电力系统技术导则

电力系统技术导则
电力系统技术导则

电力系统技术导则

1 总则

1.1电力系统包括发电、送电、变电、配电以及相应的通信、安全自动、继电保护、调度自动化等设

施。电力系统规划、设计与运行的根本任务,是在国家发展计划的统筹规划下,合理开发利用动力资源,用

最少的支出(含投资和运行成本)为国民经济各部门与人民生活提供充足、可靠和质量合格的电能。

1.2为了协调电力系统有关各部门与各专业间的工作,使电力系统规划、设计和运行相互配合,实现上述根本任务,特制定本导则,各部门应共同遵守。

1.3科研、试验部门应当分析研究各种可行的提高电力系统安全、经济和质量的技术措施,经过试验并试点取得经验后,在电力系统中推广采用。

2对电力系统的基本要求

2.1规划、设计的电力系统,应满足经济性、可靠性与灵活性的基本要求,包括:

a.正确处理近期

需要与今后发展,基本建设与生产运行,经济与安全,一次系统(发、送、

变、配)

与二次系统(自动化、通信、安全自动、继电保护)的配套建设和协调发展等主要关系,以求得最佳的综合经济效益。

b.电力系统应当具有《电力系统安全稳定导则》所规定的抗扰动能力,防止发生灾害性的大面积

停电。

c.设计与计划部门在设计与安排大型工程项目时,应力求使其建设过程中的每个阶段能与既有的

电力系统相适应,并能为电力系统安全与经济运行提供必要的灵活性。

2.2规划设计与运行的电力系统,均应备有必要的有功功率储备。在规划、设计中应进行可靠性分

析,计算电力系统在未来年度的电力不足概率。

2.3规划设计的电网,包括受端系统、电源的接入、联络线等,应从全面着眼、统筹考虑、合理布局,

贯彻“分层分区”原则,逐步形成以加强受端系统为主的区域电网。主力电厂一般应直接接入相应的电压电

网(详见5.1),远方大容量电厂一般宜直接接入受端系统。在出现高一级电压电网的过渡期间,若在同一路径建设较低一级电压线路时,应考虑与下一步发展相结合。

2.4电网的安全标准,按不同组成部分,分别提出如下要求:

a.对于受端系统网络,当失去任一元件时,应保持系统稳定和正常供电(详见4)。

b.电源接入系统的送电回路失去一回时,一般应能保持正

常送电;对长距离的超高压重负荷送电回路,必要时允许采用措施以保证事故后的系统稳定(详见5)。

c.对于系统间的联络线,应按规定的不同任务

区别对待(详见6)。

2.5电网的无功功率应基本上按电压分层控制和分区就地平衡(详见7.1、7.2)。

2.6随着高一级电压电网的出现和发展,应该有计划地逐步简化和改造较低一级电压网络,实现分片供电,限制电网短路容量,尽可能避免高低压电磁环网,简化保护。

2.7合理的电网结构和保证安全稳定的技术措施应该相互协调配合并应同步设计,同步建设,以提高电网的安全稳定水平,并使电网的建设和发展在技术经济上更为合理。

2.8根据电力系统的发展规划,应制订调度系统的自动化规划(包括厂站自动化),并逐步予以实现,要按电网的分层分区及分级调度的原则,建立发电自动控制与分层安全监控系统等,为各级调度提供相应的

调度自动化功能。大区间联络线的负荷应能自动控制;新建发电厂及变电所设备及装备的性能,应能满足调

度自动化规划的要求。

2.9在规划设计电力系统时,应规划设计电力系统的通信

(通信、继电保护、自动化、数据等信息)通道系统,并与一次系统配套投入运行。

2.10应加强电力系统运行经验的总结,特别注意对重大电力系统事故的及时总结分析,反馈给规划、

设计部门进行改进,并据以在必要时修订补充本导则的有关内容。

3有功电源安排

3.1电源规划设计是电力系统规划设计的核心,根据国家的能源政策,以提高技术经济效益为前提,对各类电源建设方案进行优化。对建设条件优越、经济指标好的水电厂,应优先开发。

3.2在优先考虑扩建工程的同时,每个大区电力系统要重点规划建设若干大型骨干火电厂,以保证国民经济发展对电力供应的需求。

3.3电源的建设,应根据规划规定的任务,明确区分为全网性的主力电厂或地区性的电厂。在电力系统规划、设计中,应研究每个时期担负调峰、调频、腰荷、基荷的电厂的安排,以满足电力系统安全、经济、

质量的预计或规定要求。

.4 调峰电源应作为电力系统规划设计的一个重要内容,在每一个发展阶段应有具体安排,在技术经济

合理的前提下,应优先发挥水电的调峰能力。对具有调节性能的水电厂,应充分考虑其在调峰和运行备用(负荷备用和事故备用)方面发挥主要作用;合理扩大这些水电厂的装机容量或预留扩建余地;对现有这类水电厂,也应进行扩建可行性的研究。此外,应安排火电调峰;对缺乏水电调节的系统,还要采用其他调

峰电源,如抽水蓄能机组等。

3.5 在经济合理与建设条件可行的前提下,应注意在负荷中心附近建设一些较大容量的主力电厂。

3.6 规划、设计和运行的电力系统,均应备有有功功率备用容量,以保持系统经常在额定频率下运行。备用容量包括:

a.负荷备用容量*

负荷备用容量,是指接于母线且立即可以带负荷的旋转备用容量,用以平衡瞬间

负荷波动与负荷预计误差。为最大发电负荷的2%~5%,低值适用于大系统,高值适用于小系统。

b.事故备用容量** 事故备用容量,是指在规定时间内(例如10min 内),可供调用的备用容量。其中至少有一部分(例如50%)是在系统频率下降时能自动投入工作的备用容量。为最大发电负荷的10%左右,但不小于系统一台最大机组的容量。

c.检修备用容量一般应结合系统负荷特点,水火电比重,设备质量,检修水平等情况确定,以满足可以周期性地检修所有运行机组的要求,一般宜为最大发电负荷的8%~15%。

4受端系统建设

4.1电力系统规划、设计中,要加强和逐步扩大相邻主要负荷集中地区(包括电源)内部和他们间的网络连接,以最终形成坚强的受端系统。受端系统在各种正常与检修条件下,应满足如下要求:

a.受端系统内发生任何严重单一故障(包括线路及母线三相短路)时,应能可靠地快速切除,

以保持系统稳定。

b.突然失去任一元件(线路或变压器)时,不得使其他元件超过事故过负荷的规定。在正常运行方式下,应同时保持正常供电;在正常检修方式下,也要满足下述两项要求,但允许采取必要的措施

(如切机、切负荷等)。

4.2为保持电力系统具有较高的稳定水平,应力求减少受端系统的电源阻抗。使受端系统主网的电压母线维持一定的短路容量水平,在振荡时该母线电压不过低;如受端系统缺乏直接接入主网电压的地区主力电源,经技术经济论证对保证全系统稳定确有较大效果时,可装设适当容量的大型调相机。

4.3电力系统应有无功功率事故补偿能力,当大容量送电电源线路突然切去一回,或当地区电厂最大容

量的一台调相机(或发电机)组突然切除时,应保持受端枢纽变电所高压母线事故后的电压下降不超过正常值的5%~10%(设计时选用低值),以保证地区负荷不间断供电。特殊的系统情况下,可以联锁切负荷、压机组出力或切机。

4.4大城市负荷中心的枢纽变电所容量不宜过于集中。

a.当任一变电所全停时,不致引起受电地区全停,同时应采取自动措施,以保证重要负荷的安全

供电

b.有利于简化低一级电压网络,实现分片供电。

5电源的接入

5.1发电厂出线最高电压的选定,应从电网的全局着眼,注意如下因素:

a.发电厂的规划容量、单机容量、送电距离和送电容量及其在系统中的地位与作用。

b.简化电厂接线,减少出线电压等级及回路数。

c.调度运行与事故处理的灵活性。

d.断路器不超过现实可行的最大断路容量数值。

e.对提高全电网稳定的作用。一定规模的电厂或机组,应直接接入相应一级的电压电网。在负荷

中心建设的主力电厂宜直接接入相应的高压主网。单机容量为500MW 及以上机组,一般宜直接接入500kV 电压电网。200 ~300MW 左右的机组,应结合电厂的规划容量,考虑本条所列因素,经技术经济论证以确

定直接接入220 ~500kV 中哪一级电压的电网。单机容量为100MW 左右的机组,一般宜直接接入220kV

电压电网。

5.2为简化电网结构,提高系统安全稳定水平,节约投资,主力电厂应研究不设高压母线,而采用发电机—变压器—线路的单元方式直接接入枢纽变电所。

5.3对于带部分地区负荷而主要向远方送电的主力电厂,必要时可以出两级电压(不超过两级)。直接

接入地区电压电网的机组,应与当地负荷相适应,以避免不适当的二次升压。

对于受端系统内的主力电厂,在满足4.2 要求的条件下,也可以有部分机组接入地区电压电网,但出线的电压不应超过两级。当受端系统联系比较紧密时,即使这两级电压设有母线,在电厂内一般也不宜设联络变,以简化电网结构,避免电磁环网。如采用联络变,则应经过技术经济论证。

5.4规划设计电网结构时,应注意发生严重事故(考虑实际可能的多重故障)时,防止因负荷转移引起恶性连锁反应。还应注意避免一组送电回路* 一组送电回路指在送、受电端皆直接相联的两回或多回线路,例如两个以上电厂相联通过一组送电回路向受端系统送电;一个或两个大容量电厂通过一组送电回路向受端系统送电。的输送容量过于集中,在发生严重事故时,因失去电源容量过多而引起受端系统崩溃。

a.每一组送电回路的输送能力应保证送出所接入的电源容量。

b.每一组送电回路的最大输送功率所占受端总负荷的比例,不宜过大。具体比例可结合受端系统

的具体条件来决定。

c.除共用一组送电回路的电源外,应避免远方的大电源与大电源在送端连在一起;送到同一方向

的几组送电回路不宜在送端连在一起,如技术经济效益较大,需要在其送端或中途连在一起时,必须能在严重事故时将其可靠快速解列。

d.送到不同方向的几组送电回路,如在送端连在一起必须考虑在事故时具备快速解列或切机等措施,以防止由于负荷转移而扩大事故。

5.5机组较多的特大容量电厂的主接线,应结合所接入系统的具体条件,考虑有分组运行的可能性。

5.6水电厂的送电回路的传输能力,应能适应大发水电和调峰的需要。为利用季节性电能专门架设长距离的线路,可在进行技术经济论证后确定。

5.7电源接入系统的送电回路,在正常情况下突然失去一回时,除必须保持系统稳定外,一般还应能保持继续正常送电。在建设500kV 电网初期,只要送电功率占受端系统容量不过大,主力电厂可先用单回线接入系统,但失去这回线时,应有保持受端系统电压与频率稳定性的措施。对采用两回及多回超高压

(500kV)长距离重负荷线路的接入系统设计,可以考虑在严重事故情况下,采用远方和就地切除水电机组

或快速压火电机组出力等技术措施,以保证电网安全稳定,但需同步设计与建设可靠的遥控通道。

6系统间联络线

6.1系统间建设联络线要进行可行性研究,确定其性质与作用,并具体分析联网的技术经济效益,包

括:

a.可增大的电网总的供电能力。

b.可减少的电源备用(装机容量)。

c.可提高的可靠性指标。

d.可得到的错峰效益与调峰效益。

e.可提高的有功功率经济交换的效益,包括水火电综合利用,跨流域的水电补偿效益等。

f.建设联络线的送变电及有关设施的投资及运行费用。

6.2系统间建设联络线时,要认真考虑在电网运行上带来的复杂性,以及由于事故连锁反应带来的问

题。在规划、设计时应研究安排相应的措施,作为联网的必要条件。

a.联网应具备相应的通信、远动信息及合理的自动调频和联络线自动负荷控制手段。

b.当两个系统通过联络线发生失步或任一侧系统事故造成电压崩溃或造成联络线过负荷时,都应

有相应措施,以防止由于连锁反应而扩大事故。

6.3系统间联络线的传输能力,包括输电方式、电压等级及回路数,应结合电网的具体条件,按规划确定的性质和作用进行考虑。

a.联络线的电压等级一般宜与主网最高一级电压相一致。

b.对于要求输送较大电力,并在正常情况下作经济功率交换的交流或直流联络线,要考虑联络线

输送电力所占受电侧系统负荷的比重不宜过大,而与受电侧系统备用容量及有关措施相适应,同时在联络线

故障中断时,要保持各自系统的安全稳定运行。

c.对于为相邻系统担负规定(按合同)事故支援任务的联络线,当两侧系统中任一侧系统失去大电源或发生严重单一故障时,该联络线应保持稳定运行;并不应超过事故过负荷的规定。

d.系统间有两回(或两回以上)交流联络线,不宜构成弱联系的大环网,并要考虑其中一回断开时,其余联络线应保持稳定运行并可传送规定的最大电力。

e.对交流直流混合的联络线,当直流线路单极故障时,在不采取稳定措施条件下,应能保持交流

系统稳定运行;当直流线路双极故障时,也应能保持交流系统稳定运行,但可采取适当的稳定措施。

7无功电源与电压控制

7.1无功功率电源的安排应有规划,并留有适当裕度,以保证系统各枢纽点的电压,在正常和事故后均能满足规定的要求。

7.2电网的无功补偿应基本上按分层分区和就地平衡原则考虑,并应能随负荷(或电压)进行调整,避

免经长距离线路或多级变压器传送无功功率。无功补偿设备应以采用可投切的并联电容器组为主,电缆或超高压线路的充电功率可采用并联电抗器补偿。当220~500kV 受端系统短路容量不足和当长距离送电线

路中点缺乏电压支持,为提高输送容量和稳定水平,经技术经济比较,可采用调相机。

7.3500kV(330kV)线路的充电功率基本上予以补偿,从最小负荷至满负荷的情况下,由送端到降压

变压器出口(包括所连接的补偿设备)的无功功率均能基本平衡,发电机的运行功率因数则应保持在规定范围内。

500kV(330kV)线路应按下列条件考虑装设高压并联电抗器:

a.在500kV(330kV)电网各发展阶段中,正常及检修(送变电单一元件)运行方式下,发生故障或任一处无故障三相跳闸时,必须采取措施限制母线侧及线路侧的工频过电压在最高运行电压的1.3 及1.4 倍额

定值以下时。

b.为保证线路瞬时性单相故障时单相重合成功,经过比较,如认为需要采用高压并联电抗器并带

中性点小电抗作为解决潜供电流的措施时。

c.发电厂为无功平衡需要,而又无法装设低压电抗器时。

d.系统运行操作(如同期并列)需要时。

7.4设置变压器带负荷调压的原则如下:

a.在电网电压可能有较大变化的220kV 及以上的降压变压器及联络变压器(例如接于出力变化大的电厂或接于时而为送端、时而为受端的母线等),可采用带负荷调压方式。

b.除上款外,其他220kV 及以上变压器,一般不宜采用带负荷调压方式。

c.对110kV 及以下的变压器,宜考虑至少有一级电压的变压器采用带负荷调压方式。

7.5发电机及同步调相机均应经常带自动调节励磁(包括强行励磁)运行,并保持其运行稳定性。

8继电保护与安全自动

8.1对于220kV 及以上电压的线路,如果系统稳定有要求,则其近故障点侧与远故障点侧的故障切除时间,从故障发生开始到断路器断开故障为止,应分别不大于0.1s与0.1~0.15s。

8.2所有较低一级电压线路及母线的故障切除时间,必须满足高一级电压电网稳定要求。

8.3500kV 线路一般应采用单相重合闸方式,其重合时间按系统稳定需要并保持重合能成功的条件决定。330、220kV 线路应按系统具体条件考虑重合闸方式,但应避免装设大机组电厂的出线三相重合于永久性相间故障的方式。例如可采用系统侧先重合,电厂侧检查同期重合的三相重合闸方式。

为了使330 ~500kV 线路采用单相重合闸时能重合成功,对一定长度以上的线路需采取解决潜供电流的措施。

8.4按频率降低自动减负荷装置的整定及其所切除负荷容量的配置,应针对可能的有功功率缺额情况,结合系统与频率继电器的动态特性综合选定,并考虑与发电机组的低频保护和其他低频解列装置相配合。开始减负荷的第一级频率一般不宜低于49Hz ,同时还应制订手动减负荷规程,作为自动减负荷措施的必要补充。

8.5在无功缺额地区,应有按电压下降紧急切负荷的具体措施,以防止系统电压崩溃。

8.6解列点的设置,应满足解列后各地区各自同步运行与供需基本平衡的要求。解列的断路器不宜过多。

a.电力系统间的弱联络线。

b.主要由电网供电的带地区电源的终端变电所或在地区电源与主网联络

的适当地点。

c.事故时专带厂用电的机组。

d.暂时未解环的高低压电磁环网。

8.7水电厂的备用机组,应能实现低频自起动与调相自动改发电等方式。

9调度自动化与通信

9.1各级调度中心,有关发电厂及变电所的设备和装备及其技术性能,应能满足按调度系统自动化规划的要求实现自动发电控制与安全监控。

9.2必须保持经常的向调度员提供反映系统现状的足够信息,以保持正常情况下电网的可靠和经济运行,在事故时能采取有效处理措施和在事故后保证正确地恢复系统的完整性。

a.为电网运行情况的安全监控提供精确而可靠的信息,包括有关的负荷与发电情况,输电线路的负荷情况,电压、有功及无功潮流,稳定极限,系统频率等。

b.当电网运行条件出现重要偏差时,及时自动告警,并指明或同时起动纠偏措施。

c.当电网解列时,给出显示,并指出解列处所。

9.3电网必须具有充分而可靠的通信通道手段。

a.各级调度中心控制室(有调度操作指挥关系时)和直接调度的主要发电厂与重要变电所间至少应有两个独立的通信通道。

b.所有新建的发、送、变电工程的计划与设计,必须包括相应的通信通道部分,并与有关工程配套投入运行。通信通道不健全的新建发电厂和变电所不具备投入运行的条件。

c.通信网规划建设应综合考虑作为通信、调度自动化、远动、计算信息、继电保护及安全自动装置的通道。为充分发挥微波干线的作用,并保证通道运行的可靠性,在规划设计微波干线时,应考虑在

500kV(330kV) 发电厂、变电所和必要的220kV 发电厂、变电所内落点。

d.如某些特定通道中断会影响电网的可靠运行,则必须从规划设计与运行上及早安排事故备用的通道或其他措施。

e.通信设备应有可靠的电源以及自动投入

的事故备用电源,其容量应满足电源中断时间的要求。

电力系统分析课后作业题及练习题

第一章 电力系统的基本概念 1-1 什么叫电力系统、电力网及动力系统 1-2 电力线、发电机、变压器和用电设备的额定电压是如何确定的 1-3 我国电网的电压等级有哪些 1-4 标出图1-4电力系统中各元件的额定电压。 1-5 请回答如图1-5所示电力系统中的二个问题: ⑴ 发电机G 、变压器1T 2T 3T 4T 、三相电动机D 、单相电灯L 等各元件的额定电压。 ⑵ 当变压器1T 在+%抽头处工作,2T 在主抽头处工作,3T 在%抽头处工作时,求这些变压器的实际变比。 1-6 图1-6中已标明各级电网的电压等级。试标出图中发电机和电动机的额定电压及变压器的额定变比。 1-7 电力系统结线如图1-7所示,电网各级电压示于图中。试求: 习题1-5图 习题1-6图 习题1-4图

⑴发电机G 和变压器1T 、2T 、3T 高低压侧的额定电压。 ⑵设变压器1T 工作于+%抽头, 2T 工作于主抽头,3T 工作于-5%抽头,求这些变压器的实际变比。 1-8 比较两种接地方式的优缺点,分析其适用范围。 1-9 什么叫三相系统中性点位移它在什么情况下发生中性点不接地系统发生单相接地时,非故障相电压为什么增加3倍 1-10 若在变压器中性点经消弧线圈接地,消弧线圈的作用是什么 第二章 电力系统各元件的参数及等值网络 2-1 一条110kV 、80km 的单回输电线路,导线型号为LGJ —150,水平排列,其线间距离为4m ,求此输电线路在40℃时的参数,并画出等值电路。 2-2 三相双绕组变压器的型号为SSPL —63000/220,额定容量为63000kVA ,额定电压为242/,短路损耗404=k P kW ,短路电压45.14%=k U ,空载损耗93=o P kW ,空载电流 41.2%=o I 。求该变压器归算到高压侧的参数,并作出等值电路。 2-3 已知电力网如图2-3所示: 各元件参数如下: 变压器:1T :S =400MVA ,12%=k U , 242/ kV 2T :S =400MVA ,12%=k U , 220/121 kV 线路:2001=l km, /4.01Ω=x km (每回路) 习题1-7图 115kV T 1 T 2 l 1 l 2 习题2-3图

基于智能技术的电力系统自动化设计

基于智能技术的电力系统自动化设计 发表时间:2020-03-17T10:43:33.663Z 来源:《电力设备》2019年第21期作者:高学军 [导读] 摘要:现如今科学技术日益发展,在电力系统自动化中运用智能技术已必不可少,人工智能技术已覆盖了我们生活中的各种领域,并且在我们电力领域中应用空间更加广泛,智能技术种类繁多,并各具优势,因电力系统与我们日常生活不可分割,要保证电力系统的安全、稳定都需要对电力自动化系统技术进行不断提升,电力系统自动化与智能技术相结合,相当于建立了智能的系统化电力平台。 (内蒙古电力(集团)有限责任公司鄂尔多斯电业局内蒙古自治区鄂尔多斯 017020) 摘要:现如今科学技术日益发展,在电力系统自动化中运用智能技术已必不可少,人工智能技术已覆盖了我们生活中的各种领域,并且在我们电力领域中应用空间更加广泛,智能技术种类繁多,并各具优势,因电力系统与我们日常生活不可分割,要保证电力系统的安全、稳定都需要对电力自动化系统技术进行不断提升,电力系统自动化与智能技术相结合,相当于建立了智能的系统化电力平台。基于此,本文主要探讨了基于智能技术的电力系统自动化设计。 关键词:智能技术;电力系统;自动化设计 中图分类号:F407.61 文献标识码:C 引言 电力系统为社会生产生活带来方便的同时,也需要相关人员能够深入了解电力自动化控制技术中的不足,充分利用智能技术并发展智能技术优势,使电力系统的电力服务能力得以提升。信息技术不断创新发展,必将使电力系统的自动化控制水平得以进步,从而促进电力领域的发展进步。 1 电力系统自动化控制现状概述 电力系统的自动化控制体系是由多种具有自动控制、分析、决策功能的小部件工作设备装置组合而成的,通常是指电工进行二次电力系统控制。各个组合的功能装置通过数据传输采集和信号采集对电力系统中的整体或是局部甚至于某一单元部件进行协调工作和或者监控调节,进而起到对其进行控制管理的作用。就监视控制工作这一层面来说,自动化控制能在一定程度上帮助确保电力系统安全、稳定、健康的进行持续工作。 但我国现阶段的电力系统自动化控制技术不是完全呈直线上升的。由于受到各种各样外界条件和内在因素的制约,我国的电力系统自动化技术发展受到限制,也存在许多尚未被合理解决的问题。但对电力系统自动化的评价不能以偏概全,需要对其优缺点进行综合分析探究,肯定其给人民生活带来的便利条件。 2 智能技术在电力系统自动化设计中的应用 2.1 发电系统的智能化 在智能技术下,可以有效提升电力系统的控制能力,同时还可以对于电网与电源的结构进行优化,改善其中存在的问题。而智能技术还能够使电力系统的信息传递得到有效的提升,使信息在传输过程中可以使用更为精确地方式进行传输。另外,智能技术的存在对于电力系统而言,还可以带动新能源的发电,如当前的光伏发电、风能发电等。 2.2 电力调度的智能化 基于智能技术,电力系统中可以拥有更为合理的电力调度。而同构智能电网的构建,还可以保障电力系统的安全性。在其中的调度系统中,安全预警系统、数据采集系统等系统都具有非常重要的作用,可以起到针对性的控制与监督效果,并且一旦发生问题,将会自动报警[1]。 2.3 用电系统的智能化 电力系统在实际的运行环节,可能会发生各种各样的问题,而如果不能对于突发情况及时采取有效的处理,将会对于设备的运行以及信息采集等工作产生严重影响。在智能基数背景下,能够实现智能化用电,使电力系统的信息采集工作更为顺利,从而有效提高设备的交互水平。另外,基于智能技术的用电模式下,能够使用电安全得到最大程度上的保障,但是用户要想拥有持续电能,就需要通过其中的交互系统来实现,因为交互系统能够满足不同用户所提出的不同用电需求,从而提高电力系统的服务质量[2]。 3 基于智能技术的电力系统自动化设计策略 3.1 神经网络控制 神经网络技术是一种新型的智能技术类型,通过计算机来模拟人类的神经系统工作,利用计算机算法对数据进行自主分析和判断,从而实现对电力系统的智能化控制目标。神经网络技术还具备较强的学习能力,可以对过去电力系统工作进行总结,形成新的控制方法,其学习能力也有目共睹,最为著名的例子就是计算机深蓝在与国际围棋大师的比赛中取得了胜利。神经网络技术已经得到了较为成熟的发展,将其应用于电力系统自动化控制中,不仅能够降低人工控制的压力,而且也提高了电力控制的效率。神经网络技术的原理是,以信息节点来作为人类大脑的神经中枢,通过计算机的高速计算得到最优数值,并以此作为自动化控制的依据。神经网络技术不仅能够对数字数据进行处理,也能够对图形进行数据挖掘和分析,使电力系统自动化控制途径得以最大程度地优化。 3.2 线性最优的控制系统 线性最优技术是最优控制技术中比较特殊的一类,线性最优技术的本质与特点就是在条件允许的情况下找出控制规律,使自主控制系统达到要求状态,并使某个性能指标达到最优状态。在科技发展迅速的时代,在各种控制领域中线性最优控制技术应用也较为普遍。电力系统自动化技术中怎样够增加输电线路传输的最大距离并且还能提高所输电能质量? 线性最优控制技术就运用到了这一方面。在电力系统自动化运行时,线性最优控制技术中的自我运算,可以使电力系统各个指标达到最优状态,提升电能调度的效率。线性最优控制技术是依托于电力系统存才产生的,所以在电力系统中线性最优控制技术更具优势[3]。 3.3 专家控制技术 该技术在当前的在电力系统中是一项比较成熟的技术。该技术具有较长时间的发展,并应用在电力系统的自动化设计中可以获得良好的效果。专家控制技术可以及时的分辨电力系统的状态,并根据不同的状态采取不同的处理方式。如果一旦出现警报等紧急情况,该技术能够在第一时间识别,同积极响应,使电力系统尽快恢复运行状态。专家控制系统中含有非常多的内容,可以基于电力系统的状态来迅速切换状态,并且还可以对系统展开排除故障等操作。但是,专家控制技术虽然其中具有“专家”,但是实际应用的过程中却不具备模拟专家

浅谈电力系统自动化

浅谈电力系统自动化 “安全、可靠、经济、优质”的电能供应是现代社会对电力事业的要求,自动化的电力系统成为现代社会的发展趋势,而且电力系统自动化技术也不断地从低级到高级,从局部到整体。本文试对电力系统自动化发展趋势及新技术的应用作简要阐述。 标签:电力系统自动化探讨 1 电力系统自动化总的发展趋势 1.1 当今电力系统的自动控制技术正趋向于: ①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。②在设计分析上日益要求面对多机系统模型来处理问题。③在理论工具上越来越多地借助于现代控制理论。④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。⑤在研究人员的构成上益需要多“兵种”的联合作战。 1.2 整个电力系统自动化的发展则趋向于: ①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 2 具有变革性重要影响的三项新技术 2.1 电力系统的智能控制电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

GBT 19963 风电场接入电力系统技术规定--报批稿

ICS 中华人民共和国国家标准 风电场接入电力系统技术规定 Technical rule for connecting wind farm to power system 中华人民共和国国家质量监督检验检疫总局 发 布

GB/T 19963—200 目次 前言...................................................................................................................................................................... I I 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 风电场送出线路 (2) 5 风电场有功功率 (2) 6 风电场功率预测 (3) 7 风电场无功容量 (3) 8 风电场电压控制 (3) 9 风电场低电压穿越 (4) 10 风电场运行适应性 (5) 11 风电场电能质量 (6) 12 风电场仿真模型和参数 (6) 13 风电场二次系统 (6) 14 风电场接入系统测试 (7) 参考文献 (9) I

GB/T 19963—200 II 前言 本标准根据国家标准化管理委员会下达的国标委综合【2009】93号《2009年第二批国家标准计划 项目》标准计划修订。 本标准与能源行业标准《大型风电场并网设计技术规范》共同规定了风电场并网的相关技术要求,能源行业标准规定了大型风电场并网的设计技术要求,本标准规定了风电场并网的通用技术要求。 本标准规定了对通过110(66)kV及以上电压等级线路与电力系统连接的新建或扩建风电场的技术要求。 本标准由全国电力监管标准化技术委员会提出并归口。 本标准主要起草单位:中国电力科学研究院。 本标准参加编写单位:龙源电力集团股份有限公司、南方电网科学研究院有限责任公司、中国电力工程顾问集团公司。 本标准主要起草人:王伟胜、迟永宁、戴慧珠、赵海翔、石文辉、李琰、李庆、张博、范子超、陆志刚、胡玉峰、陈建斌、张琳、韩小琪。

电力系统新技术专题课程总结

电力系统新技术专题课程总结 通过几节课的讲解,我了解了一些有关电力系统新技术的知识,大约包括光学互感器,特高压,,以及抽水式蓄能电站。下面谈一下课后的感想和学到的知识。 光学传感器及仪器是依据光学原理进行测量的,它有许多优点,如非接触和非破坏性测量、几乎不受干扰、高速传输以及可遥测、遥控等。主要包括一般光学计量仪器、激光干涉式、光栅、编码器以及光纤式等光学传感器及仪器。在设计上主要用来检测目标物是否出现,或者进行各种工业、汽车、电子产品和零售自动化的运动检测。光学传感器及仪器是依据光学原理进行测量的,它有许多优点,如非接触和非破坏性测量、几乎不受干扰、高速传输以及可遥测、遥控等,主要包括一般光学计量仪器、激光干涉式、光栅、编码器以及光纤式等光学传感器及仪器。光学传感器主要有:光学图像传感器、透射型光学传感器、光学测量传感器、光学鼠标传感器、反射型光学传感器等。用途: 光学传感器广泛应用于航天、航空、国防科研、信息产业、机械、电力、能源、交通、冶金、石油、建筑、邮电、生物、医学、环保等领域。互感器是电力系统必不可少的元器件,互感器的保护和控制作用均是基于准确测量的基础上的,因此,其核心作用是测量电流或电压值。随着电力系统电压等级的升高和传输容量的不断增大,传统的电流互感器暴露的缺点越来越突出。相比之下,新型光学电流互感器在这些问题上就具有绝对的优势。光学电流互感器是业界公认的最具发展前途的新型电流互感器,是电磁式电流互感器最终替代品。全光纤光学电流互感器与磁光玻璃光学电流互感器是不同材料的光学互感器,两种类型互感器各有优缺点,又都有各自手段加以改善。光学互感器主要应用在220kV 及以上的电压等级中;主要应用在智能变电站的存量替代和新增市场上。根据电气设计规程,变电站每回出线均应配置电流互感器;电压互感器配置台数根据变电站电气主接线确定。预计到2015 年,互感器中的传统的电磁式互感器会占总量的40%~50%,电子式互感器会占到总量的50%~60%。这个替代过程是逐渐的。同时,光学互感器作为电子式互感器中的一种,会以大约平均每年20%的速度递增,但前期不会太快,预计到2015 年,在电子式互感器中,光学互感器与非光学互感器的比例会达到6:4。 互感器是按比例变换电压或电流的设备。其功能主要是将高电压或大电流按比例变换成标准低电压或标准小电流,以便实现测量仪表、保护设备及自动控制设备的标准化、小型化;同时互感器还可用来隔开高电压系统,以保证人身和设备的安全。互感器是电力系统必不可少的元器件,互感器的保护和控制作用均是基于准确测量的基础上的,因此,其核心作用是测量电流或电压值。随着电力系统电压等级的升高和传输容量的不断增大,传统的电流互感器暴露的缺点越来越突出:高压绝缘复杂、动态测量范围小、频带窄、易受电磁干扰、故障电流下铁心易磁饱和以及存在磁滞现象等等。相比之下,新型光学电流互感器在这些问题上就具有绝对的优势。光学电流互感器是业界公认的最具发展前途的新型电流互感器,是电磁式电流互感器最终替代品。 一束偏振光在磁场的作用下,产生了法拉利偏振角,该偏振角的大小与磁场的大小(场强)成正比,而磁场是由电流产生的。因此,电流与法拉利偏振角为线性关系,通过法拉利偏振角可以测量电流值。 磁光玻璃光学电流互感器的传感部分采用普通磁光玻璃,材料成熟,光学元件少,系统结构简单,无需进行温度控制。磁光玻璃光学电流互感器的难点之一

电力系统作业一

1、电力系统自动化在电力系统中的作用,功能和意义 为什么需要:电力系统是由发电、输电、变电、配电、用电设备以及相应的辅助系统构成的生产、输送、分配、和使用的统一整体。(1)电力网络的控制系统为复杂控制系统,电网规模大,控制对象多、参数极多、复杂MIMO。(2)电能难以大量储存的问题,需要在任何时刻产生的电能要和消耗的电能相等;(3)还有电传到的快速性(光速),一但出现突变将会迅速影响整个电力系统,这需要设备在极短的实践内完成控制和排除故障。 作用:以上问题就需要我们研究电力系统自动化,通过信号系统和数据传输系统对电力系统中的各个环节、局部系统或者整个系统就地或者远方的进行自动检测、决策和控制。保证电力系统处于一个规定的稳定范围内正常运作,如220v,50Hz。 功能:(1)电力调度自动化,分层调度,实现电能要多少发多少,保证电力系统实时处于动态平衡,实现电能高利用率;(2)通过检测调控,电力系统正常运行,应对突发状况排障快,保证供电的可靠性和电力系统运行稳定;(3)通过闭环系统,调节电压偏差,频率偏差,波形偏差,使电能质量变好。 意义:(1)从电力与国民经济层面上说,电力系统自动化实现电能即发即用,经济性高;(2)从社会稳定性层面上说,电力系统自动化保证电力系统运行稳定,社会工作正常运转,社会稳定性提高。 2、通讯技术的发展,如4G、5G等时代的到来,对电力系统将会产生怎样的变化 (1)5G时代的到来,一方面将带动电力使用程度的提升。通信行业的用电量包括设备生产、网络通信、终端设备和数据中心的电力消耗。根据预测,通信行业占全球电力消费总量的比重将从2019年的11%增加到2030年的21%。 (2)5G技术提高供电质量、提高电力系统的稳定性和灵活性。5G超低时延和高可靠性的信息传输将提高智能电网自动采集和控制力度,降低电力系统潜在危险。在特高压直流输电线、配网局部发生故障时,5G通信系统使得毫秒级自动定位并隔离故障成为可能,从而保障非故障区域的不间断供电。另一方面电力系统更好地适应快速增长的分布式电源和用户侧储能等灵活的资源,保证系统稳定,可以使用5G技术与用户终端实时通信。这将促成用户侧参与提供调频等辅助,从而优化电力系统运行。 (3)信息安全问题。5G有潜在的通信安全风险敞口,终端节点众多,安全暴露面更广。但电力系统对于网络安全要求极高。 3、电力市场在电力系统中的作用 电力系统和电力市场联系密切,二者单独运作,各自发展,相互制约,相互影响。电力系统这一物理基础是电力市场发展的基础,电力系统主要是依据电力市场要求,结合其运作模式开展。 提高电力系统效率和安全可靠供应水平。我国电力供应可靠性单纯依赖技术手段是很难实现调控的。通过电力市场,对资源(人、财、物)进行有效分配,将是解决发电即发即用,解决电力经济性的必要手段。另一方面从国民经济效益上,电力市场是一个国家电力使用程度的体现,电网公司也可以根据用电程度指定各地区收费标准,维持价格合理。 4、回顾电力系统的起源、发展及演化 直流供电:最早的电力系统是简单的住户式供电系统,由小容量发电机单独向灯塔、轮船、车间等照明供电,如1882年爱迪生在纽约建造的由6台直流发电机,总容量670KW的珍珠街电站。住户式电力系统使用电进入千家万户,出现中心电站式供电系统 交流供电:19世纪90年代初,特斯拉发明交流电,三相交流输电研究成功,三相感应电动

基于MATLAB的电力系统仿真

《电力系统设计》报告题目: 基于MATLAB的电力系统仿 学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 日期:2015年12月6日 基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来 越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB 电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真 目录 一.前言.............................................. 二.无穷大功率电源供电系统仿真模型构建............... 1.总电路图的设计......................................

电力系统自动化习题及答案

第一章发电机的自动并列习题 1、同步发电机并网(列)方式有几种?在操作程序上有何区别?并网效果 上有何特点? 分类:准同期,自同期 程序:准:在待并发电机加励磁,调节其参数使之参数符合并网条件,并入电网。 自:不在待并电机加励磁,当转速接近同步转速,并列断路器合闸,之后加励磁,由系统拉入同步。 特点:准;冲击电流小,合闸后机组能迅速同步运行,对系统影响最小 自:速度快,控制操作简单,但冲击电流大,从系统吸收无功,导致系统电压短时下降。 2、同步发电机准同期并列的理想条件是什么?实际条件的允许差各是多 少? 理想条件:实际条件(待并发电机与系统) 幅值相等:UG=UX 电压差Us不能超过额定电压的5%-10% 频率相等:ωG=ωX 频率差不超过额定的0.2%-0.5% 相角相等:δe=0(δG=δX)相位差接近,误差不大于5° 3、幅值和频率分别不满足准同期理想并列条件时对系统和发电机分别有何 影响? 幅值差:合闸时产生冲击电流,为无功性质,对发电机定子绕组产生作用力。 频率差:因为频率不等产生电压差,这个电压差是变化的,变化值在0-2Um之间。 这种瞬时值的幅值有规律地时大时小变化的电压成为拍振电压。它产生的 拍振电流也时大时小变化,有功分量和转子电流作用产生的力矩也时大时 小变化,使发电机振动。频率差大时,无法拉入同步。 4、何为正弦脉动电压?如何获得?包含合闸需要的哪些信息?如何从波形上获得?

5、何为线形整步电压?如何得到线形整步电压?线性整步电压的特点是什么? 6、线性整步电压形成电路由几部分组成?各部分的作用是什么?根据电网电压和发电机端电压波形绘制出各部分对应的波形图。 书上第13页,图1-12 组成:由整形电路,相敏电路,滤波电路组成 作用:整形电路:是将Ug和Ux的正弦波转变成与其频率和相位相同的一系列方波,其幅值与Ug和Ux无关。 相敏电路:是在两个输出信号电平相同时输出高电平,两者不同时输出低电平。 滤波电路:有低通滤波器和射极跟随器组成,为获得线性整步电压Us和&e的线性相关,采用滤波器使波形平滑 7、简述合闸条件的计算过程。 Step 1:计算Usmin,如果Usmin≤USy转Step 2;否则调整G来改变UG Step 2:ωsy的计算 Step 3:如果ωs≤ωsy继续Step 4;否则调整G来改变ωG,ωs=ωG-ωX Step 4:δe的计算:δe=tYJ?ωs Step5:δe≤δey合闸;否则调整G来改变ωG,从而δe 8、简述同步发电机并列后由不同步到同步的过程(要求画图配合说明)。 书上第7页,图1-4 说明:1、如果发电机电压Ug超前电网电压Ux,发电机发出功率,则发电机将被制动减速,当Ug落后Ux,发电机吸收无功,则发电机加速。 2、当发电机刚并入时处于a电,为超前情况,Ws下降---到达b点,Wg=Wx,&e最 大,W下降,&e下降——处于原点,Ug=Ux----&e=0,Wg<Wx——过原点后, &e<0,——Wg上升 总之。A-b-0-c,c-0-a,由于阻尼等因素影响,摆动幅度逐渐减小到同步角9、准同期并列为什么要在δ=0之前提前发合闸脉冲?提前时间取决于什么?恒定越前时间并列装置的恒定越前时间如何设定? 10、恒定越前时间并列装置如何检测ωs<ωSY?

电力系统输变电设备技术规范

电力系统输变电设备技术规范

电力系统输变电设备材料说明 1 产品范围 本规范适用于内蒙古电力公司所属供电单位的110~500kV交流架空输电线路和变电站。内蒙古电网各发电公司、农电公司及用户可参照执行。 本规范规定了架空输电线路、变压器(电抗器)、高压开关设备、互感器、直流设备、电容器组、高压支柱绝缘子、避雷器、消弧线圈、站用电系统、变电站接地装置、防误闭锁装置、照明系统、接线箱等输变电设备的技术标准。 2 规范性引用文件 下列文件中的条款经过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 中华人民共和国国务院令第239号电力设施保护条例 中华人民共和国国家经济贸易委员会电力设施保护条例实施细则 GB 311.1-1997 高压输变电设备的绝缘配合 GB/T 5582-1993 高压电力设备外绝缘污秽等级 DL/T 620-1997 交流电气装置的过电压保护和绝缘配合

中华人民共和国主席令第六十号中华人民共和国电力法 GBXXXX-XXXX 110~750kV架空输电线路设计规范DL/T 5217- 220kV~500kV紧凑型架空送电线路设计技术规定 DL/T 864- 标称电压高于1000V交流架空输电线路用复合绝缘子使用导则 GB 1094.1-1996 电力变压器第一部分总则 GB 1094.2-1996 电力变压器第二部分温升 GB 1094.3- 电力变压器第三部分绝缘水平、绝缘试验和外绝缘空气间隙 GB/T 10229-1988 电抗器 DL/T 741- 架空送电线路运行规程 DL/T 475- 杆塔工频接地电阻测试方法 JB/T 8751-1998 500kV油浸式并联电抗器技术参数和要求GB/T 13499- 电力变压器应用导则GB 6450-1986 干式电力变压器 GB/T 6451-1999 三相油浸式电力变压器技术参数和要求DL/T 572-1995 电力变压器运行规程 GB 772-1997 高压电瓷瓷件技术条件 GB 8287.1-1998 高压支柱绝缘子技术条件

电力系统的新技术

电力系统的新技术 摘要:近年来,我国的城市化进程在不断的加快,我国的电力需求不断的增加,电器设备也在不断的完善,电力系统的自动化也将面临空前的变革。目前在很多方面已经提前进入了电力自动化领域,例如智能控制和多媒体技术等方面。 关键词:新形势;电力系统自动化;研究方向 引言:一直以来我们都在往电力系统自动化这一方向上努力,这主要包括了:发电控制的自动化,虽然现在各自对各区内的发电机的出力控制已经达到了初步的实现,但是仍需要在今后的长期发展;电力调度的自动化,这一系统包括了在线潮流监视、对故障进行模拟的系统程序,它在实现配电网的自动化上迈出了新的一步。在目前最热门的当属建设综自站,因为这一建设实现在真正的无人值班。电力系统是一个分布广阔,在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、经济、优质的电能的系统。 一、电力系统自动化的概念 电力系统自动化是利用先进的计算机技术、现代电子技术、通信技术和信息处理技术等实现对变电站二次设备(包括继电保护、控制、测量、信号、故障录波、自动装置及远动装置等)的功能进行重新组合、优化设计,对变电站全部设备的运行情况执行监视、测量、控制和协调的一种综合性的自动化系统。通过变电站综合自

动化系统内各设备间相互交换信息,数据共享,完成变电站运行监视和控制任务。电力系统自动化是提高变电站安全稳定运行水平、降低运行维护成本、提高经济效益、向用户提供高质量电能的一项重要技术措施。 二、二、具有变革性重要影响的三项新技术 2.1 智能控制 在过去的40年里,我国在电力系统的控制和研究上大概可以分为3各阶段:对传递函数的单向输入、输出的控制阶段;线性最优控制、非线性控制以及多机系统协调控制阶段;智能模式控制阶段。其中的智能控制是当今理论发展上新突破新发展,其主要作用是用于解决一些疑难问题或者传统的方法不适应的问题。对于那些在模型上具有不确定性或是具有很强的非线性的复杂系统,智能控制是一个最佳的选择。 智能控制这一阶段在我国电力系统的发展上具有非常广阔的前景和发展市场,主要应用在快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等方面上。 2.2 FACTS和DFACTS 1、FACTS概念 先进的输配电技术和输电线路的质量和稳定性是电力系统稳定发展的前提和基础,在这期间,在传统的输电系统上一种新技术悄然产生——柔性交流输电系统,也称FACTS。

电力系统分析作业题答案

东北农业大学网络教育学院 电力系统分析作业题 复习题一 一、填空题(每小题1分,共10分) 1.降压变压器高压侧的主分接头电压为220kv ,若选择+2×2.5%的分接头,则该分接头电压为 231KV 。 2.电力系统中性点有效接地方式指的是 中性点直接接地 。 3.输电线路的电气参数包括电抗、电导、电纳和 电阻 。 4.输电线路的电压偏移是指线路始端或末端母线的实际运行电压与线路 额定电压 的数值差。 5.电力系统的潮流分布一般是用各节点的电压和 功率 表示。 6.调整发电机组输出的有功功率用来调整电力系统运行的 频率 。 7.复合故障一般是指某一时刻在电力系统 二个及以上地方 发生故障。 8.用对称分量法计算不对称故障,当三相阻抗完全对称时,则其序阻抗矩阵Zsc 的非对角元素为 零 。 9.系统中发生单相接地短路时故障点短路电流的大小是零序电流的 3 倍。 10.减小输出电元件的电抗将 提高(改善) 系统的静态稳定性。 二、单项选择题(每小题1分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 11.同步发电机的转速和系统频率之间是否有严格的关系( ② ) ①否 ②是 ③不一定 ④根据发电机的形式定 12.三绕组变压器的结构、通常将高压绕组放在( ③ ) ①内层 ②中间层 ③外层 ④独立设置 13.中性点以消弧线圈接地的电力系统,通常采用的补偿方式是( ③ ) ①全补偿 ②欠补偿 ③过补偿 ④有时全补偿,有时欠补偿 14.三相导线的几何均距越大,则导线的电抗( ② ) ①越大 ②越小 ③不变 ④无法确定 15.变压器的电导参数G T ,主要决定于哪一个实验数据( ① ) ①△P O ②△P K ③U K % ④I O % 16.当功率的有名值为s =P +jQ 时(功率因数角为?)取基准功率为S n ,则有功功率的标么值为( ③ ) ① ?cos S P n ? ②?sin S P n ? ③n S P ④n S cos P ?? 17.环网中功率的自然分布是( ④ ) ①与电阻成正比分布 ②与电抗成正比分布 ③与阻抗成正比分布 ④与阻抗成反比分布 18.电力系统中PQ 节点的数量( ② ) ①全都是 ②大量的 ③少量的 ④必有且一般只设一个 19.潮流计算中,要求某些节点之间电压的相位差应满足的约束条件是(④ ) ①|-j i δδ|>|-j i δδ|min ②|-j i δδ|<|-j i δδ|min

基于matlab的电力系统潮流仿真计算

华中科技大学文华学院 毕业设计(论文) 题目:基于matlab的电力系统潮流 仿真计算 学生姓名:学号: 学部(系): 专业年级: 指导教师:职称或学位:硕士 2010 年 5 月 22日

华中科技大学文华学院毕业设计(论文) 目录 摘要 (1) 关键词 (1) Abstract (2) Key Words (2) 前言 (3) 1 电力系统潮流计算概述 (4) 1.1 电力系统概述 (4) 1.2 潮流计算介绍 (4) 1.3 国内用得较多的几种潮流计算软件简介 (5) 2 潮流计算的数学模型 (6) 2.1 导纳矩阵的原理及计算方法 (6) 2.1.1 自导纳和互导纳的确定方法 (6) 2.1.2 节点导纳矩阵的性质及意义 (6) 2.1.3 非标准变比变压器等值电路 (8) 2.2 潮流计算的基本方程 (9) 2.3 电力系统节点分类 (11) 2.4 潮流计算的约束条件 (12) 3 牛顿-拉夫逊法概述 (13) 3.1 牛顿-拉夫逊法基本原理 (13) 3.2 牛顿--拉夫逊法潮流求解过程 (14) 3.3 牛顿—拉夫逊法的程序框图 (17) 4 潮流仿真程序 (19) 4.1 Matlab简介 (19) 4.2 矩阵的运算 (19) 4.3 牛顿—拉夫逊法潮流计算程序 (20) 结束语 (21) 参考文献 (22) 致谢 (23) 附录 (24)

基于matlab的电力系统潮流仿真计算 摘要 传统的潮流计算程序缺乏图形用户界面,结果显示不直观,难于与其他分析功能集成。网络原始数据输入工作量大且易于出错。随着计算机技术的飞速发展,MICROSOFT WINDOWS操作系统早已被大家所熟悉,其友好的图形用户界面已成为PC机的标准,而DOS操作系统下的应用程序因其界面不够友好,开发具有WINDOWS风格界面的电力系统分析软件已成为当前的主流趋势。另外,传统的程序设计方法是结构化程序设计方法,该方法基于功能分解,把整个软件工程看作是一个个对象的组合,由于对某个特定问题域来说,该对象组成基本不变,因此,这种基于对象分解方法设计的软件结构上比较稳定,易于维护和扩充。 本文介绍了图形化潮流计算软件的开发设计思想和总体结构,阐述了该软件所具备的功能和特点。结合电力系统的特点,软件采用 MATLAB语言运行于WINDOWS操作系统的图形化潮流计算软件。本系统的主要特点是操作简单,图形界面直观,运行稳定.计算准确。计算中,算法做了一些改进,提高了计算速度,各个类的有效封装又使程序具有很好的模块性.可维护性和可重用性。 关键词:电力系统潮流仿真计算;牛顿—拉夫逊法潮流计算; MATLAB

(完整版)电力系统自动化的发展趋势和前景

目前电力系统市场发展中的自动控制技术趋向于控制策略的日益优化,呈现出适应性强、协调控制完善、智能优势明显、区域分布日益平衡的发展趋势。在设计层面电力自动化系统更注重对多机模型的问题处理,且广泛借助现代控制理论及工具实现综合高效的控制。在实践控制手段的运用中合理引入了大量的计算机、电子器件及远程通信应用技术。而在研究人员的组合构建中电力企业本着精益求精、综合适用的原则强调基于多功能人才的联合作战模式。在整体电力系统中,其工作方式由原有的开环监测合理向闭环控制不断发展,且实现了由高电压等级主体向低电压丰富扩展的安全、合理性过度,例如从能量管理系统向配电管理系统合理转变等。再者电力系统自动化实现了由单个元件到部分甚至全系统区域的广泛发展,例如实现了全过程的监测控制及综合数据采集发展、区域电力系统的稳定控制发展等。相应的其单一功能也实现了向多元化、一体化综合功能的发展,例如综合变电站实现了自动化发展与提升。系统中富含的装置性功能更是向着灵活、快速及数字化的方向发展;系统继电保护技术实现了全面更新及优势发展等。依据以上创新发展趋势电力系统自动化市场的发展目标更加趋于优化、协调与智能的发展,令潮流及励磁控制成为市场新一轮的发展研究目标。因此我们只有在实践发展中不仅提升系统的安全运行性、经济合理性、高效科学性,同时还应注重向自动化服务及管理的合理转变,引入诸如管理信息系统等高效自动化服务控制体系,才能最终令电力系统自动化市场的科学发展之路走的更远。 电力系统自动化市场科学发展前景 经过了数十年的研究发展,我国先进的计算机管理技术、通信及控制技术实现了跨越式提升,而新时期电力系统则毋庸置疑的成为集计算机、通信、控制与电力设备、电力电子为一体的综合自动化控制系统,其应用内涵不断扩充、发展外延继续扩展,令电力系统自动化市场中包含的信息处理量越来越庞大、综合因素越来越复杂,可观、可测的在数据范围越来越广阔,能够合理实施闭环控制、实现良好效果的控制对象则越来越丰富。由此不难看出电力系统自动化市场已摒弃了传统的单一式、滞后式、人工式管理模式,而全面实现了变电站及保护的自动化发展市场、调度自动化市场、配电自动化市场及综合的电力市场。在变电站及保护的自动化市场发展中,我国的500千伏变电站的控制与运行已经全面实现了计算机化综合管理,而220千瓦变电站则科学实现了无人值班看守的自动化控制。当然我国众多变配电站的自动化控制程度普及还相对偏低,同时新一轮变电站自动化控制系统标准的广泛推行及应用尚处在初级阶段,因此在未来的发展中我们还应继续强化自动化控制理念的科学引入,树立中小变电站的自动化控制观念、提升大型变电站的自动化控制水平,从而继续巩固电力自动化系统在整体市场中占据的排头兵位置,令其持之以恒的实现全面自动化发展。 电力调度及配电自动化市场的前景发展 随着我国电力系统自动化市场的不断发展电力调度自动化的市场规模将继续上升,省网及地方调度的自动化普及率将提升至近一半的比例,且市场需求将不断扩充。电力调度系统

印制电路技术规范

印制电路技术规范 1.0.前言(Introduction) 本章叙述刚性印制板和高密度互连(HDI)层或板的技术要求,标志、包装、运输和贮存的基本原则。本章提及的印制板通常是指带有镀通孔(即金属化孔)的双面、多层板,带有或不带埋/盲孔的多层板。 美国IPC协会(全称为美国连接电子业协会,Association Connecting Electronics lndustries)是全球印制板行业最有学术成就的组织,基于国内外大多数印制板生产企业和电子装配企业使用的是美国ICP协会的标准,本文说及的技术规范主要参照美国IPC最新版本的相关标准,亦参考使用了部份著名电子公司的企业标准,欧州标准(例如Perfag3c)和国家标准。 1.1 参考标准(Reference Starard) ?IPC-6012A.刚性印制板的鉴定和性能规范.(Qualitication and performance specification fOrRigid Printed Boards). ?IPC-A-600F.印制板的可接收性(Acceptability Of Printed Board) ?IPC-4101A.刚性和多层印制板基材技术规范(Specification For Base Materials For Rigid andMuhilayer Printed Boards). ?IPC-A-650试验方法手册(Test MethodsManual) ?IPC-2615.印制板的尺寸和公差(PrintedBoard Dimensions and Tolerances) ?IPC-6016高密度互连(CDI)层或板的鉴定和性能规范(Qualification and Performance Specification For HiSh Density Interconnect CHDI)Layer Or Boards) ?ANSI/J-STD-003印制板可焊性试验(Solderabil卸Test For Printed Board)(注:ANSI,American National Standards lnstitude,美国国家标准) ?IPC-2220设计标准系列(Design standardsenes) ?IPC-SM-840C永久性阻焊膜的鉴别和性能(Qualification and Performance Of Permanent SolderMask) ?FERFAG 3C多层板技术规范(欧州标准,1999出版)(Specification For Muhilayer Boards).?UL-796.印制线路板安全标准(Standard ForSafety Printed Wiring Board) ?UL-94.装置及设备中部件用塑料的燃燃性试验。 ?MiI-STD-105特性捡查的抽样程序和抽样表。 ?GB/T 4588.2-1996.有金属化孔单双面板分规范(国家标准) ?GB/T 4588.4-1996.多层印制板分规范(国家标准) 1.2性能等级(Classfication) 根据印制板功能可靠性和性能要求,对印制板产品分下列三个通用等级。 1级--一般的电子产品:包括消费类产品、某些计算机外围设备。用于这些产品的印制板其外观缺陷并不重要,主要要求是印制板的功能。 2级--专用设施的电子产品:包括通讯设备、高级商用机器和仪器。这些产品要求高性能和寿命,同时希望能够不间断地工作,但这不是关键要求。允许有某些外观缺陷。3级--高可靠性电子产品:包括要求连续工作或所要求的性能是很关键性的那些设备产品。对这些设备(例如生命支持系统或飞行控制系统)来说,不允许出现停机时间,并且一旦需要就必须工作。3级印制板适合应用在那些要求高的质量保证水平且服务是十分重要的产品。 除非特别说明,本章通常提及的是2级和3级水平的印制板。 1.3接收标准(Acceptance Criteria) 一旦本文叙述的有关质量要求与产品验收三向产生矛盾时,则应按下列文件优先顺序处理:(1)采购订单;

电力系统自动化发展趋势及新技术的应用

[摘要]现代社会对电能供应的“安全、可靠、经济、优质”等各项指标的要求越来越高,相应地,电力系统也不断地向自动化提出更高的要求。电力系统自动化技术不断地由低到高、由局部到整体发展,本文对此进行了详细的阐述。 [关键词]电力系统自动化发展应用 一、电力系统自动化总的发展趋势 1.当今电力系统的自动控制技术正趋向于: (1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。 (2)在设计分析上日益要求面对多机系统模型来处理问题。 (3)在理论工具上越来越多地借助于现代控制理论。 (4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。 (5)在研究人员的构成上益需要多“兵种”的联合作战。 2.整个电力系统自动化的发展则趋向于: (1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。 (2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。 (3)由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。 (4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。 (5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。 (6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。 (7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 二、具有变革性重要影响的三项新技术 1.电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有: (1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。 (2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。 (3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。 智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。 智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。 2.FACTS和DFACTS (1)FACTS概念的提出

相关文档
最新文档