纳米多孔碳气凝胶的储氢性能_沈军

纳米多孔碳气凝胶的储氢性能_沈军
纳米多孔碳气凝胶的储氢性能_沈军

纳米材料的自组装综述

纳米材料的自组装综述 专业:高分子材料与工程 摘要: 自组装技术是制备纳米结构的几种为数不多的方法之一。本文对最近几年自组装技术在纳米科技领域中的一些重大突破和成果进行较为系统地综述,主要包括以下几个方面:自组装单层膜、纳米尺度的表面改性、超分子材料、分子电子学与光子晶体。 关键词: 自组装; 纳米技术; 材料;超分子材料 1 引言 纳米科学与技术是一门在0. 1~100 nm 尺度空间研究电子、原子和分子运动规律和特性的高技术学科。它以现代先进科学技术为基础,是现代科学(混沌物理、量子物理、介观物理、分子生物学) 和现代技术(计算机技术、微电子技术、扫描隧道显微技术、核分析技术) 相结合的产物。它的最终目标是人类按照自己的意志直接操纵单个原子,制造具有特定功能的产品。纳米技术作为21 世纪新的推动力,将对经济发展、国家安全、人民生活、以至于人们的思维产生深远的影响[1 ] 。 自组装是在无人为干涉条件下,组元自发地组织成一定形状与结构的过程[2 ] 。自组装纳米结构的形成过程、表征及性质测试,吸引了众多化学家、物理学家与材料科学家的兴趣,已经成为目前一个非常活跃并正飞速发展的研究领域[3 ] 。它一般是利用非共价作用将组元(如分子、纳米晶体等) 组织起来,这些非共价作用包括氢键、范德华力、静电力等[1 ,4 ] 。通过选择合适的化学反应条件,有序的纳米

结构材料能够通过简单地自组装过程而形成,也就是说,这种结构能够在没有外界干涉的状态下,通过它们自身的组装而产生。因此,自组装是制备纳米结构的几种为数不多的方法之一[2 ] ,它已成为纳米科技一个重要的核心理论和技术。纳米材料因其尺寸上的微观性,从而表现出特殊的光、电、磁及界面特性。这些特性使得纳米材料广泛应用于各种领域:涂料 [5 ]、催化剂[6-7] 、电化学[8] 、光化学[ 9]及材料科学[10-12 ](如光电子器件)。 2 自组装单层膜 分子与生物分子膜正在被广泛应用到许多研究领域。自组装单层膜就是其中的一个研究重点。它是分子通过化学键相互作用,自发吸附在固/ 液或固/ 气界面,形成热力学稳定和能量最低的有序膜。在适当的条件下,自组装单层膜可以通过不同类型的分子和衬底来制备,常用的衬底有Au (111) 、Pt(111) 、Ag 、Al 、Si 、云母、玻璃等。 目前,研究最多的自组装单层膜可以分为三种类型[13 ] :由脂肪酸自组装的单层膜; 由有机硅及其衍生物自组装的单层膜;烷烃硫醇在金表面自组装的单层膜。它们的原理很简单,一个烷烃长链分子 (带有10~20 个亚甲基单元) ,其头部基团吸附到所用的衬底上,如硫醇(S —H) 头部基团和Au (111) 衬底已被证明可以进行完美的结合,它代表了一种控制表面性质的模式。硫醇分子在溶液中很容易吸附到金衬底上,形成一密集的单层,尾部基团从表面伸向外部,通过应用带有不同尾基的硫醇分子,化学样品的表面功能可以在很大范围内进行调节。自组装单层膜有着广泛的应用,如电子传输的研究、生物

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

纳米材料研究综述

文章编号:1004-3888(2003)05-0397-04 纳米材料研究综述 Ξ 张万忠,李万雄 (湖北农学院环境工程系,湖北荆州434025) 摘 要:综述了纳米材料的研究概况,介绍了纳米材料的研究现状、特点、结构、特性、制备 方法及其应用状况。 关键词:纳米材料;结构与特性;制备与应用中图分类号:O157 文献标志码:A 纳米材料是指微观结构至少在一维方向上受 纳米尺度调制的各种固态材料[1],其晶粒或颗粒尺寸在1~100nm 数量级,主要由纳米晶粒和晶粒界面两部分组成,其晶粒中原子的长程有序排列和无序界面成分的组成后有大量的界面(6×1025m 3/10nm 晶粒尺寸),晶界原子达15%~50%,且原子排列互不相同,界面周围的晶格原子 结构互不相关,使得纳米材料成为介于晶态与非 晶态之间的一种新的结构状态[2]。此外,由于纳米晶粒中的原子排列的非无限长程有序性,使得通常大晶体材料中表现出的连续能带分裂为接近分子轨道的能级。高浓度界面及原子能级的特殊结构,使其具有不同于常规材料和单个分子的性质如表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等,导致了纳米材料的力学性能、磁性、介电性、超导性光学乃至力学性能发生改变,使之在电子学、光学、化工陶瓷、生物、医药等诸多方面具有重要价值,得到了广泛应用[3,4]。 1 纳米材料研究的现状与特点 1.1 纳米材料研究的现状 上世纪70年代纳米颗粒材料问世,80年代 中期在实验室合成了纳米块体材料,80年代中期以后,成为材料科学和凝聚态物理研究的前沿热点。可大致分为3个阶段;第一阶段(1990年以前),主要是在实验室探索用各种手段制备各种材 料的纳米颗粒粉体,合成块体(包括薄膜),研究评价表征的方法,探索纳米材料不同于常规材料的特殊性能;第二阶段(1994年前),人们关注的热点是如何利用纳米材料已挖掘出来的奇特的物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合纳米薄膜;第三阶段(从1994年到现在),纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。 1.2 纳米材料研究的特点 (1)纳米材料研究的内涵逐渐扩大 第一阶 段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料研究对象发展到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶)。 (2)纳米材料的概念不断拓宽 1994年以 前,纳米结构材料仅仅包括纳米微粒及其形成的纳米块体、纳米薄膜,现在纳米结构材料的含意还包括纳米组装体系,该体系除了包含纳米微粒实体的组元,还包括支撑它们的具有纳米尺度的空间基体,因此,纳米结构材料内涵变得丰富多彩。 (3)基础研究和应用研究并重 目前,基础研究和应用研究出现并行发展的新局面,纳米材料的应用成为人们关注的热点,纳米材料进入实用阶段,纳米材料及相应产品开始陆续进入市场。 Ξ 收稿日期:2003206206 第一作者简介:张万忠(1965-),男,河南罗山县人,理学硕士,湖北农学院环境工程系副教授. 第23卷 第5期Vol.23No.5 湖 北 农 学 院 学 报 Journal of Hubei Agricultural College 2003年10月Oct.2003

气凝胶薄膜能源材料的研究进展

书山有路勤为径,学海无涯苦作舟 气凝胶薄膜能源材料的研究进展 气凝胶薄膜能源材料的研究进展 吴广明 (同济大学波耳固体物理研究所上海市特殊人工微结构材料与技术重点实验室 先进土木工程材料教育部重点实验室上海200092) 摘要:随着资源短缺和环境污染的日益严重,节能与可再生能源的使用 已迫在眉睫,必须研制出新材料以适应这种发展需求。气凝胶是一种新型纳米 多孔材料,具有孔洞率高、比表面积大、热导率低、折射率小且可调范围大等 特点,被美国第250 期《科学》杂志列为世界十大热门科技之一,在建筑节能、锂离子电池、太阳能电池等方面具有广阔应用前景。 本课题组采用溶胶-凝胶技术,以TEOS、W 粉末、V2O5 粉末等为原材料,通过溶剂替换、紫外光辐照、混合气氛处理等技术以及提拉镀膜方法在常 压下制备出了面积达1.2 乘以0.8 m2、致/褪色态透射率差大于50%、光学均匀性超过95%、响应时间小于5 s 的WO3 基气致变色建筑节能气凝胶薄膜涂层(见系统研究了WO3 气凝胶薄膜纳米多孔结构的可控生长与稳定机制、变色/退色过程中氢氧原子与WO3 结构的相互作用、WO3 薄膜形貌与结构的演变、致/退色循环耐用性能衰减机制与抑制机理、纳米掺杂复合的协同作用和紫外光与气体混合后处理机制,以及V2O5 气凝胶薄膜电极的电化学行为、锂离子和电子的输运特性以及同纳米多孔结构的相互作用、比容量影响因素、V2O5 气凝胶薄膜阴极性能降级机制;发现了WO3 气凝胶薄膜的变色循环稳定性主要受控于其共角结构,SiO2 纳米复合显著抑制了其共角结构在致/退色过程中的演变; 建立了气凝胶薄膜多孔结构中粒子的输运模型,极大地丰富纳米多孔结构的表

纳米材料综述

纳米材料综述 摘要纳米技术、纳米材料在21世纪将扮演重要角色,纳米技术是当今世界最有前途的决定性技术之一。本文综述了纳米材料的定义、历史、特性、目前应用状况和应用前景等方面,并对目前国际上对研究纳米材料研究进行分析。 Abstract nanotechnology, nanomaterials in twenty-first Century will play an important role, nanotechnology is one of the world's most promising decisive technology nowadays. This paper reviews the definition, history, characteristics of nanometer materials, the current application status and application prospects, and analysis of the current international research on research of nanometer materials. 关键字纳米材料;定义;发展历史;性能;应用;前景 Keywords nanometer materials;definition; development history; properties; application; prospect 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。 2.1发展历史 纳米材料发展有三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。 3纳米材料的性能 3.1力学性能 许多纳米金属的室温硬度比相应粗晶高2~ 7倍; 纳米材料具有更高的强度, 例如, 6nm 的纳米铁晶体的强度比多晶铁提高12 倍, 硬度提高了2~ 3 个数量级; 韧性更大, 如美国Argonnel实验室制成的纳米CsF2 陶瓷晶体在室温下可弯曲100%。室温下的纳米TiO2 陶瓷晶体表现出很高的韧性, 压缩至原长度的1/4 仍不破碎。 3.2热学性能 一般纳米金属材料的热容是传统金属的2 倍; 直径为10nm 的Fe、Au 和Al 熔点分别由其粗晶熔点的1540 ℃、1063 ℃和660 ℃降到33 ℃、27 ℃和18 ℃。2nm的金的颗粒熔点仅为330 ℃ , 比通常金的熔点低700 ℃以上, 而纳米银粉的熔点仅为100 ℃ ; 此外, 纳米材料的热膨胀可调, 可用于具有不同热膨胀系数的材料的连接。 3.3磁学性能 当晶粒尺寸减小到纳米级时, 晶粒之间的铁磁相,互作用开始对材料的宏观磁性有重要影响, 使得纳米材料具有高磁化率和高矫顽力, 低饱和磁矩和低磁耗纳米磁性金属的磁化率是普通金属的20 倍, 而饱和磁矩是普通金属的1/2。 3.4光学性能

储氢的各种材料

一、前言 随着社会的发展,环境保护问题已经越来越为人们所重视。酸雨、温室效应、城市热岛效应等等 或初露倪端,或已对人类造成巨大的危害,这些环保问题的产生在很大程度上与人类大量使用化石能 源有关。同时,由于能源消耗量的迅猛增加,化石能源将不能满足经济高速发展的需求,需要开发新 的能源。在我国开发清洁的新能源体系更具有重要意义。 氢可以地球上近于无限的水为原料来制备,其燃烧产物也是水,具有零污染的优点,有望在石油中国论文联盟https://www.360docs.net/doc/6d6858995.html, 时代末期成为一种主要的二次能源。氢能技术的发展,已在航天技术中得到了成功的应用。 氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。 二、目前主要的储氢方式 近年来研究较多的储氢方式有:(1)金属氢化物储氢;(2)液化储氢;(3)吸附储氢;(4)压缩储氢。 2.1金属氢化物储氢 氢和氢化金属之间可以进行可逆反应,当外界有热量加给氢化物时,它就分解为氢化金属并释放 出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:(1)稀土镧镍,每公斤镧镍合金可储氢153L;(2)铁钛合金,储氢量大,价格低月在常温常压下释放氢;(3)镁系合金,是吸氢量最大的元素,但需要在287℃条件下才能释放氢,而且吸收氢十分缓慢;(4)钒、铌、铅等多元素系,这些金属本身是稀贵金属,因此只适用于某 些特殊场合。 与其它储氢方式相比,金属氢化物储氢具有压力平稳,充氢简单、方便、安全等优点,单位体积贮氢的密度,是相同温度、压力条件下气态氢的1000倍。该储氢方式存在的问题为在大规模应用中如 何提高储氢材料的储氢量和降低材料成本,节约贵重金属。国际能源机构确定的未来新型储素材料的标准为储氢量应大于5Wt%,并且能在温和条件下吸放氢。根据这一标准,目前的储氢合金大多尚不能满足这一性能要求。 2.2液化储氢 将氢气冷却到-253℃时氢气即可液化。液氢储存方式的质量能量密度最大,是一种轻巧紧凑的方式。但氢气液化成本高,能量损失大(氢液化所需能量为液化氢燃烧产热额的30%),且存在蒸发损 失。液氢贮存工艺首先用于宇航中,但需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化, 导致液体贮存箱非常庞大。 2.3吸附储氢 C.CarPetis和W.Peschka是首先提出在低温条件下氢气能够在活性炭中吸附储存的两位学者。他们提出可以考虑将低温吸附刘运用到大型氢气储存中,并研究得到了在温度为-195℃和-208℃,压力为0-4.15MPa时,氢在多种活性炭上的吸附等温线:压力为4.2MPa 时,氢气在活性炭上的吸附容量分别可以达到 6.8wt%和 8.2wt%在果等温膨胀到0.2MPa,则吸附容量为4.2wt%和5.2wt%。 在一个最近的研究中,Hynek在27℃和-83℃条件下测试了一系列吸附剂,如活性炭、碳黑、碳气凝胶 以及碳分子筛等。测试结果为:在0-20MPa压力范围内,随着压力的增大,吸附剂的储氢量只有少 量的增加。 目前吸附储氢材料研究的热点是碳纳米材料。由于碳纳米材料中独特的晶格排列结构,其储氢数量大大的高过了传统的吸附储氢材料。碳纳米管产生一些带有斜口形状的层板,层

纳米储氢材料原理及示意图

Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts Ki-Joon Jeon 1?,Hoi Ri Moon 2??,Anne M.Ruminski 2,Bin Jiang 3,Christian Kisielowski 4,Rizia Bardhan 2and Jeffrey J.Urban 2* Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142MJ kg ?1;ref.1),great variety of potential sources (for example water,biomass,organic matter),light weight,and low environmental impact (water is the sole combustion product).However,there remains a challenge to produce a material capable of simultaneously op-timizing two con?icting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state,but weakly enough to release it on-demand with a small temperature rise.Many materials under development,including metal–organic frameworks 2,nanoporous polymers 3,and other carbon-based materials 4,physisorb only a small amount of hydrogen (typ-ically 1–2wt%)at room temperature.Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH 2has a H f ~75kJ mol ?1),thus requiring unacceptably high release temperatures 5resulting in low energy ef?ciency.However,recent theoretical calculations 6,7and metal-catalysed thin-?lm studies 8have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption.Here,we report the synthesis of an air-stable composite ma-terial that consists of metallic Mg nanocrystals (NCs)in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6wt%of Mg,4wt%for the composite)and rapid kinetics (loading in <30min at 200?C).Moreover,nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. There have been various efforts to synthesize nanosized magnesium,such as ball-milling 9,sonoelectrochemistry 10,gas-phase condensation 11and infiltration of nanoporous carbon with molten magnesium 12.However,these approaches remain limited by inhomogeneous size distributions and high reactivity toward oxygen.Our synthesis for air-stable alkaline earth metal NC/polymer composites consists of a one-pot reduction reaction of an organometallic Mg 2+precursor in the presence of a soluble organic polymer chosen for its hydrogen gas selectivity (Fig.1).The Mg NCs/PMMA nanocomposites were synthesized at room 1Environmental Energy T echnologies Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,2The Molecular Foundry,Material Science Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,3FEI Company,NE Dawson Creek Dr.,Hillsboro,Oregon,97124,USA,4National Center for Electron Microscopy and Helios SERC,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA.?These authors contributed equally to this work.?Present address:Interdisciplinary School of Green Energy,Ulsan National Institute of Science and T echnology (UNIST),Ulsan 689-798,Korea.*e-mail:jjurban@https://www.360docs.net/doc/6d6858995.html,. Mg 2+ + Li Lithium naphthalide Bis(cyclopentadienyl)- magnesium Mg/PMMA nanocomposites b a H 2 Mg nanoparticle Organic polymer with selective gas permeability PMMA THF H 2 H 2O O 2 Formation of MgH 2 Figure 1|Mg NCs in a gas-barrier polymer matrix.a ,Schematic of hydrogen storage composite material:high-capacity Mg NCs are encapsulated by a selectively gas-permeable polymer.b ,Synthetic approach to formation of Mg NCs/PMMA nanocomposites. temperature from a homogeneous tetrahydrofuran (THF)solution containing the following dissolved components:the organometallic precursor bis(cyclopentadienyl)magnesium (Cp 2Mg),the reduc-ing agent lithium naphthalide,and the gas-selective polymer poly(methyl methacrylate)(PMMA).Mg nanocrystals are then nucleated and grown in this solution by means of a burst-nucleation and growth mechanism 13in which lithium naphthalide reduces the organometallic precursor in the presence of a capping ligand (the soluble PMMA (M w =120,000)acts as a capping ligand for the Mg nanocrystals)14.Transmission electron microscopy (TEM)analysis of our reaction mixture before addition of reductant,immediately thereafter,and at later stages of the growth (Supplementary Fig.S1)further support this model.

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。 关键词:纳米材料;纳米材料制备;纳米材料性能;应用 0 引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。纳米薄膜分为颗粒膜与致密膜。颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复

碳纳米管性质及应用

碳纳米管性质及应用 摘要:碳纳米管的发现是现代科学界的重大发现之一。由于碳纳米管具有特殊的 导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰。本文简单综述碳纳米管的基本性质及应用。 关键词:碳纳米管;结构;制备;性质;应用 1 碳纳米管的发现 1991年,日本NEC科学家Lijima在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜(HRTEM)发现一种外径为515nm、内径213nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。相邻管子之间的距离约为0.34nm,与石墨中碳原子层与层之间的距离0.335nm相近,所以这种结构一般被称为碳纳米管,这是继C60之后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果[1]。 2 碳纳米管的结构 碳纳米管(CNT)又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs) 两种形式。MWNTs一般由几层到几十层石墨片同轴卷绕构成,层间间距为0.34nm左右,其典型的直径和长度分别为 2-30nm0.1-50μm.SWNTs由单层石墨片同轴卷绕构成,其侧面由碳原子六边形排列组成,两端由碳原子的五边形封顶。管径一般从10-20nm,长度一般可达数十微米,甚至长达20cm[2]。 3碳纳米管的制备 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD),以及在各种合成技术基础上产生的定向控制生长法等。 3.1电弧法利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作.T. W. Ebbeseo在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备

储氢材料的分类及镍氢电池的机理

储氢材料分类 狭义上讲,储氢材料[8]是一种能与氢反应生成金属氢化物的物质;但是它与一般金属氢化物有明显的差异。即储氢材料必须具备高度的反应可逆性(可反复进行吸储氢和释放氢的可逆反应),而且,此可逆循环的次数(循环寿命)必须足够多,循环次数超过5000次。实际上,它必须是能够在适当的温度、压力下大量可逆的吸收和释放氢的材料。 对于理想的金属储氢材料应具备以下条件:1.在不太高的温度下,储氢量大,释放氢量也大;2.氢化物的生成热一般在-46 ~ -29 kJ/mol H2之间;3.原料来源广,价格便宜,容易制备;4.经多次吸、放氢,其性能不会衰减;5.有较平坦和较宽的平衡压力平台区,即大部分氢均可在一持续压力范围内放出;6.易活化,反应动力学性能好。 就目前发表的资料看,储氢材料尚无明确的、公认的分类方法,本文把它分为以下4类: (1) 金属(或合金)储氢材料 氢几乎可以同周期表中的各种元素反应,生成各种氢化物或氢化合物。但并不是所有金属氢化物都能做储氢材料,只有那些能在温和条件下大量可逆的吸收和释放氢的金属或合金氢化物才能做储氢材料用。例如:目前以开发的具有实用价值的金属型氢化物有稀土系AB5型;锆、钛系Laves相AB2型;钛系AB型;镁系A2B型;以及钒系固溶体型等几种。金属与氢反应的实验模型如图1-1所示。 图1-1 合金储氢材料与H2反应示意图 Fig.1-1 The reaction chart of metal with H2 (2) 非金属储氢材料 从目前的研究的情况分析,能够可逆的吸放氢的非金属材料[9,10]仅限于碳系

材料、玻璃微球等非金属材料,是最近几年刚发展起来的新型储氢材料。例如碳纳米管、石墨纳米纤维、高比表面积的活性炭、玻璃微球等。这类储氢材料均属于物理吸附模型,是一种很有前途的新一代储氢材料。 (3) 有机液体储氢材料 某些有机液体[11,12],在合适的催化剂作用下,在较低压力和相对高的温度下,可做氢载体,达到贮存和输送氢的目的。其储氢功能是借助储氢载体(如苯和甲苯等)与H 2的可逆反应来实现的。 (4) 其他储氢材料 除了上述3类储氢材料外,还有一些无机化合物和铁磁性材料可用作储氢,如KHNO 3或NaHCO 3作为储氢剂[13]。磁性材料在磁场作用下可大量储氢,储氢量比钛铁材料大6~7倍。 镍氢电池(Ni/MH)的基本原理 利用贮氢合金的电化学吸放氢特性研制成功的金属氢化物-镍(Ni/MH)二次电池是近年来发展比较迅速的一种高能绿色二次电池,它以贮氢电极合金充当活性物质的氢化物电极作为负极,以氢氧化镍电极作为正极。Ni/MH 电池具有能量密度高、功率密度高、可快速充放电、循环寿命长以及无记忆效应、无污染、可免维护、使用完全等特点。Ni/MH 电池的比能量是镍镉电池的 1.5~2倍,电流充放电时,无记忆效应、低温特性好、综合性能优于Ni/Cd 电池,而且Cd 有毒,废电池处理复杂。在能源紧张,环境污染严重的今天,Ni/MH 电池显示出广阔的应用前景。Ni/MH 电池目前主要应用在小型移动通讯设备、笔记本电脑、便携式摄像机、数码相机及电动自行车等领域。 Ni/MH 电池以Ni(OH)2/NiOOH 电极为正极,以贮氢合金电极为负极,以6 M 的KOH 溶液为电解液。其电化学式可表示为: (-)M/MH|KOH(6 M)|Ni(OH)2/NiOOH(+) 研究表明,在Ni/MH 电池的充放电过程中,正、负极发生的反应分别为: 正极:-22Ni(OH)OH NiOOH+H O+e + 负极:-2M+H O+e MH OH x x x x +

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

储氢碳纳米管

碳纳米管储氢性能的研究 学院:材料学院班级:1109102 学号:1110910209 姓名:袁皓 摘要:综述了近年来研究人员在碳纳米管制备以及在各种不同条件下获得的储氢性能,分析了碳纳米管的储氢机理。从实验、理论研究两个方面总结了前人在碳纳米管储氢上的研究成果,并对碳纳米管储氢吸附方式,吸附量影响因素等方面做出分析。最后指出为实现碳纳米管储氢大规模应用仍需做的一些基础性研究工作。 关键词:碳纳米管;吸附;储氢 氢能以其资源丰富、可再生、热效率高等优点备受关注。氢能的使用包括氢的生产、储存和运输等方面,开发氢能的关键问题是如何对氢进行储存。储氢的主要方法有:金属存储、压缩存储、液化存储和吸附存储等,它们各有优缺点。碳纳米管因其特殊的力学、电学等性质而成为储氢的主要载体。Kroto等发现了C60以后,Iijima意外地发现碳纳米管。由于碳纳米管具有优良的电学、力学性质,世界各国迅速展开了对碳纳米管的制备方法、结构与性能的研究。Dillon等报道了碳纳米管储氢作用,相关报道也比较多。因为碳纳米管具有比较大的比表面积,且具有大量的微孔,其储氢量远远大于传统材料的储氢量,因此被认为是良好的存储材料。 一碳纳米管的结构和性质 碳纳米管(Carbon Nanotubes, CNTs)首次是在1991年由日本的电子显微镜专家Iijima分析电弧放电产生的阴极沉积物时意外发现的,可以被看成是由石墨面卷曲而成的无逢管状结构,后发现可以通过化学处理使两端开口。根据组成碳纳米管管壁中碳原子层数目,碳纳米管可被分为单壁碳纳米管(Single -Walled Carbon Nanotubes, SWNTs )和多壁碳纳米管(Multi-Walled Carbon Nanotubes,MWNTs)。结构模型如图: 单壁碳纳米管仅由一层碳原子构成,是多壁碳纳管的一种特殊情况。单壁碳纳米管直径一般在1 -3nm,最小直径大约为0. 5nm,当直径大于3nm时会表现出不稳定性。单壁碳纳米管通常因范德华力作用而形成10 -100管束状。多壁碳纳米管可以看成为不同管径的单壁碳纳米管套装而成,少则2层多达几十层,层距约为0.343nm,略大于石墨片层之间的距离0. 335nm。碳纳米管直径在几纳米到几十纳米之间,而长度可达数微米,具有较大的长径比。因此,人们认为碳纳米管是一种典型的准一维纳米材料,并且因其重量轻,六边形完美结构而表现出许多异常的力学、电磁学、化学特性,并在不同领域里得到广泛的应用。其中碳纳米管在吸附氢气上表现出的独特性质,使其最有希望成为高效的储氢材料。 二碳纳米管的制备 目前已有很多种制备碳纳米管的方法,其中电弧放电法和催化裂解法应用得最为广泛。1991年Iijima首先用真空电弧蒸发石墨电极,在阴极沉积物中发现了碳纳米管。该方法是:在一定气压的惰性气氛下,石墨电极之间在强电流下产生电弧,阴极逐渐损耗,部分气态碳离子沉积于阴极形成沉积物。电弧放电法的产物质量较好,管径均匀,管身较直,石墨化程度高,但因

相关文档
最新文档