负摩阻力计算例题

负摩阻力计算例题
负摩阻力计算例题

掌握负摩阻力和下拉荷载的计算方法

例题5:【计算题】已知预制桩截面0.3m*0.3m,桩长22m,桩顶位于地面下2.0m,场地地层条件见下表,当地下水由0.5m下降到5m时,按桩基规范计算基桩由于负摩阻力引起的下拉荷载。

层序土层名称层底深(m)厚度(m)天然重度(KN/m3)

1填土 1.2 1.218

2粉质黏土 2.00.818

3淤泥质黏土121017

4黏土22.710.718

5粉砂28.8 6.119

6粉质黏土35.3 6.518.5

7粉砂40 4.720

负摩阻力计算实例

负摩阻力计算实例 本建筑场地为自重湿陷性黄土场地,湿陷等级为Ⅱ级(中等),依椐JGJ94-2008规范第5.4.2条规定,在计算基桩承载力时应计入桩侧负摩阻力。首先,根据场地地质情况(以3#井处的地层为例)确定压缩 4.2 桩基 4.2.1 桩基类型及桩端持力层的选择 依据勘察结果分析, 本建筑场地为自重湿陷性黄土场地,(自重湿陷量的计算值为120.5-151.6mm)湿陷等级为Ⅱ级(中等),湿陷性土层为②、③、④、⑤层,湿陷土层厚度为10-15m,湿陷最大深度17m(3#井)。可采用钻孔灌注桩基础,第⑦层黄土状粉土属中密-密实状态,具低-中压缩性,不具湿陷性,平均层厚4.0m,可做为桩端持力层。 4.2.2 桩基参数的确定 根据《建筑地基基础设计规范》(GB50007-2002)、《建筑桩基技术规范》(JGJ94-2008)、《湿陷性黄土地区建筑规范》(GB50025-2004)中的有关规定,结合地区经验,饱和状态下的桩侧阻力特征值qsia(或极限侧阻力标准值qsik)、桩端阻力特征值qpa(或极限端阻力标准值qpk?)建议采用下列估算值: 土层 编号土层名称土的 状态桩侧阻力特征值qsia(kPa) 极限侧阻力标准值 qsik(kPa) 桩端阻力特征值 qpa(kPa) 极限端阻力标准值 qpk(kPa) ②黄土状粉土稍密 11 23 ③黄土状粉土稍密 12 24 ④黄土状粉土稍密 12 24 ⑤黄土状粉土稍密 13 26 ⑥黄土状粉土中密 18 36 ⑦黄土状粉土中密 18 36 500 1000 ⑧黄土状粉土中密 20 40 600 1200 4.2.3 单桩承载力的估算 依据JGJ94-2008规范,参照《建筑地基基础设计规范》GB50007-2002第8.5.5条,单桩竖向承载力特征值可按下式估算: Ra=qpaAp+up∑qsiaLi 式中:Ra——单桩竖向承载力特征值; qpa 、qsia——桩端端阻力、桩侧阻力特征值; Ap——桩底端横截面面积= πd2(圆桩); up——桩身周边长度=πd; Li——第i层岩土的厚度; 以3#孔处的地层为例,桩身直径取600mm,以第⑦层黄土状粉土做为桩端持力层,桩入土深度24.0m(桩端进入持力层的深度对于粘性土、粉土应不小于1.5d)。 本建筑场地为自重湿陷性黄土场地,湿陷等级为Ⅱ级(中等),依椐JGJ94-2008规范第5.4.2条规定,在计算基桩承载力时应计入桩侧负摩阻力。首先,根据场地地质情况(以3#井处的地层为例)确定压缩土层厚度,求出中性点深度Ln:

最全面的桩基计算总结

最全面的桩基计算总结 桩基础计算 一.桩基竖向承载力《建筑桩基技术规范》 5.2.2 单桩竖向承载力特征值Ra应按下式确定: Ra=Quk/K 式中 Quk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 5.2.3对于端承型桩基、桩数少于4根的摩擦型柱下独立桩基、或由于地层土性、使用条件等因素不宜考虑承台效应时,基桩竖向承载力特征值应取单桩竖向承载力特征值。5.2.4对于符合下列条件之一的摩擦型桩基,宜考虑承台效应确定其复合基桩的竖向承载力特征值: 1 上部结构整体刚度较好、体型简单的建(构)筑物; 2 对差异沉降适应性较强的排架结构和柔性构筑物; 3 按变刚度调平原则设计的桩基刚度相对弱化区; 4 软土地基的减沉复合疏桩基础。 当承台底为可液化土、湿陷性土、高灵敏度软土、欠固结土、新填土时,沉桩引起超孔隙水压力和土体隆起时,不考虑承台效应,取η=0。

单桩竖向承载力标准值的确定: 方法一:原位测试 1.单桥探头静力触探(仅能测量探头的端阻力,再换算成探头的侧阻力)计算公式见《建筑桩基技术规范》5.3.3 2.双桥探头静力触探(能测量探头的端阻力和侧阻力)计算公式见《建筑桩基技术规 范》5.3.4 方法二:经验参数法 1.根据土的物理指标与承载力参数之间的关系确定单桩承载力标准值《建筑桩基技术规范》5.3.5 2.当确定大直径桩(d>800mm)时,应考虑侧阻、端阻效应系数,参见5. 3.6 钢桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.7 混凝土空心桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.8 嵌岩桩桩承载力标准值的确定: 1.桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。 后注浆灌注桩承载力标准值的确定: 1.承载力由后注浆非竖向增强段的总极限侧阻力标准值、后注浆竖向增强段的总极限侧阻力标准值,后注浆总极限端阻力标准值; 特殊条件下的考虑 液化效应: 对于桩身周围有液化土层的低承台桩基,当承台底面上下分别有厚度不小于1.5m、1.0m 的非液化土或非软弱土层时,可将液化土层极限侧阻力乘以土层液化折减系数计算单桩

(整理)2考虑负摩阻力的桩基设计需要注意的问题.

考虑负摩阻力的桩基设计需要注意的问题 1 地表的大面积堆载对堆载区内的桩基和邻近桩基的影响 地表的大面积堆载对堆载区内的桩基和邻近桩基会产生很大的影响.首先,地表在沉降过程中,桩侧土体将会对桩身产生负摩阻力,致使桩身的轴力和桩端力增大,甚至导致桩身的破坏;其次,地面堆载引起地基土的侧向变形,邻近桩基的被动桩受到土体挤压会产生绕曲、水平移动,甚至断裂.因此,堆载作用下的桩基可能受到负摩擦和侧向力两种荷载的共同作用. 2 负摩阻力计算分析案例 在有关桥梁地基与基础设计规范中规定,在软土层较厚,持力层较好的地基中,桩基计算应考虑路基填土荷载或地下水位下降所引起的负摩阻力的影响。事实上桥下大面积堆载是一种更危险的工况。 下面以一实际工程为例,对桥梁桩基负摩阻力计算作一分析。 该桥上部结构为30 m跨预应力混凝土连续箱梁,桥梁全宽25.5 m,采用分幅式布置。桥梁下部结构半幅采用变截面墩配2根D 160 (D180)钻孔灌注桩基础,单排桩基础,桩基设计按摩擦桩设计,单桩桩顶最大设计反力为6 150~7 100 KN,上部结构计算时考虑基础不均匀沉降为1.0 cm。 桥址处现为鱼塘,地面标高为0.2~1.6 m之间,由于桥址位于城区,远期规划标高6.5 m左右,如按规划标高平整场地,需填土5.0~ 6.3 m。设计时根据桥址处的地质情况,注意到负摩阻力对桩基的影响,考虑按以下2种方案进行场地平整,进行技术经济比较,以确定最终的设计方

案。 方案1:场地先不平整待桥梁施工完后再进行场地平整。 方案2:场地先平整到规划标高6.5 m(带状80m宽),半年后施工桥梁桩基。 桥址处土层各层分布情况按由上至下顺序描述如下:①人工填土; ②淤泥(Q4ml);③亚粘土(Q4ml);④粘土(Q1mc);⑤亚粘土(Q1al)。场地地质中第四系覆盖层巨厚,地质勘探未能揭露。 2.1 中性点位置的确定 要确定桩身负摩阻力的大小,首先需要确定中性点的位置。所谓“中性点”是指桩土位移相等、摩阻力等于零的分界点,该深度以上土的下沉量大于桩的下沉量,桩承受负摩阻力;该深度以下土的下沉量小于桩的下沉量,桩承受正摩阻力。故确定中性点的位置,首先必须计算出桩基及各土层的沉降量中性点的深度与桩周土的压缩性和变形条件、桩和持力层土的刚度等特性有关。在桩、土稳定前,它也是变动的。当有地面堆载时,中性点的深度取决于堆载的大小,堆载越大则中性点越深。 2.1.1 桩基沉降计算 按桥梁规范公式,单桩沉降 S=P(L0+ξh)/(Ep×Ap)+P/(Co×Ao) 式中P———桩顶荷载; L0———桩自由长度; h———桩入土长度;

桩侧负摩阻力的计算

桩侧负摩阻力的计算 一、 规范对桩侧负摩阻力计算规定 符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承 载力时应计入桩侧负摩阻力: 1、 桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时; 2、 桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括 填土)时; 3、 由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。 4、 桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力 和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。 ① 对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力: N k 乞 R a ( 7-9-1) ② 对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并 可按下式验算基桩承载力: N k Q g

管道压力损失

除尘系统中的管道压力损失计算 管道的压力损失就是含尘空气在管道中流动的压力损失.它等于管道沿程(摩擦)压力损失和局部损失之和 ,在实际计算中以最长沿程一条管道进行计算,其计算结果作为风机造型的参考依据. 一:管道的沿程压力损失 1. a △P m =△P m λR S P -----湿周,既管道的周长(m ) 左管道系统计算中,一般先计算出单位长度的摩擦损失,通常也称比摩阻(Pa/m ): △P m =λ 比摩阻力可通过查阅图表14-1得出,我公司的管道主要应用于除尘系统中,考虑到含尘空气中粉尘沉降的问题,除尘管道内的风速选择为25~28m/s. 4R S 1 2 V 2e

根据计算图标得出的以下数据: 局部阻力引起的能量损失,称之为局部压力损失或局部损失。 局部损失可按下列公式计算: △P J =δ △P J ----局部压力损失(Pa ) δ------局部阻力系数 2 V 2e

局部阻力系数δ可根据不同管道组件:如进出风口、弯头、三通等的不同尺寸比例,在相关资料中可查得,然后再根据上式计算出局部损失的大小。 例如:整体压制900圆弯头:当r/D=1.5时 δ=0.15 当r/D=2.0时 δ=0.13 当r/D=2.5时 δ=0.12 0总之,△P 为数。 F---Pq---风机全压(Pa ) Q---风机风量(m 3/s ) η----风机效率(一般为0.8~0.86) K---安全系统(1.0~1.2) 上式所得结果即为风机数电机功率,实际使用功率为:

Fs= Fs/F 即为风机的实际使用负载率 Pq*Q 1000* η

桩基负摩阻力产生的原因及其计算

浅析桩基负摩阻力产生的原因及其计算 【摘要】桩周土体由于某种原因发生下沉时对桩身产生相对向下的位移,这就使桩身承受向下作用的摩擦力,这种摩擦力就是桩基的负摩擦阻力。本文针对桩基负摩擦阻力产生的机理及原因,并通过实例计算分析桩基负摩擦阻力。 【关键词】桩基;负摩擦阻力;机理及原因;实例计算 rough discuss the reason and count of pile foundation force of negative friction wang zhigang1 liang guankao2 (1.fifth geological mineral exploration and development institute of inner mongolia, baotou 014010, p.r.china;2.inner mongolia geology engineering co.,ltd, hohhot.010010,p.r.china) 【abstract】owing to some reasons ,the soil around pile foundation occur subside will produce displacement downward to pile foundation,so pile foundation will bear downward friction force,this friction force is negative friction force。this paper point at the reason of pile foundation negative friction force and analysis pile foundation negative friction force by living example。 【key words】pile foundation; negative friction force;the mechanisation and reason;living example account

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

浅谈桩的负摩阻力及实际工程中的处理

浅谈桩的负摩阻力及实际工程中的处理 [摘要]:负摩阻力是桩基础设计时常见的问题,本文从负摩阻力的产生机理出发,探讨了负摩阻力的计算方法,给出了减小负摩阻力的措施;并结合实际工程分析了桩与承台共同作用机理在负摩阻力桩基础工程中的适用范围。 [关键字]:负摩阻力桩与承台共同作用 1 前言 桩基础是目前采用广泛的一种软弱地基处理方式,其承载力由桩侧土的摩擦力和桩端反力共同构成。但是在有些地质条件下,由于某些原因,当桩周土体的沉降量大于桩本身的沉降时,桩侧表面的一部分面积上将产生负摩阻力。负摩阻力对桩产生下拉作用,致使桩基的荷载增加,变相的降低了桩的承载力,使其沉降加大,严重时会导致建筑物的损害或破坏,由于设计人员忽略了负摩阻力的影响从而引起的工程事故不在少数。本文对桩的负摩阻力的产生条件及其特性进行分析,探讨了桩负摩阻力的计算方法。 正常情况下,计算桩基础的承载力时,假定上部荷载通过承台传递给桩,然后再传给地基,并不考虑承台底部土的承载作用。但是,在某些地基土层中,往往在1m左右的根植土下有2-5m的粉质粘土硬壳层,再往下则是10几米甚至20几米的淤泥层。在这些场地的工程中,一般是采用桩基础进行地基处理,但是由于负摩阻力的存在,正常桩长的单桩承载力往往比较小,布桩很密而且造价比较高;如采用表层换土后作浅层基础,由于硬壳层厚薄不均,填土厚度及质量均难以控制,容易使基础沉降过大或沉降不均匀,影响正常使用。对于这类场地,由于采用的桩基一般是摩擦型桩,桩与桩间土的变形是相互影响的,桩间土具有一定的承载力,而承台承担的荷载将是可观的。因此本人认为,在这样的工程中,考虑桩与承台共同工作承担上部荷载是安全合理的,而且具有可观的经济效益。 2 负摩阻力产生机理、特性及其对桩基的影响分析 布置在土体里的桩,正常情况下由于上部荷载的作用,桩的沉降速率(或沉降量)大于桩周土的沉降速率(或沉降量),桩周土对桩的侧表面产生向上的摩擦阻力,称之为正摩阻力;反之,当由于以下几种情况: 1)桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层2)桩周存在软弱土层,临近桩侧地面承受局部较大的长期荷载,或地面大面积堆载3)由于降低地下水位,使桩周土中有效应力增大,并产生显著压缩沉降 4)冻土融化 使得桩周土的沉降速率(或沉降量)大于桩的沉降速率(或沉降量)时,桩周土将对桩产生向下的摩阻力,称之为负摩阻力。在桩身某一深度处,桩周土与桩的沉降一致,该处称为中性点。中性点是正、负摩阻力的分界点,且在该处桩身轴力最大。 负摩阻力的存在对桩基性能的不利影响可以概括为3个方面:负摩阻力的存在造成桩侧正摩阻力减小,从而引起桩基有效承载力的降低;负摩阻力的出现大大减少了桩周土提供的荷载抗力,使桩的承载力依靠中性点以下的桩周土和桩尖土来提供,使得桩端土体沉降增加从而引起桩基沉降增加;负摩阻力形成了对桩基的附加荷载,造成桩身轴力增加,降低了桩身强度的安全度。从桩基的工作状况来看,负摩阻力的影响对摩擦型桩和端承型桩有所区别

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

浅谈负摩阻力(一)

浅谈负摩阻力(一) 论文关键词]负摩阻力中性点成因影响因素防治措施计算方法 论文摘要]负摩阻力问题严重影响着建筑物的安全,桩的负摩阻力的大小受多种因素的影响,故其准确数值很难计算。介绍和阐述桩侧负摩阻力产生的条件和机理,桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。 随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向高层建筑,从而对地基承载力和变形要求也越来越高,越来越严格。因此地基处理变得越来越重要。在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已变成一个热点问题。下面对负摩阻力的问题进行分析、阐述。 一、负摩阻力的成因 桩周土的沉降大于桩体的沉降!桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。 地基土沉降过大,桩和土相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。 一般可能由以下原因或组合造成:未固结的新近回填土地基;地面超载;打桩后孔隙水压力消散引起的固结沉降;地下水位降低,有效应力增加引起土层下沉;非饱和填土因浸水而湿陷;可压缩性土经受持续荷载,引起地基土沉降;地震液化。 二、地基设计为什么要考虑负摩阻力 桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拉力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。 三、如何在现场测试和估算负摩阻力 在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(SlidingMicrometer---ISETH)来测定。 普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。 四、影响负摩阻力大小的主要因素 桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等都有影响。 五、负摩阻力的防治措施 打桩前,先预压地基土,从根本上消除负摩阻力的产生;在产生负摩阻的桩段安装套筒或者把桩身与周围土体隔离,这种方法会使施工难度加大;在桩身涂滑动薄膜如涂沥青],目前这种方法应用比较普遍,效果也不错;通过降低桩上部荷载,储备一定承载力;在地基和上部结构允许有相对较大沉降的情况下,采用摩擦桩;采用一定的装置消除负摩阻力。 下面介绍一种消除负摩阻力的装置:它由设置在桩体外周的卸荷套及卸荷套与桩体之间的润滑隔离层构成。卸荷套使桩体与周围土层完全隔开并由桩体带动在打桩时与之同步下沉,而当桩周土层沉陷时,卸荷套依靠隔离层内润滑材料的作用,可随土层相对桩体自由下沉而不将下拽力传给桩体,从而有效地消除了负摩阻力的作用。可广泛用于各种软基地层拟用桩基础的工程中。 六、负摩阻力的群桩效应研究大多数是单桩,实践中基本是群桩 这个跟我们的研究方法有关系,目前我们的现场实践方面的研究方法都是针对单一桩体的。另外,群桩方面的研究,运用数值分析方法也有不少研究。群桩的现场研究很值得期待呀。 七、端承桩产生负摩阻的可能性大于摩擦桩 (1)对于摩擦型桩基,当出现负摩阻力对基桩施加下拉荷载时,由于持力层压缩性较大,

桩侧负摩阻力的计算

桩侧负摩阻力的计算 一、规范对桩侧负摩阻力计算规定 符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承载力时应计入桩侧负摩阻力: 1、桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时; 2、桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括填土)时; 3、由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。 4、桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。 ①对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力: a k R N ≤ (7-9-1) ②对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并可按下式验算基桩承载力: a n g k R Q N ≤+ (7-9-2) ③当土层不均匀或建筑物对不均匀沉降较敏感时,尚应将负摩阻力引起的下拉荷载计入附加荷载验算桩基沉降。 注:本条中基桩的竖向承载力特征值只计中性点以下部分侧阻值及端阻值。 二、计算方法 桩侧负摩阻力及其引起的下拉荷载,当无实测资料时可按下列规定计算: 1、中性点以上单桩桩周第 i 层土负摩阻力标准值,可按下列公式计算: i ni n si q σξ'= (7-9-3) 当填土、自重湿陷性黄土湿陷、欠固结土层产生固结和地下水降低时:ri i σσ'=' 当地面分布大面积荷载时:ri i p σσ'+=' (7-9-4) 其中, i i i m m m ri z z ?∑+?='-=γγσ1 1 21 (7-9-5) (7-9-3)~(7-9-5)式中: n si q ——第i 层土桩侧负摩阻力标准值;当按式(7-9-3)计算值大于正摩阻力标准值 时,取正摩阻力标准值进行设计; ri σ'——由土自重引起的桩周第i 层土平均竖向有效应力;桩群外围桩自地面算起,桩 群内部桩自承台底算起;

水系统管道阻力计算

空调水系统的水力计算 根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。 一、沿程阻力(摩擦阻力) 流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即 (1-1) 若直管段长度l=1m时, 则 式中λ——摩擦阻力系数,m; ——管道直径,m; R——单位长度直管段的摩擦阻力(比摩阻),Pa/m; ——水的密度,kg/m3; ——水的流速,m/s。 对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。根据管径、流速,查出管道动压、流量、比摩阻等参数。 计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。所以这种空调末端承担负荷应计算精确,以避免负荷叠加。同时应清楚了解水管系统的方式,如同程式,异程式。不同的接管方式对沿程阻力具有一定的影响。在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。 二、局部阻力 (一)局部阻力及其系数

在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数; ——水流速度,m/s。 常用管道的配件可以通过相应的表格进行查询。根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。 对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。 在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。可参见设备安装详图,其中会画出相应的管道配件。 (二)当量长度 利用相同管径直管段的长度表示局部阻力,这样称为局部阻力当量长度(m): 式中——管道配件的局部阻力系数。 根据各种阀门、弯头、三通以及特殊配件(突扩、突缩、胀管、凸出管等)的工程直径,可以查出相应的当量长度。 三、设备压力损失 空调系统中含有很多制冷、制热设备,如冷凝器、蒸发器、冷却水塔、冷热盘管等等。这些设备自身都有一定的压力损失。在水系统的水力计算中,除了管道部分的阻力之外,还有设备的压力损失。将这两部分加起来,才是整个系统的水力损失。 但是因为设备的生产厂家、型号、运行条件及工况的不同,压力损失相差比较大,一般情况下,是由设备厂家提供该设备的压力损失。若缺乏该方面的资料,可以按照经验值进行估算。估算值见表3-1。

浅谈负摩阻力

浅谈负摩阻力 [论文关键词]负摩阻力中性点成因影响因素防治措施计算方法 [论文摘要]负摩阻力问题严重影响着建筑物的安全,桩的负摩阻力的大小受多种因素的影响,故其准确数值很难计算。介绍和阐述桩侧负摩阻力产生的条件和机理,桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。 随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向高层建筑,从而对地基承载力和变形要求也越来越高,越来越严格。因此地基处理变得越来越重要。在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已变成一个热点问题。下面对负摩阻力的问题进行分析、阐述。

一、负摩阻力的成因 桩周土的沉降大于桩体的沉降!桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。 地基土沉降过大,桩和土相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。 一般可能由以下原因或组合造成:未固结的新近回填土地基;地面超载;打桩后孔隙水压力消散引起的固结沉降;地下水位降低,有效应力增加引起土层下沉;非饱和填土因浸水而湿陷;可压缩性土经受持续荷载,引起地基土沉降;地震液化。 二、地基设计为什么要考虑负摩阻力

桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拉力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。 三、如何在现场测试和估算负摩阻力 在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(SlidingMicrometer---ISETH)来测定。 普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。 四、影响负摩阻力大小的主要因素 桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位臵问题)、桩体的形状、桩土模量比等都有影响。

单桩承载力验算(计负摩阻力)

单桩承载力验算 一、土层分布情况 二、单桩竖向承载力特征值 桩端持力层为全风化花岗岩,按《建筑桩基技术规范》(JGJ94-2008),中性点深度比l n /l 0=,桩周软弱土层下限深度l 0=,则自桩顶算起的中性点深度l n =。根据规范可知,该处承载力特征值只计中性点以下侧阻值及端阻值。 kN l q u A q Q i sik p pk 3976)613021.712(1141600uk =?+???+??=+=∑ππkN Q K R uk a 198838942 11=?== 三、单桩负摩阻力

第一层路堤填土和杂填土自重引起的桩周平均竖向有效应力: 地下水以上部分:Pa k 93.6594.6192111=??= σ; 地下水以下部分:Pa k 06.1396.1)1019(2 194.61912=?-?+?=σ; 则kPa 20512111=+=σσσ; 第二层淤泥自重引起的桩周平均竖向有效应力: kPa 26.182)54.863.21()105.15(2 16.1)1019(94.6192=-?-?+?-+?=σ; ;,故取kPa q kPa kPa q n s n n s 24245.612053.01111=>=?==σξ ;,故取kPa q kPa kPa q n s n n s 121245.3626.1822.01222=>=?==σξ 对于单桩基础,不考虑群桩效应则1n =η; 基桩下拉荷载: kN l q u Q n i i n si n n g 1137))54.863.21(1254.824(10.11=-?+????==∑=πη 四、单桩分担面积上的荷载 kN N 720)2520(44k =+??= 五、验算 N R N Q N a n k 1988k 185********g k =<=+=+ 故单桩承载力满足要求。

桩侧摩阻力计算

《桩侧摩阻力计算》 一、工程概况: 本工程①杂填土、②淤泥均为欠固结软弱土应计算桩侧负摩阻力。根据岩土工程勘察报告ZK65揭示地基土分层如下:(孔口标高5.07m ,地下水位标高2.02m ) 第①层杂填土底部标高2.77(厚度2.30) 第②层淤泥底部标高-7.53(厚度10.30) 第③层卵石底部标高-12.43(厚度4.90) 第⑤层砂土状强风化凝灰岩底部标高-14.73(厚度2.30) 第⑥层碎块状强风化凝灰岩………… 该位置软弱土层较厚且土层分布具有代表性,所以计算该位置的桩侧负摩阻力值。 二、计算过程 (1) 根据JGJ94-2008第5.4.4条桩侧负摩阻力标准值按下式计算: 'n si ni i q ξσ=;1 ''112i i i e e i i e z z γσσγγ-===?+?∑ 根据地勘报告杂填土和淤泥的负摩阻力系数分别为0.4和0.25,素填土和淤泥的重度为16.0kN/m 3。 1γ=16.0kN/m 3 '2γ=16.0-10.0=6.0kN/m 3 1n s q =0.4(0.5×16×2.30)=7.36kN/m 2 2n s q =0.25(16×2.30+0.5×6×10.3)=16.92kN/m 2 (2) 桩持力层为⑤砂土状强风化凝灰岩,根据持力层性质中性点深度比0/n l l 取值为1。 0n l l ==12.6m (3) 计算桩下拉荷载标准值。 根据JGJ94-2008第5.4.4-4条 1n n n g n si i i Q u q l η==?∑(不考虑群桩效应,n η取1.0),桩采用PHC500预制管桩。 n g Q =1.0×2×3.14×0.25×(7.36×2.3+16.92×10.3)=300kN

通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m ; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

负摩阻力计算

5#栋车间基桩负摩阻力计算 一、土层信息 选取最不利钻孔ZK595计算,钻孔岩土层分布如下: (1)、土层编号1:填土层 土层厚度h1= 15.8m; 负摩阻力系数ζn=0.30 (2)、土层编号2:粉质黏土层 土层厚度h2=5.0m; 极限侧摩阻力标准值qsk=53Kpa; 负摩阻力系数ζn=0.25 (3)、土层编号3:全风化花岗岩 土层厚度h3=0.5m; 极限侧摩阻力标准值qsk=140Kpa; 极限端阻力标准值qpk=5000Kpa; (4)、土层编号4:强风化花岗岩 土层厚度h4=11m; 极限侧摩阻力标准值qsk=220Kpa; 极限端阻力标准值qpk=7000Kpa; 二、单桩竖向承载力特征值计算 桩采用直径为400的预应力混凝土管桩(型号为PHC-500-A-100-H),设计净桩长为9m。 根据《建筑地基基础设计规范》GB 50007-2011第8.5.6.4条,单桩竖向承载力特征值按下式估算: R a=q pa A p+u pΣq sia l i=7000X3.14X0.42/4+3.14X0.4X220X9=879.2+2486.08=3366.08KN 三、基桩负摩阻力计算 根据《建筑桩基技术规范》JGJ94-2008第5.4.2条,桩穿越较厚松散填土,计算桩承载力时应计入桩侧负摩阻力。 桩端持力层为强风化花岗岩,按表5.4.4-2,l n/l0=1.0,桩周软弱土层下限深度l0=20.8m, 则自桩顶算起的中性点深度为l n=20.8m. 桩侧负摩阻力根据勘察报告取值,已知素填土负摩阻力系数ζn=0.30 ,粉质黏土负摩阻力系数ζn=0.25。已知地面无堆载(即P=0),地下水位标高为-10.93m(绝对标高265.27)。 第一层素填土自重引起的桩周平均竖向有效应力: 地下水位以上:σr10=0.5X18X10.93=98.37Kpa; 地下水以下至第二层粉质黏土顶面:σr11=10.93X18+0.5X(18-10)X4.87=216.22Kpa;

桩基负摩阻力问题讨论

桩基负摩阻力问题讨论 (1)负摩擦力是怎么形成的?[简单成因,机理很复杂] (2)地基设计为什么要考虑负摩擦力? (3)实践中什么情况下一般考虑负摩擦力? (4)如何测试和估算负摩擦力? (5)影响抚摩擦力大小的主要因素? (6)工程实践中都有那些方法减小抚摩擦力? (7)抚摩擦力的群桩效应?[研究大多数是单桩,实践中基本是群桩] (8)目前的最新进展。 (1)负摩擦力是怎么形成的? 桩周土的沉降大于桩体的沉降!桩—土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。(2)地基设计为什么要考虑负摩擦力? 桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拽力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。 (3)实践中什么情况下一般考虑负摩擦力? 这个问题,可以从负摩阻力产生原因来说明:产生负摩擦力的原因主要有, 1)欠固结软粘土或新填土的自重固结; 2)大面积堆载使桩周土层下沉; 3)正常固结软粘土地区地下水位全面下降,有效应力增加引起土层下沉; 4)湿陷性黄土湿陷引起沉降。 (4)如何测试和估算负摩擦力? 在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(Sliding Micrometer---ISETH)来测定。 普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。这个方法来推算桩侧摩阻力、负摩阻力。这个方法大家可以分析一下利弊,从而讨论一个新的途径、方法可以直接测定桩侧摩阻力问题。这样相比结果更精确可靠,我们的研究也将是一个不小的进步!大家都来思考一下罗,“测定桩侧摩阻力问题!” (5)影响负摩擦力大小的主要因素? 桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等都有影响。 (6)工程实践中都有那些方法减小抚摩擦力? 沥青涂层这个方法运用很是广泛,效果似乎也不错。这个方法以单桩为考虑对象;另外,隔离桩方法,这个以群桩为研究对象,但是似乎目前运用的不是很广,大家可以找找这方面的咚咚,一起讨论一下,分析原因,相比也是一个不错的思考问题的途径。 (7)负摩擦力的群桩效应?[研究大多数是单桩,实践中基本是群桩] 这个估计跟我们的研究方法有问题吧,目前我们的现场实践方面的研究方法都是针对单一的桩体的。另外,群桩方面的研究,运用数值分析方法也有不少研究。群桩的现场研究很

管道压力损失计算

管道总阻力损失hw=∑hf+∑hj, hw—管道的总阻力损失(Pa); ∑hf—管路中各管段的沿程阻力损失之和(Pa); ∑hj—管路中各处局部阻力损失之和(Pa)。 hf=RL、 hf—管段的沿程损失(Pa); R—每米管长的沿程阻力损失,又称比摩阻(Pa/m); L—管段长度(m), R的值可在水力计算表中查得。 也可以用下式计算, hf=[λ×(L/d)×γ ×(v^2)]÷(2×g), L—管段长度(m); d—管径(m); λ—沿程阻力因数; γ—介质重度(N/m2); v—断面平均流速(m/s); g—重力加速度(m/s2)。 管段中各处局部阻力损失 hj=[ζ×γ ×(v^2)]÷(2×g), hj—管段中各处局部阻力损失(Pa); ζ—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。(引自《简明管道工手册》.P.56—57) 管道压力损失怎么计算

其实就是计算管道阻力损失之总和。 管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。2、沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定 总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。它的计算复杂、分类繁多,误差也大。如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。 管道主要损失分为沿程损失和局部损失。Δh=ΣλL/d*(v2/2g)+Σξv2/2g。其中的λ和ξ都是系数,这个是需要在手册上查询的。L-------管路长度。d-------管道内径。v-------有效断面上的平均流速,一般v=Q/s,其中Q是流量,S是管道的内截面积。希望你能看懂 液体压力计算公式是什么 1mm水柱=10pa 10m=100000pa= 1毫米汞柱(mmHg)=帕(Pa) 1工程大气压=千帕(kPa) 对静止液体,就是初中的公式 压强P=ρgh 压力F=PS 如果受力表面不规则,需要积分计算 常用两种方法计算: 1.液体在柱形器具中,且放在水平面上,此时: F=G液=m液g=ρ液gV液

相关文档
最新文档