应力场分析与裂缝预测

应力场分析与裂缝预测
应力场分析与裂缝预测

《应力场分析与裂缝预测》教学大纲

(2004年制定,2012年第二次修改)

课程名称:应力场分析与裂缝预测

课程英文名称:Stress Field Analysis and Fracture Prediction

课内学时:32 课程学分:2

课程性质:学位课开课学期:每学年第一学期

教学方式:课堂讲授考核方式(考试/考查):考试

大纲执笔人:曾联波主讲教师:曾联波

师资队伍:曾联波、童亨茂、陈书平

一、课程内容简介

《应力场分析与裂缝预测》是地质学专业和资源勘探与地质工程专业硕士研究生的一门专门课程。讲授古、现应力场和储层裂缝的研究方法及其在油气勘探与开发中的应用,包括应力与应力场的基础概念、古构造应力场分析方法、现今地应力测量方法、裂缝的基础知识,裂缝定量预测方法、古应力场在油气勘探中的应用、现今地应力和裂缝在低渗透油气田开发中的应用。本门课程为32学时,2学分。

二、课程目的和基本要求

课程的目的是培养学生掌握古、今应力场分析与储层裂缝预测的基本理论和方法分析油田应力场分布及进行储层裂缝预测的基本能力。《应力场分析与裂缝预测》课程涉及构造地质学、地质力学、储层地质学、岩石力学、石油地质学和油气藏工程等多方面的基本知识,要求学生系统学习了大学本科地质类专业的构造地质学、固体力学、石油地质学和储层地质学等课程。

学完本课程后,应达到以下基本要求:

1.了解应力、应力场和裂缝的基本概念及基本分布特征;

2.掌握古应力场研究方法及进展,并能运用这些基本方法分析油田古应力场分布和指导油气勘探;

3.掌握现今地应力测量方法,并能运用这些方法分析低渗透油气田的地应力分布和指导油气田开发。

4. 掌握储层裂缝的研究和预测方法,并能运用这些方法研究和预测低渗透储层裂缝的分布规律。

三、课程主要内容

§1. 应力场分析和裂缝预测的基础知识(4学时)

§1.1应力、应力场和裂缝的基本概念。

§1.2应力场和裂缝研究的基本内容与方法。

§1.3应力场分析和裂缝预测的研究现状与发展趋势。

§1.4应力场分析和裂缝预测的研究意义。

§2. 现今地应力测量方法(4学时)

§2.1现场地应力测量方法。

§2.2岩心地应力测量方法。

§2.3测井地应力分析方法。

§2.4地应力的分布规律及影响因素

§3. 古构造应力场分析方法(6学时)

§3.1古构造应力方向分析方法。

§3.2古构造应力大小分析方法。

§3.3构造应力场的物理模拟方法。

§3.4构造应力场的数值模拟方法。

§4. 应力场在油气勘探中应用(4学时)

§4.1应力场在油气运移及聚集中的应用。

§4.2应力场在断层封闭性定量评价中的应用。

§5. 储层裂缝预测方法(8学时)

§5.1储层裂缝的识别方法。

§5.2储层裂缝的地质研究方法、控制因素、发育模式。

§5.3储层裂缝的测井研究方法。

§5.4储层裂缝的地震研究方法。

§5.5储层裂缝的定量预测方法。

§6. 地应力与裂缝在低渗透油田开发中应用(4学时)

§6.1低渗透油田地质特征与开发原则。

§6.2地应力与裂缝在井网部署中的应用。

§6.3地应力与裂缝在注水管理中的应用。

§6.4地应力与裂缝在压裂改造中的应用。

§6.4地应力与裂缝的其它应用。

§7. 课程总结与讨论(2学时)

四、推荐教材及主要参考书

主要参考书:

1.李志明,张金珠.地应力与油气勘探开发.北京:石油工业出版社,1997.

铣刀片的应力场分析

铣刀片的应力场分析 作者:董丽华袁哲俊李振加严复钢 1.引言 铣削属断续切削,切削过程中刀片受力非常复杂,力的大小和方向随时变化,刀片的失效形式主要为冲击破损。因此,采用有限元法对铣刀片应力场进行分析,以寻求减少刀片破损的刀具最佳几何角度,对于铣刀片槽型的开发具有指导意义。 2.面铣切削加工坐标系统的建立 面铣切削加工坐标系统由刀体坐标系和刀片坐标系组成,如图1所示。 图1面铣切削加工坐标系统 在刀体坐标系中,Y轴为铣刀轴线,X轴在基面内过刀尖与Y轴相交。在刀片坐标系中,y1轴通过主切削刃,x1轴通过副切削刃,刀片前刀面在x1o1y1平面内。铣刀半径为R=OO1,铣刀前角为γ0,刃倾角为λs,主偏角为K,法向前角为γn。 面铣刀无论具有何种几何角度,都可看作是由刀体坐标系经过一次平移和三次旋转而成,可用矩阵表示为 其中A11=cosγn sinηr+sinγn sinλs cosηr

A12=cosγn cosηr-sinγn sinλs sinηr A13=sinγn cosλs A21=-cosλs cosηr A22=cosλs sinηr A23=sinλs A31=-sinγn sinηr+cosγn sinλs cosηr A32=-sinγn cosηr-cosγn sinλs sinηr A33=cosγn cosλs tgγn=tgγ0cosλs 3.切入冲击力方向的确定 铣削与车削的不同之处在于铣削为断续切削,存在着切入、切出过程,铣刀的破损主要是由机械冲击力引起的。因此,首先要确定铣刀切入瞬间冲击力的作用方向。铣削时,铣刀高速旋转,工件缓慢进给,若忽略进给运动(因进给运动速度仅为铣刀运动速度的约1/4),铣刀切入冲击力的方向应该在刀具相对工件运动的切线方向上。如图2所示。 图2 切入冲击力的方向 由图1可知,切入冲击力方向为Z轴方向,力F分解到刀片坐标系中为 式中A13、A23、A33取值见式(1),代入具体参数得

X射线衍射在残余应力分析中应用

X射线衍射在材料分析中的应用 一、X射线衍射原理 X射线照射晶体,电子受迫振动产生相干散射,同一原子内各电子散射波相互干涉形成原子散射波。由于晶体内各原子呈周期排列,因而各原子散射波间也存在固定的位相关系而产生干涉作用,在某些方向上发生相长干涉,即形成了衍射波。由此可知,衍射的本质是晶体中原子相干散射波叠加(合成)的结果。 二、X射线衍射在材料分析中的应用 X射线衍射分析方法在材料分析与研究工作中具有广泛的用途: 1)物相分析:物相分析是指确定材料由哪些相组成和确定各组成相的含量。物相是决定或影响材料性能的重要因素,因而物相分析在材料、冶金、机械等行业中得到广泛应用。物相分析有定性分析和定量分析2 种: ①相定性分析的目的是检测固体样品中的相组成,采用未知样品衍射图谱与标 准图谱比较的办法. 如果衍射图谱相同即可确定为该物相。但如果样品为多相混合试样时,衍射线条谱多,谱线可能发生重叠,就需要根据强度分解组合衍射图谱来确定。 ②物相定量分析就是确定物质样品中各组成相的相含量. 根据衍射强度理论,物质中某相的衍射强度Ii与其质量百分数Xi 成如下关系 .Ii = KiXi/ Um 其中, Ki 为由实验条件和待测相而共同决定的常数;Xi 为质量百分数;Um 为待测样品的平均质量吸收系数,与Xi 有关。根据Um 的校正提出一系列物相定量分析方法,如内标法、K 值法、直接对比法,一般相定量分析误差可控制在5%以下; 2)结晶度:X 射线衍射图谱中,在一些情况下,结晶物质的图谱和非晶物质图谱重叠. 结晶度定义为结晶部分质量与总的试样质量之比的百分数. 目前非晶态合金用处很多,如软磁材料等. 而结晶度直接影响其材料的性能、损耗等. 测定结晶度方法主要是根据结晶相的衍射图谱面积与非晶相图谱面积的比,也可根据衍射线位置来确定结晶度; 3)残余应力分析:将产生应力的各种外部因素去除后,物体内部依然存在的应力称为残余应力. 在固体样品中,固体处于弹性极限内,该物质将随所受外力的大小而发生形变,从微观的角度来讲其晶面间距d 将发生改变,因此, 可根据d 值变化来测量残余应力σ.由于残余应力测试的特殊性,所以必须在X 射线衍射仪基础上加应力附件测试; 4) 微晶大小:X射线衍射图中峰宽β表现了构成物质的晶粒大小,峰宽化的原因除了晶粒的大小还有晶粒内部的非均匀应变. 使用Scherrer 公式和Hall 公式可计算微晶大小和非均匀应变; 5)晶体取向的测定:又称为单晶定向,是指测定晶体样品中晶体取向与样品外观坐标系的位向关系通过建立合适的外坐标系之后,对样品进行所要求的晶面或晶向的方位测定材料的性质与它的物相组成、结晶度和结晶粒子的大小、材料内部微观应变都有密切关系。

我所认识的应力应变关系

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 一 应力-应变关系 影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零, 六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。 图1-1 应力应变关系图 图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=, 初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。如果在进入塑性阶段卸载后再加载,

例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。 从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。 因为通常情况下物体不仅仅处于简单应力状态,那么复杂应力状态下应力应变关系又如何呢?如果我们将材料性质理想化即假设材料是连续的、均匀的、各向同性的,忽略T 、t 的影响,忽略净水压力对塑性变形的影响,可以将应力应变关系归结为不同的类型,包括理想线弹性模型、理想刚塑性模型、线性强化刚塑性模型、理想弹塑性模型、线性强化弹塑性模型、幂强化模型、等向强化模型、随动强化模型。各种材料的应力应变关系图如下图所示: 理想线弹性模型 理想刚塑性模型

真实应力-真实应变曲线的测定

真实应力-真实应变曲线的测定 一、实验目的 1、学会真实应力-真实应变曲线的实验测定和绘制 2、加深对真实应力-真实应变曲线的物理意义的认识 二、实验内容 真实应力-真实应变曲线反映了试样随塑性变形程度增加而流动应力不断上升,因而它又称为硬化曲线。主要与材料的化学成份、组织结构、变形温度、变形速度等因素有关。现在我们把一些影响因素固定下来,既定室温条件下拉伸退火的中碳钢材料标准试样,由拉力传感器行程仪及有关仪器记录下拉力-行程曲线。实测瞬间时载荷下试验的瞬间直径。特别注意缩颈开始的载荷及形成,缩颈后断面瞬时直径的测量,然后计算真实应力-真实应变曲线。 σ真=f(ε)=B·εn 三、试样器材及设备 1、60吨万能材料试验机 2、拉力传感器 3、位移传感器 4、Y6D-2动态应变仪 5、X-Y函数记录仪 6、游标卡尺、千分卡尺 7、中碳钢试样 四、推荐的原始数据记录表格 五、实验报告内容 除了通常的要求(目的,过程……)外,还要求以下内容: 1、硬化曲线的绘制 (1)从实测的P瞬、d瞬作出第一类硬化曲线(σ-ε) (2)由工程应力应变曲线换算出真实应力-真实应变曲线 (3)求出材料常数B值和n值,根据B值作出真实应力-真实应变近似理论硬化

曲线。 2、把真实应力-真实应变曲线与近似理论曲线比较,求出最大误差值。 3、实验体会 六、实验预习思考题 1、 什么是硬化曲线?硬化曲线有何用途? 2、 真实应力-真实应变曲线和工程应力应变曲线的相互换算。 3、 怎样测定硬化曲线?测量中的主要误差是什么?怎样尽量减少误差? 附:真实应力-真实应变曲线的计算机数据处理 一、 目的 初步掌握实验数据的线性回归方法,进一步熟悉计算机的操作和应用。 二、 内容 一般材料的真实应力-真实应变都是呈指数型,即σ=B εn 。如把方程的二边取对数: ln σ=lnB+nln ε, 令 y =ln σ;a =lnB ;x =ln ε 则上式可写成y =a+bx 成为一线性方程。在真实应力-真实应变曲线试验过程中,一般可得到许多σ和ε的数据,经换算后,既有许多的y 和x 值,在众多的数值中如何合理的确定a 和b 值使大多数实验数据都在线上,这可用最小二乘法来处理。 已知有测量点σ1,σ2……σk ,ε1,ε2……εk ,既有y 1y 2y 3……y k ,x 1x 2x 3……x k ,把这些数据代入回归后的线性方程y =a+bx 中去,必将产生误差△v 。 △v 1=a+bx 1-y 1 △v 2=a+bx 2-y 2 · · · △v k =a+bx k -y k 即 △V i =a+bx i -y i 我们回归得直线应满足 ∑△V ︱i 2 ,最小 △ V ︱i 2 =a 2+b 2 x ︱i 2+y ︱i 2 +2abx i -2ay i -2bx i y i ∑△V ︱i 2 = ka 2+b 2∑x i x i +∑y i y i +2ab ∑x i -2a ∑y i -2b ∑x i y i

ABAQUS 真实应力和真实应变定义塑性

在 ABAQUS 中必须用真实应力和真实应变定义塑性.ABAQUS 需要这些值并对应地在 输入文件中解释这些数据。 然而,大多数实验数据常常是用名义应力和名义应变值给出的。这时,必须应用公式将 塑性材料的名义应力(变)转为真实应力(变)。 考虑塑性变形的不可压缩性,真实应力与名义应力间的关系为: l A = lA , 当前面积与原始面积的关系为: A = A 0 l 0 将A 的定义代入到真实应力的定义式中,得到: F = A 其中 也可以写为1+ nom 。 l 0 这样就给出了真实应力和名义应力、名义应变之间的关系: =nom (1+nom ) 真实应变和名义应变间的关系很少用到,名义应变推导如下: 上式各加 1,然后求自然对数,就得到了二者的关系: =ln (1+nom ) ABAQUS 中的*PLASTIC 选项定义了大部分金属的后屈服特性。ABAQUS 用连接给定 数据点的一系列直线来逼近材料光滑的应力-应变曲线。可以用任意多的数据点来逼近实际 的材料性质;所以,有可能非常逼真地模拟材料的真实性质。在*PLASTIC 选项中的数据将 材料的真实屈服应力定义为真实塑性应变的函数。选项的第一个数据定义材料的初始屈服应 力,因此,塑性应变值应该为零。 在用来定义塑性性能的材料实验数据中,提供的应变不仅包含材料的塑性应变,而是包 括材料的总体应变。所以必须将总体应变分解为弹性和塑性应变分量。弹性应变等于真实应 力与杨氏模量的比值,从总体应变中减去弹性应变,就得到了塑性应变,其关系为: pl = t -el =t -/E 其中pl 是真实塑性应变,t 是总体真实应变,el 是真实弹性应变。 Fl A l 0 nom l - l 0 l l 0l 0

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。 许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。(许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结

表面残余应力分析

表面残余应力 胡宏宇 (浙江工业大学机械工程学院,浙江杭州 310032) 摘要:残余应力主要是由构件内部不均匀的塑性变形引起的。各种工程材料和构件在毛坯的制备、零件的加工、热处理和装配的过程中都会产生不同程度的残余应力。残余应力因其直观性差和不易检测等因素往往被人们忽视。残余应力严重影响构件的加工精度和尺寸稳定性、静强度、疲劳强度和腐蚀开裂。特别是在承力件和转动件上,残余应力的存在易导致突发性破坏且后果往往十分严重。因此,研究残余应力的产生机理、检测手段、消除方法以及残余应力对构件的影响[1]。 关键词:残余应力;切削变形;磁测法;喷丸强化; Surface residual stress (S chool of mechanical engineering,Zhejiang University of Technology,Hangzhou 310032,China) Abstract:Residual stress is mainly caused by the uneven plastic deformation of component. All kinds of engineering materials in the preparation of blank, parts and components processing, heat treatment and assembly process will produce different degree of residual stress. Residual stress because of its intuitive factors such as poor and difficult to detect is often neglected. Seriously affect the residual stress of component machining precision and dimension stability, static strength, fatigue strength and corrosion cracking. Especially on the bearing and rotating parts, the existence of the residual stress can lead to sudden destruction and the consequences are often very serious. Therefore, to study the mechanism of residual stress, detection means, elimination method and the influence of residual stress of components。 Key words:Residual stress;machining deflection;magnetic method;Shot peening strengthening; 前言 随着现代制造技术的发展,大飞机、高铁、核设施等大型设备相继出现;这些设备具有高速、重载和长时间运行的特点,其零部件工作环境恶劣、复杂,且往往对安全性有着极其苛刻的要求,因而对这些设备的关键部件,如轴承、曲轴、传动轴的疲劳寿命和可靠性也有很高的要求,对它们的疲劳寿命预测 和分析成为研究的重点. 金属切削加工是一个伴随着高温、高压、高应率的塑性大变形过程, 在已加工表面上存在着相当大 的残余应力; 同时又由于切削过程切削力和切削热作用及刀具与工件的摩擦等综合因素的影响, 使得零件内部初始的残余应力重新分布并与表面层残余应力耦合作用形成新的残余应力分布规律。残余应力以平衡状态存在于物体内部, 是固有应力域中局部内应力的一种。残余应力是一种不稳定的应力状态, 当物体受到外力作用时, 作用应力与残余应力相互作用, 使其某些局部呈现塑性变形, 截面内应力重新分配; 当外力作用去除后, 整个物体由于内部残余应力的作用将发生形变。 根据理论分析和实验研究的结果,工件的疲劳寿命和加工表面的残余应力状态有重要的关系:残余压应力能抑制工件的疲劳破坏,延长疲劳寿命;残余拉应力则相反,会加速疲劳破坏的出现[2].因此,了解

应力应变关系

1.应力 物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。 在所考察的截面某一点单位面积上的内力称为应力。同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。 应力仪或者应变仪是来测定物体由于内应力的仪器。一般通过采集应变片的信号,而转化为电信号进行分析和测量。 方法是:将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。很多金属在机械性地伸长或缩短时其电阻会随之变化。应变片就是应用这个原理,通过测量电阻的变化而对应变进行测定。一般应变片的敏感栅使用的是铜铬合金,其电阻变化率为常数,与应变成正比例关系。 通过惠斯通电桥,便可以将这种电阻的比例关系转化为电压。然后不同的仪器,可以将这种电压的变化转化成可以测量的数据。 对于应力仪或者应变仪,关键的指标有:测试精度,采样速度,测试可以支持的通道数,动态范围,支持的应变片型号等。并且,应力仪所配套的软件也至关重要,需要能够实时显示,实时分析,实时记录等各种功能,高端的软件还具有各种信号处理能力。另外,有一些仪器是通过光谱,膜片等原理设计的。 应力的单位:应力的单位是Pa,简称帕(这是为了纪念法国科学家帕斯卡Blaise· pascal而命名的),即牛顿/平方米(N/ ㎡)。 2.应变 物体在受到外力作用下会产生一定的变形,变形的程度称应变。应变有正应变(线应变),切应变(角应变)及体应变。正应变公式为 ,式中l是变形的前长度,Δl是其变形后的伸长量。 应变单位:应变是形变量与原来尺寸的比值,用ε表示,即ε=ΔL/L,无量纲,常用百分数表示。 3.弹性模量 一般地讲,对弹性体施加一个外界作用,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。又称杨氏模量,弹性材料的一种最重要、最具特征的力学性质,是物体弹性变形难易程度的表征,用E表示。定义为理想材料有小

地质构造应力场分析方法与原则

地质构造应力场分析方法与原则 发表时间:2019-01-04T10:34:05.383Z 来源:《基层建设》2018年第34期作者:郭建锐[导读] 摘要:构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。 赤峰市利拓矿业有限公司内蒙古赤峰市 024000摘要:构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。本次研究针对地质构造应力场的测量方法水力压裂法、井壁崩落法、磁组构法进行分析,并对地质构造应场力分析原则进行阐述,继而进一步丰富构造应力场的理论。 关键词:地质构造;构造应场力;应场力引言:构造应力场就是在一个空间范围内构造应力的分布。构造应力场是作用在地壳某一地区内部的和由于这一地区某种变形的构造单元的发育而出现的应力总和。应力场是一种物理场,它和其他物理场,如重力场、电滋场、位势场等一样,也是物质存在的一种形式。场不是空间,而是在空间范围内某个物理量的按势分布。随着时间的变化,场内各点的强度和方向也将发生变化。构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。 1.地质构造应力场概述 构造应力场概念是由我国地质学家李四光率先提出的。1947年李四光提出用构造形迹反推构造应力场,并研究各种不同力学性质的构造形迹与应力方向、应力作用方式之间的相互关系。1940年格佐夫斯基也提出研究构造应力场,并把用赤平投影求主应力轴方向的方法引进构造应力场的研究。1950年一1996年国内外地质工作者结合地震地质的研究工作开展了构造应力测量,经多年努力,通过野外与室内实测证实了构造应力的存在,并探索、研究了行之有效的构造应力测量技术方法,完善了构造应力测量的理论基础,建立了可靠的测量技术方法和数据处理系统。万天丰(1999)、武红岭(1999,2003)等将矿场构造应力场研究的方法延伸到盆地构造研究领域,取得了人量的研究认识和资料,极大地丰富了构造应力场研究理论,也为盆地构造应力场研究积累了丰富的地质认识和方法。1970年构造应力场的研究有长足进展,逐渐深入到地质学的多个领域。1980年以后,构造应力场问题越来越受到国内外地质学界的重视,研究内容多涉及板块、大陆,大洋地区的构造应力场。1990年以来,全球大陆与海洋科学钻探计划开始研究现今构造应力和古应力状态和岩石圈动力学问题。 2.地质构造应力场分析方法 构造应力场研究的主要内容是在确定各地的点应力状态(应力方向和应力大小)的基础上,研究在一定区域范围内各个构造活动时期的构造应力分布特征。古应力测量可通过构造形迹分析法、古地磁法、节理测量法来确定古构造应力作用方向,利用声发射法。晶格位错法等可确定古地应力值的大小(导致地层变形时的最大水平古应力)。现今应力测量可利用震源机制解法、水力压裂法、井壁崩落法等来确定现今构造应力最大主应力方向,利用声发射法、经验公式法可确定现今地应力大小。 2.1.1水力压裂法 水力压裂测量地应力的方法首先在美国发展起来,1977年B.Haimson在井深5.1Km处进行了水力压裂地应力测量。我国学者葛洪魁(1998)、康红普(2014)均在研究中采用水力压裂测量法进行验证。水力压裂(Hydraulic fracturing)地应力测量是通过在井眼周围地层中诱发人工裂缝来获取地应力的一种方法,测试精度受多种因素的影响,如测试层位筛选、施工仪器设备、施工方案的选择以及测试数据的分析等。 2.1.2井壁崩落法 井壁崩落椭圆法的理论依据为崩落椭圆是由地壳内的构造应力场形成的,所以二者之间存在确定的关系。它的基本原理是,由于地壳内存在水平差应力,致使钻井壁形成应力集中,在垂直于最大水平主应力(压应力为正)方向的井壁端切向应力最大,当该处切向应力达到或超过岩石的破裂极限强度时,即发生破裂,从而形成井壁崩落椭圆。1970年加拿大Bell在研究阿尔伯达油田四臂井径测量的地层倾角测井资料后,发现井眼扩大方向与区域内的最小水平主应力方向平行,Gough等也发现了这种现象。1985年,Zoboek使用井下电视观测证实了Boll的发现,并与B.Haimson等人对井眼崩落机制进行研究,说明了井壁崩落法是测量水平主应力方向的可行方法。shulnberger测井公司研究应用测井资料解释地层压力问题,并用于解释石油工程中的地层破裂压力、地层坍塌压力及油层出砂等问题。这种用测井资料解释地应力剖面的方法,己经能够解决石油工程中的许多问题。 2.1.3磁组构测量法 磁组构是指磁性颗粒或晶格的定向排列或组合,其实质是岩石磁化率各向异性。岩石磁化率各向异性是指岩石的磁化强度随方向的变化性质,包括感应磁化率各向异性与剩余磁化率各向异性。GrahamJ.w(1954)提出,儿乎所有岩石都可以观测到磁各向异性。研究表明,岩石的磁化率一般表现为磁化率数量椭球的形状和方向。椭球可以反映岩石内部铁磁性颗粒长轴的主要分布方向,与沉积搬运和充填方式、岩浆岩流动构造、变质岩类型和变质程度、页理、线理、褶皱轴方向等存在一定对应关系,是地史时期定向应力和温度作用的结果,是岩组分析和有限应变测量的重要手段之一。 3.地质构造应力场分析原则 3.1时间局限性原则 一般认为根据不同构造形变的切错和叠加等关系可以确定构造应力场的分期,即相对活动次序。可以根据组成构造形变的最新地层时代和角度不整合面之上的最老上覆地层的时代,来确定构造应力场作用的大致时间。如果有地层或侵入体同位素年代的资料时,构造应力作用的时间可以确定得更准确些。即使如此,构造应力作用的时间还是不可能确定得十分精确。 如果已知组成某一构造形变的最新地层年代和侵蚀了构造形变的不整合面之上的最老上覆地层的年代,构造形变肯定是在不整合形成期间发生的;但两个沉积地层的年代之间,发生了许多变化:老地层沉积之后要下沉、硬结成岩;受构造应力作用后造成构造形变;隆起遭受剥蚀;地壳重新下降,接受新的沉积。可以看出在整个不整合的形成过程中造成构造形变的构造应力作用只局限在一个较短的时间内。如果再考虑到同位素年代的不精确性(由于采样、测试方法等原因),要准确测定构造应力作用的时间实际上目前还难以实现。 3.2空间动态性原则

真实应力—应变曲线拉伸实验精选文档

真实应力—应变曲线拉伸实验精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

实验一 真实应力—应变曲线拉伸实验 一、实验目的 1、理解真实应力—应变曲线的意义,并修正真实应力—应变曲线。 2、计算硬化常数B 和硬化指数n ,列出指数函数关系式n S Be =。 3、验证缩颈开始条件。 二、基本原理 1、绘制真实应力—应变曲线 对低碳钢试样进行拉伸实验得到的拉伸图,纵坐标表示试样载荷,横坐标表示试样标距的伸长。经过转化,可得到拉伸时的条件应力—应变曲线。在条件应力—应变曲线中得到的应力是用载荷除以试样拉伸前的横截面积,而在拉伸变形过程中,试样的截面尺寸不断变化,因此条件应力—应变曲线不能真实的反映瞬时应力和应变关系。需要绘制真实应力—应变曲线。 在拉伸实验中,条件应力用σ表示,条件应变(工程应变)用ε表示,分别用式(1)和(2)计算。 A F = σ (1) 式中,σ为条件应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积。 000 l l l l l ε-?= = (2) 式中,ε为工程应变;l 为试样拉伸后的长度;0l 为试样拉伸前的长度。 真实应力用S 表示,真实应变用∈表示,分别用式(3)和(4)计算。 )1()1(0εσε+=+==A F A F S (3) 式中,S 为真实应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积;σ为条件应力; ε为工程应变。 )1(ε+=n l e (4) 式中,e 为真实应变;ε为工程应变。 由式(1)和(2)可知,只要测出施加在试样上的载荷以及拉伸前的横截面积,可以计算出条件应力和工程应变;根据式(3)和(4),就可以计算出真实应力和真实应变。测出几组不同的数据,就可以绘制真实应力应变曲线。

温度应力场分析

/prep7 et,1,55 !设置耐火材料属性 !导热系数 mptemp,1,20,100,200,300,400,500 mptemp,7,600,800,1000,1200,1400,1600 mptemp,13,1800 mpdata,kxx,1,1,1.28,1.3207,1.3614,1.4021,1.442,1.4835 mpdata,kxx,1,7,1.5242,1.6056,1.687,1.7684,1.8498,1.9312 mpdata,kxx,1,13,2.0126 mptemp,1,20,100,200,300,400,500 mptemp,7,600,800,1000,1200,1400,1600 mptemp,13,1800 !比热容 mpdata,c,1,1,842,866,895,924,954,983 mpdata,c,1,7,1012,1071,1130,1188,1247,1305 mpdata,c,1,13,1364 !密度,弹性模量,泊松比,膨胀系数 MPTEMP,1,20 MPDATA,DENS,1,,3300 MPDATA,ALPX,1,,0.0000106 MPDATA,EX,1,,200000000000 MPDATA,PRXY,1,,0.3 !钢材材料属性 MP,KXX,2,60.5 MP,c,2,470 MP,DENS,2,7850 MP,ALPX,2,0.000012 MP,EX,2,200000000000 MP,PRXY,2,0.3 RECTNG,0,1,0,1, RECTNG,1,2,0,2, RECTNG,2,3,0,2, AADD,1,2 aglue,all

XRD在残余应力分析中的应用

XRD 在残余应力分析中的应用 摘要 X 射线衍射测量残余应力的原理是以测量衍射线位移作为原始数据,所测量的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。 关键词 X 射线衍射 残余应力 XRD 0.引言 X 射线衍射在残余应力分析中具有重要的作用。X 射线应用在残余应力的分析中,是科技的一项重大突破。其中在:定量分析轴承和内燃机喷射器部件中的残余奥氏体;检测输片惰性轮中的残余应力;检测汽车发动机部件的残余应力(凸轮轴、连杆、发动机轴、均衡器);检测由于全回火引起的残余应力(家用电器、结构部件);检测气体传导时所存在的工作压力;检测大幅度拉伸结构件中的工作应力;通过检测应力来测量工件喷丸和轧制的效率;检测铸件的残余应力(机械工具铸铁件和汽车铸铝部件);检测焊接引起的应力(激光和电焊);研究铝合金汽车轮廓中的残余应力和应力阻抗的关系;优化切削去除的工作参数以提高机械部件的应力阻抗;检测螺旋式和叶式弹簧的残余应力;研究加上工作载荷后的临界区域(武器和航空)等很多领域都有贡献。 1.X 衍射射线分析 1.1 原理简介 X 射线衍射分析是利用晶体形成的X 射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X 射线照射到结晶性物质上时,X 射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X 射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象,图1为X 射线衍射的产生。衍射X 射线满足布拉格(W.L.Bragg )方程:λθn d =sin 2 式中:λ是X 射线的波长;θ是衍射角;d 是结晶面间隔;n 是整数。波长λ可用已知的X 射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X 射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X 射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。]1[ 图1 X 射线衍射的产生 1.2 应用——物相分析

涂层残余应力预测分析模型

涂层残余应力预测解析模型:平面几何模型 热喷涂涂层:熔化的金属颗粒高速碰撞基板然后快速冷却(淬火),在几毫秒时间内冷却。形成大的拉应力。蠕变和屈服是主要的应力释放的机理。 一个典型的预测热喷涂涂层残余应力分布的数学模型。 1 模型公式 建立在平面几何的基础之上。 1.1 沉积应力 1.1.1 第一层 应变(1)σq——内(淬火)应力;E d——杨氏模量 假设每一个部位产生的应变是不相等的,并产生反作用力F(图1),于是有 (2) 可以写为(3) 在涂层形成一个很大的拉应力,同时,在基板上上产生一个对等的平衡的反作用力——压应力。 形成弯矩(banding moment)(4) 中性层δ1 (5) Composite beam stiffness

(6) 平衡弯矩M1,产生曲率变化,κ1-κ0 (7) 通常,κ0可以处理为零。如果涂层在凹面,则曲率是可以明确的。图1的情况。 假设双向应力相等(σx =σz),厚度方向应力可以忽略(σy =0)。 由泊松效应(Poisson effect),σz将在x方向导致一个应变。X方向的net应变可以写为 (8) 于是,x方向的应力应变关系可以表示为: (9) Effective young’s modulus value. 由于仅考虑弹性状态,因此,基板内沿着厚度方向的应力变化应该是线性的,只需要计算基板的底部和顶部的应力即可。从材料力学可以计算: (10) (11) 于是,可以得出涂层第一层中部的应力: (12) 1.1.2 第二层 考虑在基板(镀层)上冲击形成第二层,如图2所示。

不等应变的大小与前面相同。平衡应变改为: (13) 该式中,F2是作用在前面的镀层与基板构成的复合板上的,其中性层δ1如图1所示。这一层与基板具有相同的应变,E2e是等效杨氏模量: (14) 代入上式,可以得到F2的表达式: (15) F2分摊在镀层第一层和基板中。 作用在基板上的力为: (16) 同样,作用第一层镀层上的力为: (17) 显然地,F2s和F2w都是压应力。在镀层的第二层上存在与F2大小相等的拉应力。 大小相等方向相反的力对形成力矩M2: (18) 平衡弯矩M2,产生曲率变化,κ2-κ1 (19) 组合板的硬度(强度)可以写为: (20) 而且可以确定δ2为: (21)

真实应力应变

真实应力=工程应力*(1+工程应变) 真实应变=Ln(1+工程应变) 这是现行的通用做法,应该是不会出问题的。 不过用此法时推导真实应力的过程中假设结构体积不变,俺觉得是有问题的,如果考虑体积变化,则真实应力为:真实应力/工程应力=(1 + 工程应变)/(1 +工程应变- 2 工程应变* 泊松比) 或者:真实应力/工程应力=1/(1 - 工程应变* 泊松比)^2 后两者很相近,且比上述做法要低不少。 请您仔细读以下说明: Run ROR's Keygen, Use the serial number for installation, Write down the Registration ID, After installation, Copy the "orglab.lic" file to "C:\Program Files\OriginLab\OriginPro75\FLEXlm". Start OriginPro, When ask for registration, Select I'm already registered. Enter the Registration ID. OK! 解压程序包后,注意crack 这个东东~~备用。 1. 运行注册机,用生成的sn 安装软件,next 2. 记下您相应sn 的ID 以备后用(sn 和id 应该是相互对应滴一组~~) 3. 安装完成后先不运行程序,把orglab.lic 这个文件复制到您的程序安装目录下(不一定是c 盘) X:\program files \ originlab \ originpro75 \ FLEXLM 文件夹下 4. 然后起动程序,按照要求输入刚记下的ID →就应该ok 了吧~~ 如果不行可能是其他原因,您要是能抓一些问题出现时的图片更有助于问题的解决! 当然,仍安装不上也可能是您的程序或系统或其他问题。 Luck! 安装搜狗输入法,在哪个键盘符号上点右键,点第二项,希腊字母里面去选就是了 αβγδεδεζηθικλμνπξζηυθχψω ΑΒΓΓΔΕΖΘΗΚ∧ΜΝΞΟ∏Ρ∑ΤΥΦΦΧΨ абвгде?жзийклмнопрстуфхцчшщъыьэюя

真实应力应变与工程应力应变—区别、换算

真实应力应变与工程应力应变 工程应力和真实应力有什么区别? 首先请看这张图: 这里面的Stress和Strain就是指的工程应力和工程应变,满足这个关系:

但实际上,从前一张图上就可以看出,拉伸变形是有颈缩的,因此单纯的比例关系意义是不大的,因而由此绘出的图也可能给人带来一些容易产生误解的信息,比如让人误认为过了M点金属材料本身的性能会下降。但其实我们可以看到,在断口处A(这个面积才代表真正的受应力面)是非常小的,因而材料的真实强度时上升了的(是指单位体积或者单位面积上的,不是结构上的)。 因而真实应力被定义了出来: 这个是真实应力,其中Ai是代表性区域(cross-sectional area,是这么翻的吧?)前面的例子中是颈缩区截面积。 然后就可以根据某些数学方法推出真实应变:

但具体怎么推的别问我,因为我也不知道…… 但这两个式子在使用上还是不那么直接,因而我们引入体积不变条件Aili=A 0l0然后可以得到: 和 但似乎只有在颈缩刚刚开始的阶段这两个式子才成立。 下面这张图是真实应力应变和工程应力引力应变的对照图: 其中的Corrected是指的考虑了颈缩区域复杂应力状态后作的修正。 3.6 真实应力-应变曲线

单向均匀拉伸或压缩实验是反映材料力学行为的基本实验。 流动应力(又称真实应力)——数值上等于试样瞬间横断面上的实际应力,它是金属塑性加工变形抗力的指标。 一.基于拉伸实验确定真实应力-应变曲线 1.标称应力-应变曲线 室温下的静力拉伸实验是在万能材料试验机上以小于的应变速率下进行的。标称应力-应变曲线不能真实地发映材料在塑性变形阶段的力学特征。 2.真实应力-应变曲线 A.真实应力-应变曲线分类 分三类: Ⅰ.Y -ε; Ⅱ.Y -ψ; Ⅲ.Y -∈; B.第三类真实应力-应变曲线的确定 方法步骤如下: Ⅰ.求出屈服点σs(一般略去弹性变形) 式中P s——材料开始屈服时的载荷,由实验机载荷刻度盘上读出; A o——试样原始横截面面积。 Ⅱ.找出均匀塑性变形阶段各瞬间的真实应力Y和对数应变Ε

应力应变关系

应力应变关系 我所认识的应力应变关系 一在前面两章的分别学习了关于应力与应变的学习,第三章的本构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。 在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即 ,E ,,XX 在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律 本式应该是91个应变分量单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。 (1)具有一个弹性对称面的线弹性体的应力应变公式如下

(2)正交各向异性弹性体的弹塑性体公式如下 (3)各向同性弹性体的本构方程 各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足: ,,,,,,,CCCxxyz111213 ,,,,,,,CCCyxyz212223 ,,,,,,,CCCzxyz313233 (2-3) ,,,,,,yyxzxz对的影响与对以及对的影响是相同的,即有 ,CCC==,CC=CC=,y112233x12132123z;和对的影响相同,即,同理有和CC=3132等,则可统一写为: CCCa==,112233 CCCCCCb=====,122113312332 (2-4) 所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。 广义胡可定律如下式 ,,xy1,,,,,,,,,,,[()]xy,xxyz,2GE,,,,1,yz, ,,,[()],,,,,,,,yzyyxz 2GE,,

PC聚碳酸酯的应力开裂

PC聚碳酸酯的应力开裂 塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力。内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。 几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能。 产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生。依引起内应力的原因不同,可将内应力分成如下几类。 (1)取向内应力 取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。取向应力产生的具体过程为:*近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向。取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。用热处理的方法,可降低或消除塑料制品内的取向应力。 塑料制品的取向内应力分布为从制品的表层到内层越来越小,并呈抛物线变化。 (2)冷却内应力 冷却内应力是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产生的一种内应力。尤其是对厚壁塑料制品,塑料制品的外层首先冷却凝固收缩,其内层可能还是热熔体,这徉芯层就会限制表层的收缩,导致芯层处于压应力状态,而表层处于拉应力状态。 塑料制品冷却内应力的分布为从制品的表层到内层越来越大,并也呈抛物线变化.。 另外,带金属嵌件的塑料制品,由于金属与塑料的热胀系数相差较大,容易形成收缩不一均匀的内应力。 除上述两种主要内应力外,还有以下几种内应力:对于结晶塑料制品而言,其制品内部各部位的结晶结构和结晶度不同也会产生内应力。另外还有构型内应.力及脱模内应力等,只是其内应力听占比重都很小。 (1)分子链的刚性 分子链刚性越大,熔体粘度越高,聚合物分子链活动性差,因而对于发生的可逆高弹 形变恢复性差,易产生残余内应力口例如,一些分子链中含有苯环的聚合物,如PC、PPO、PPS等,其相应制品的内应力偏大。 (2)分子链的极性 一分子链的极性越大,分子间相互吸引的作用力越大,从而使分子间相互移动困难增

相关文档
最新文档