简介 上海牛尔节能科技有限公司是由上海睿通资产管理有限公司和温州嘉和控股有限公司共 同投资成立的一家以销售和租赁节能环保产品以及企业提供节能减排方案为主的企业。并且 已经与国内外多家知名企业达成战略合作伙伴协作。如今节能减排已经成企业的重要社会责 任,公司将随时引进先进技术来充实公司的服务内容和经验,与合作伙伴共同努力来满足客 户需求的同时,将与合作伙伴和客户共同成长,为节能环保行业作出应有的贡献。 公司通过与客户签订节能服务合同,为客户提供包括:能源审计、项目设计、项目融资、 设备采购、工程施工、设备安装调试、人员培训、节能量确认和保证等一整套的节能服务, 并从节能改造后获得的节能效益中收回投资和取得利润的一种商业运作模式。 二、射流—尾迹全三元技术概述 射流—尾迹全三元流动理论是著名科学家、中国科学院院士吴仲华二十世纪五十年代在 美国创立的。二十世纪七十年代电子计算机得到有效应用后,这一理论被广泛应用于美国的 航空燃气轮机设计。西方各大发动机制造公司和国际航空界称之为“吴氏理论”或“吴式方 程”;在国际学术界吴仲华被公认为叶轮机械全三元流动(射流—尾迹全三元)理论的奠基 人。 水泵由电机等原动机带动泵叶轮旋转,将原动机的机械能转变为被输送流体的动能和压 力能。在与叶轮同步旋转的空间坐标系(R 、¢、Z )中,任何空间一点均可由此坐标系确定。 任何一点的流速W 可表示为该点坐标的函数(,,)W f R Z φ=,这就是全三元流动的基本概念。 计算图(1)流道中任何空间一点的流速W,这就是全三元流动解法。也就是说通过全三元流 动计算,可以得到水泵内任意点的流速。

相关文档
最新文档