发电厂电气主接线设计

发电厂电气主接线设计
发电厂电气主接线设计

宁德师范学院

发电厂电气部分课程设计

实习项目:凝汽式火电厂一次部分设计

系别:物理与电气工程系

专业:电气工程及其自动化

学号: B2011052222

姓名:高文土

指导老师:黄丽霞

日期: 2014年6月20日

发电厂电气部分课程设计任务书

原始资料:

200MW 地区凝汽式火电厂;机组容量与台数:2*50MW ,1*100MW ,10.5N kV U = ; 发电机电压负荷:最大48MW ,最小24MW ,max 4200T =小时;110KV 负荷:最大58MW ,最小32MW ,max 4500T =小时;剩余功率全部送入220KV 系统,全部负荷中Ⅰ类负荷比例为30%,Ⅱ类负荷为40%,Ⅲ类负荷为30%。

基本要求:

1. 电厂分析及发电机、主变选择。

2. 电气主接线设计。

3. 短路电流计算。

4. 选择短路点计算三相短路电流并汇总成表。

5. 选择各电压等级的电气设备。

主要参考资料:

[1] 熊信银.发电厂电气部分[M]. 北京:中国电力出版社,2009:55~106

[2] 楼樟达,李扬.发电厂电气设备[M]. 北京:中国电力出版社,1998:55~129,321~452

[3] 何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社,2002:152~195 [4] 西安交通大学等六院校.电力系统计算[M].北京:水利电力出版社,1999:25~65 [5] Ata https://www.360docs.net/doc/7011923870.html,werk Communications Technology(英文影印版) [M].北京:中国水利水电出版社,1997:10~69

[6] 周 强,易先举,汪祖禄.火力发电厂发电机—变压器组保护技术方案[J].电力系统自动化,1999,6:22~25

[7] 卓乐友.电力工程电气设计200例[M]. 北京:中国电力出版社,2004:65~125,158~362

目录

1 任务和要求 (1)

2 明确任务和设计原理 (1)

2.1 原始资料的分析 (1)

2.2 主接线方案确定 (1)

3 主变压器确定 (3)

3.1主变压器台数: (3)

3.2主变压器的容量: (3)

3.3主变压器的形式: (3)

4 短路电流的计算 (4)

4.1 短路电流的计算方法 (4)

4.2短路电流计算过程 (5)

4.3短路电流计算结果 (5)

5 电气设备的选择 (5)

5.1 10kV侧设备选择及校验过程 (5)

5.2校验过程 (6)

5.3选择设备过程与计算 (7)

5.4选择设备明细表 (7)

6 设计总结 (8)

参考文献 (10)

附录 1 (11)

附录2 (12)

附录3 (15)

1 任务和要求

(1)任务:根据自己所选的原始资料设计电气主接线方案,并计算短路电路,合理地选择主要的电气设备。 (2)电气主接线设计要求

电厂分析及发电机、主变选择 电气主接线设计 短路电流计算

选择各电压等级的电气设备

2 明确任务和设计原理

2.1 原始资料的分析

设计一座装机容量为200MW 的凝汽式火力发电厂。计划安装两台50MW 的汽轮发电机组,型号为QFQ-50-2,功率因数为0.8,安装顺序为#1、#2机;安装一台100MW 的汽轮发电机组,型号为TQN-100,功率因数为0.85,安装顺序为#3机。发电机电压负荷最大为48MW ,最小为24MW ,最大负荷利用小时数max 5200T =小时;110KV 负荷:最大58MW ,最小32MW ,最大负荷利用小时数max 4500T =小时;剩余最大功率220-24-32-200*6%=152MW 送入220KV 系统。50MW 发电机电压端电缆出线8回,100MW 发电机端电压电缆出线2回。每回负荷不等,平均在4MW 左右,送电距离为km 6~3;110KV 端架空线出线3回;220KV 端架空线出线2回。

从负荷特点及电压等级可知,10KV 电压等级上的地方负荷容量不大,共有10回电缆馈线,与50MW 发电机的机端电压相等,采用直馈线为宜。20KV 电压为300MW 发电机出口电压,既无直配负荷,又无特殊的要求,拟采用单元接线的形式,可以节省价格昂贵的发电机出口断路器,又利于配电装置的布置;220KV 电压级出现回路数为4回,为了保证检修出线断路器不致对该回路停电,拟采用带旁路母线接线形式为宜;500KV 与系统有4回馈线,呈强联系形式并送出本厂最大可能的电力为700-15-200-700*6%=443(MV )。可见,该厂500KV 级的接线对可靠性要求应当很高。

2.2 主接线方案确定

根据以上的分析,筛选组合,可保留两种可能的接线方式如下图:

图1 方案一

图2 方案二

通过比较,由于此设计属于中小型火电厂,所以着重考虑经济性,因方案Ⅰ只用一台双绕组变压器及其两侧的断路器和隔离开关,220kV 侧采用单母线接线方式,均减少了断路器的数量,配电装置投资大大减小,且误操作的可能性要相对较小,占地面积也相对减小。相对于方案Ⅱ,其操作简单。

综上考虑该电厂为地区电厂,且负荷为腰荷,所以主接线方式采用方案Ⅰ。

3 主变压器确定

3.1主变压器台数:

根据方案Ⅰ,该发电厂装设一台三绕组变压器和一台双绕组变压器,以充分保证供电可靠性。

3.2主变压器的容量:

发电厂具体情况:10KV 侧,三绕组变压器的确定:cos 0.85φ=,8%p K =,则

100N S MW

=,100(18%)/0.85108.2B S MW =?-=;双绕组变压器的确定:

cos 0.8φ=,50N S MW =,10KV 侧最小负荷为24MW 。 (502(18%)24)/0.885B S MW =??--=。

3.3主变压器的形式:

一般情况下采用三相式变压器,根据以上分析,具有三种电压等级的发电厂,查kV 220三绕组变压器技术数据表,选择型号为:120000-SFPSLO ,查kV 220双绕组变压器技术数据表,选择型号为:90000-SFPL .

4 短路电流的计算

4.1 短路电流的计算方法

对应系统最大运行方式,按无限大容量系统,进行相关短路点的三相短路电流计算,求得f I 、sh i 、sh I 值。

f I ---三相短路电流;

sh i ——三相短路冲击电流,用来校验电器和母线的动稳定。

sh I ——三相短路全电流最大有效值,用来校验电器和载流导体的热稳定。

k S ——三相短路容量,用来校验断路器和开断容量以及判断容量是否超过规定值,作为选择限流电抗器的依据。

注:选取基准容量为100j MVA S = 1.05j av N U U U =

=

j S ——基准容量(MVA )

av U ——所在线路的平均电压(k V )

按电压等级计算短路电流,该系统共有三个电压等级,故有三个短路电流,短路电流的具体计算过程见附录A。等值电抗图如图3所示:

220kV

G 3

图3 等值电抗图

4.2短路电流计算过程

短路电流计算过程见附录2

4.3短路电流计算结果

短路电流计算结果表4所示:

5 电气设备的选择

5.1 kV 10侧设备选择及校验过程

5.1.1选择过程

(1)MW 50发电机最大持续工作电流

3

max

1.053608.439()A I

=

=

(2)kV 10出线最大持续工作电流

3max 72.169()I A =

=

=

(3)1号主变低压侧最大持续工作电流

3max 4948.788()I A =

==

根据以上计算数据,设备选择如下: ①kV 10断路器

查kV 10高压断路器技术数据,选择5000/104G SN -型断路器,其主要参数 额定开断电流kA 105,极限通过电流峰值kA 300,热稳定电流)5(120s kA 。

②kV 10隔离开关

查kV 10高压隔离开关技术数据,选择5000/1010T GN -型隔离开关,其主要参数 极限通过电流峰值kA 200,热稳定电流)5(100s kA 。 ③kV 10母线

()

3

max

3464

I A

==24.309

I k A

''=

查表,选用3条mm

mm10

125?矩形铝导体,竖放允许电流为4243A,8.1

=

f

k。

④kV

10出线电缆

选择kV

10普通粘性浸纸绝缘三芯电缆。

⑤kV

10出线电抗器

查kV

10电抗器技术数据,选择3

400

10-

-

-

NKL型电抗器,其主要参数

通过容量kVA

2310

3?。

5.2校验过程

由附录A中的短路电流计算可知,kV

10侧短路电流74.309

f

I kA

=,短路冲击电流

189.488

sh

i kA

=,故

2

22222

1074.309422087.309(KA)

122

k

k

t

k

K t f k

I

t

Q I I I t S

??

''??

=++=?=?=?

???

?

??

(1)断路器校验

热稳定校验:222

120572000(KA)

K

I t S Q

??

?=?=?>

??,满足热稳定要求。

动稳定校验:189.488

sh

i kA

=,300

es

i kA

=,es sh

i i>,满足动稳定要求。

(2)隔离开关校验

热稳定校验:222

100550000(KA)

K

I t S Q

??

?=?=?>

??,满足热稳定要求。

动稳定校验:189.488

sh

i kA

=,200

es

i kA

=,es sh

i i>,满足动稳定要求。

(3)母线校验

当环境温度为C

?

35时,查表得出温度修正系数0.88

K=,则

()

35

0.88424337343464

al c

I A

?

=?=>

热稳定校验。正常运行时导体温度

()()()

22

0022

3464

35703565

3734

mx

al

al

I

C

I

θθθθ

=+-=+-=?

查表89

=

C,则满足短路时发热的最小导体截面为

()2

min

546.22400

S mm

==<满足热稳定要求

动稳定校验。

()

0.1250.012700 3.375

m

m h b kg m

ρ

=??=??=

()

3364

120.010.12512 1.6310

J bh m

-

==?=?

()

10

710

E Pa

=?, 3.56

f

N=,()

150

f Hz

=

() max

2.08

L m ==

取 1.2

L m

=,0.75

a m

=

()

189.488

sh

i KA

=

()

72

1.73100.75828

2.25

ph sh

f i N m

-

=??=

()

2263

3.3 3.30.010.12541.2510

W b h m

-

==??=?

()

2

6

6

8282.25 1.2

28.9110

101041.2510

ph

ph

f L

Pa

W

δ

-

?

===?

??

()

6

7010

ph al

Pa

δδ

<=?,满足动稳定要求。

5.3选择设备过程与计算

选择设备过程与计算见附录2

5.4选择设备明细表

5.4.1 10kv侧主要电气设备:

5.4.2 110kv侧主要电气设备:

5.4.3 220kv侧主要电气设备:

5.5 电气设备清单:

6 设计总结

通过本次为期一周多的课程设计,我再一次认真的学习了《发电厂电气部分》这门学科及其相关学科,总结了从初学到现在的学习心得,感觉受益匪浅。

完成课程设计的过程中,我学习到如何从理论部分较好的过渡到实际设计当中,从分析原始资料到如何更加合理的选择可靠性高的接线方式、灵活性高的运行方式以及实用性强和经济性好的设计方案。在这之间,我仔细查阅了不少参考学习资料,根据我此次设计的内容和联系设备的一些实际参数情况进而选择主接线图和主变压器,虽然期间我也耗费了不少精力对其进行修改和变换,但却为后来的选择其他电器设备做好了铺垫,没有多走弯路,从而以简单易行的方式达到了设计的要求和目的。

最后,因为我个人的知识浅薄和对电气行业的认识有限,所以设计中的不完美处还

请老师多提宝贵建议。也在此感谢老师和同学对我的设计指导。

参考文献

[1] 熊信银.发电厂电气部分[M]. 北京:中国电力出版社,2009:55~106

[2] 楼樟达,李扬.发电厂电气设备[M]. 北京:中国电力出版社,1998:55~129,321~452

[3] 何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社,2002:152~195

[4] 西安交通大学等六院校.电力系统计算[M].北京:水利电力出版社,1999:25~65

[5] Ata https://www.360docs.net/doc/7011923870.html,werk Communications Technology(英文影印版) [M].北京:中国水利水电出版社,1997:10~69

[6]周强,易先举,汪祖禄.火力发电厂发电机—变压器组保护技术方案[J].电力系统自动化,1999,6:22~25

[7] 卓乐友.电力工程电气设计200例[M]. 北京:中国电力出版社,2004:65~125,158~362

附录 1

附录2

1 电抗计算

选取基准容量为100j MVA S =,j av U U =

j

S ————基准容量(MVA )

av

U

————所在线路平均电压(kV )

均采用标幺值算法,省去“*”。

1

0.117X

=,23

7

0.2X X

X

==

=,40.02958X =,50.07708X =,60.05875X =

8

2

3//0.2//0.20.1X X X === 98

10.1170.10.217X X

X =+=+= 10

6

70.05880.20.2588X

X

X =

+=+=

11

4

54510

0.1155X X X X X X

=++*= 124

104105

0.3876X X X X X X =++*= 13510510

4

1.0100X

X

X X X X

=

++*=

2 各母线上短路时短路电流的计算

2.1 kV 10母线上发生短路时(1d 点)短路电流的计算 将系统电抗图简化并计算:

220kV

x 10

G 3

图4

1

d 点短路时等值电路电抗化简图

14

1

4

100.1170.029580.25880.4054X

X X

X =

++=++=

1

128

14

1.08 1.1

1.080.1 1.113.5134f I

I I X

X

=+=+=+=

2.2 kV 110母线上发生短路时(2d 点)短路电流的计算 将系统电抗图简化并计算:

3

图5

2

d 点短路时等值电路电抗化简图

3325.01155.0217.011

9

15

=+=+=

X

X X

3372.401.11.13325.008.11

.108.113

15

432

=+=+=+=X

X

I I I

f

2.3 kV 220母线上发生短路时(3

d 点)短路电流的计算 将系统电抗图简化并计算:

G 1.2

G 3

图6

d

3

点短路时等值电路电抗化简图

16

4

100.029580.25880.2884X

X

X =

+=+=

3

569

16

1.08 1.1

1.080.217 1.10.2884 3.8141f I

I I X

X

=+=+=+=

3各母线上短路点电流的折算

3.1各点基准电流:

d 1点:()

()

12

12

11

100

10.5 5.49863

3

B B

B kA S U

I ==?=

d 2点:))

12

12

22

1001150.50233

B B B kA S U

I ==?=

d 3点:()()

12

12

33

1002300.2513

3

B B

B kA S U

I ==?=

3.2各点电流:

1

d 点:1

1

74.3f B f kA I

I I =*= 2

d 点: 22

2.18f B f kA I

I I

=*= 3

d 点: 3

3

2.21f B f kA I

I I

=*=

3.3各点冲击电流:

1

d 点:1

1

2.5574.3f M kA i

I =*= 2

d 点: 2

2 2.55 2.18f M kA i

I =*= 3

d 点: 3

3 2.55 2.21f M kA i

I

=*=

附录3

1 kV 110侧设备选择及校验过程

1.1选择过程

2号主变压器kV 110侧最大持续工作电流

3max 629.837()I A =

==,kV

110出线最大持续工作电流

3max 380.526()I A =,根据以上计算数据,设备选择如下:

(1)kV 110断路器

查kV 110高压断路器技术数据,选择1000/1104-SW 型断路器,其主要参数 额定开断电流kA 4.18,极限通过电流峰值kA 55,热稳定电流)5(21s kA 。

(2)kV 110隔离开关

查kV 110高压隔离开关技术数据,选择801000/1104--D SW 型隔离开关,其主要参数

极限通过电流峰值kA 80,热稳定电流)5(5.21s kA 。 (3)kV 110母线

()3max 360I A =

=

=

2.177I A ''=

查表,选用单条mm mm 450?矩形铝导体,竖放允许电流为586A,1=f k 。 1.2校验过程

由附录1中短路电流计算可知,kV 110侧短路电流 2.177f I kA =,短路冲击电流

5.551sh I kA =,故

22

222210 2.177418.957(KA)122k k t k K t f k I t Q I I I t S ??''??=++=?=?=? ??? ???

。 (1)断路器校验

热稳定校验:2222152205(KA)K I t S Q ???=?=?>??,满足热稳定要求。

动稳定校验: 5.551sh i kA =,55es kA i =,es sh i i >,满足动稳定要求。 (2)隔离开关校验

热稳定校验:2

22

21.552311.25(KA)K I t S Q ???=?=?>??,满足热稳定要求。

动稳定校验: 5.551sh i kA =,80es kA i =,es sh i i >,满足动稳定要求。

当环境温度为C ?35时,查表得出温度修正系数88.0=K ,则

()350.88586515.68360al c I A ?=?=>

热稳定校验。正常运行时导体温度

()()()22

0022

36035703552515.68mx al al I C I θθθθ=+-=+-=?

查表94=C ,则满足短路时发热的最小导体截面为

()2min 46.3200S mm ==<,满足热稳定要求

动稳定校验。

()0.050.00427000.54m m h b kg m ρ=??=??=

()3364120.0040.05120.041610J bh m -==?=?

()10710E Pa =?, 3.56f N =,()150f Hz =

()max 1.3L m =

== 取 1.2L m =,0.75a m =

()5.551sh i KA =

()72

1.73107.1ph sh f i N m -=??=

()226360.0040.05 1.6710W bh m -==?=?

()2

667.1 1.20.613101010 1.6710

ph ph

f L

Pa W δ-?===??? ()67010ph al Pa δδ<=?,满足动稳定要求。

2 220kv 侧设备选择及校验过程

2.1选择过程

2号主变压器kV 220侧最大持续工作电流

3max 314.918()I A =

==,kV

220出线最大持续工作电流

3

max 22024322006%10433.013()I A ---??=

=

=,根据以上计算过程,设备选择

如下:

(1)kV 220断路器

查kV 220高压断路器技术数据,选择1000/2204-SW 型断路器,其主要参数 额定开断电流kA 4.18,极限通过电流峰值kA 55,热稳定电流)5(21s kA 。

查kV 220高压隔离开关技术数据,选择801000/2204--D GW 型隔离开关,其主要参数

极限通过电流峰值kA 80,热稳定电流)4(7.23s kA 。 (3)kV 220母线

()3max 433I A =

=

=

2.2068I k A ''=

查表,选用单条504mm mm ?矩形铝导体,竖放允许电流为586A,1f k =。 2.2校验过程

根据附录1中短路电流计算可知,kV 220侧短路电流 2.207f I kA =,短路冲击电流

5.627sh I kA =,故

22

222210 2.207419.483(KA)122k k t k K t f k I t Q I I I t S ??''??=++=?=?=? ??? ???

。 (1)断路器校验

热稳定校验:2222152205(KA)K I t S Q ???=?=?>??,满足热稳定要求。

动稳定校验: 5.627sh i kA =,18.4es i kA =,es sh i i >,满足动稳定要求。 (2)隔离开关校验

热稳定校验:22223.752246.76()K I t KA S Q ???=?=?>??,满足热稳定要求。

动稳定校验: 5.627sh i kA =,80es i kA =,es sh i i >,满足动稳定要求。 (3)母线校验

当环境温度为C ?35时,查表得出温度修正系数0.88K =,则

()350.88586515.68433al c I A ?=?=>

热稳定校验。正常运行时导体温度

()()()22

0022

43335703560515.68mx al al I C I θθθθ=+-=+-=?

查表91C =,则满足短路时发热的最小导体截面为

()2min 48.5200S mm ==< ,满足热稳定要求

动稳定校验。

()0.050.00427000.54m m h b kg m ρ=??=??=

()3364120.0040.05120.041610J bh m -==?=?

()10710E Pa =?, 3.56f N =,

()Hz f 150=

火电厂电气部分设计

发电厂电气部分课程设计 设计题目火力发电厂电气主接线设计 指导教师 院(系、部) 专业班级 学号 姓名 日期

课程设计标准评分模板课程设计成绩评定表

发电厂电气部分 课程设计任务书 一、设计题目 火力发电厂电气主接线设计 二、设计任务 根据所提供的某火力发电厂原始资料(详见附1),完成以下设计任务: 1. 对原始资料的分析 2. 主接线方案的拟定 3. 方案的经济比较 4. 主接线最终方案的确定 三、设计计划 本课程设计时间为一周,具体安排如下: 第1天:查阅相关材料,熟悉设计任务 第2 ~ 3天:分析原始资料,拟定主接线方案 第4天:方案的经济比较 第5 ~ 6天:绘制主接线方案图,整理设计说明书 第7天:答辩 四、设计要求 1. 设计必须按照设计计划按时完成 2. 设计成果包括设计说明书(模板及格式要求详见附2和附3)一份、主接线方案图(A3)一张 3. 答辩时本人务必到场 指导教师: 教研室主任: 时间:2013年1月13日

设计原始数据及主要内容 一、原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 10.5kV),凝汽式机组2 ? 300MW(U N = 15.75kV),厂用电率6%,机组年利用小时T max = 6500h。 系统规划部门提供的电力负荷及与电力系统连接情况资料如下: (1) 10.5kV电压级最大负荷23.93MW,最小负荷18.93MW,cos?= 0.8,电缆馈线10回; (2) 220kV电压级最大负荷253.93MW,最小负荷203.93MW,cos?= 0.85,架空线5回; (3) 500kV电压级与容量为3500MW的电力系统连接,系统归算到本电厂500kV母线上的电抗标么值x S* = 0.021(基准容量为100MV A),500kV架空线4回,备用线1回。 二、主要内容 1. 对原始资料的分析 2. 主接线方案的拟定 (1) 10kV电压级 (2) 220kV电压级 (3) 500kV电压级 3. 方案的经济比较 (1) 计算一次投资 (2) 计算年运行费 4. 主接线最终方案的确定

火力发电厂电气主接线设计教学提纲

火力发电厂电气主接 线设计

原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 6.3kV),凝汽式机组2 ? 100MW(U N = 10.5kV),厂用电率6.2%,机组年利用小时 T max = 6500h。 系统规划部门提供の电力负荷及与电力系统连接情况资料如下: (1) 6.3kV电压级最大负荷30MW,最小负荷25MW,cos? = 0.8,电缆馈线10回; (2) 220kV电压级最大负荷260MW,最小负荷210MW,cos? = 0.85,架空线5回; (3) 500kV电压级与容量为3500MWの电力系统连接,系统归算到本电厂500kV母线上の电抗标么值x S* = 0.021(基准容量为100MVA),500kV架空线4回,备用线1回。

摘要 根据设计要求,本课程设计是对2*100MW+2*50MWの发电厂进行电气主接线进行设计。首先对给出の原始资料和数据进行分析和计算,对发电厂の工程情况和电力系统の情况进行了解。在设计过程中根据发电厂の各部分厂用电の要求,设计发电厂の各电压等级の电气主接线并选择各变压器の型号;进行参数计算,设计两个及以上の方案,进行方案の经济比较最后对厂用电の电气主接线の方案进行确定。 关键词:发电厂主接线变压器

目录 1 前言 (1) 2 原始资料分析 (1) 3 主接线方案の拟定 (2) 3.1 6.3kV电压级 (2) 3.2 220kV电压级 (2) 3.3 500kV电压级 (3) 3.4主接线方案图 (3) 4 变压器の选择 (4) 4.1 主变压器 (4) 4.2 联络变压器 (5) 5 方案の经济比较 (6) 5.1 一次投资计算 (6) 6 主接线最终方案の确定 (7) 7 结论 (8) 8 参考文献 (9)

火力发电厂电气主接线设计

辽宁工程技术大学 发电厂电气部分课程设计 设计题目火力发电厂电气主接线设计 指导教师 院(系、部)电气与控制工程学院 专业班级 学号 姓名 日期

课程设计成绩评定表

原始资料 某火力发电厂原始资料如下:装机4台,分别为供热式机组2?50MW(U N= 10.5kV),凝汽式机组2?600MW(U N = 20kV),厂用电率6.5%,机组年利用小时Tmax = 6500h。 系统规划部门提供的电力负荷及与电力系统连接情况资料如下: (1) 10.5kV电压级最大负荷26.2MW,最小负荷21.2MW,cos? = 0.8,电缆馈线10回; (2) 220kV电压级最大负荷256.2MW,最小负荷206.2MW,cos? = 0.85,架空线5回; (3) 500kV电压级与容量为3500MW的电力系统连接,系统归算到本电厂500kV母线上的电抗标么值x S* = 0.021(基准容量为100MVA),500kV架空线4回,备用线1回。

本设计是电厂主接线设计。该火电厂总装机容量为2 ? 50+2 ? 600=1300MW。厂用电率6.5%,机组年利用小时T max = 6500h。根据所给出的原始资料拟定两种电气主接线方案,然后对这两种方案进行可靠性、经济性和灵活性比较后,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和道题的选择校检设计。在对发电厂一次系统分析的基础上,对发电厂的配电装置布置做了初步简单的设计。此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。 关键字:电气主接线;火电厂;设备选型;配电装置布置

发电厂主接线设计

目录 一、题目分析 (1) 二、电气主接线方案比较 (1) 三、短路电流计算 (4) 四、电气设备的选择 (12) 五、电气主接线图 (22)

一、题目分析 某水库电站是一座以灌溉为主,兼顾发电的季节性电站,冬、春季有三个多月因水库不放水或放水量少,电站停止运行不发电。电站设计容量为三台立式机组,总装机 2000KW ( 2 × 800KW+1 × 400KW ),装机年利用小时为 3760h ,多年平均发电量为 752 万 KW.h 。根据金塔县的用电负荷情况,该电站距城南变电所较近,因此,除厂用电外全部电能就近送至城南 35KV 变电所联入系统。 鉴于以上特点,本电站电气主接线采用三台发电机两台变压器,高压侧送电电压为35KV,一回出线。 二、电气主接线方案比较 方案一:3台发电机共用一根母线,采用单母线接线不分段; 设置一台变压器; 方案二:1、2号发电机-变压器扩大单元接线;3号发电机-变压器单元接线; 设置了2台变压器; 35KV线路采用单母线接线不分段。

电气主接线方案比较: (1)供电可靠性 方案一供电可靠性较差; 方案二供电可靠性较好。 (2)运行上的安全和灵活性 方案一母线或母线侧隔离开关故障或检修时,整个配电装置必须退出运行,而任何一个断路器检修时,其所在回路也必须退出运行,灵活性也较差; 方案二1、2号发电机-变压器扩大单元接线与3号发电机-变压器单元接线相配合,使供电可靠性大大提高,提高了运行的灵活性。 (3)接线简单、维护和检修方便 很显然方案一最简单、维护和检修方便。 (4)经济方面的比较 方案一最经济。 各种方案选用设备元件数量及供电性能列表:

火力发电厂电气部分设计

毕业设计论文 论文题目:300MW机组火力发电厂电气部分设计

摘要 由发电、变电、输电、配电用电等环节组成的电能生产与消费系统它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经过输、变电系统及配电系统将电能供应到各负荷中心。 电气主接线反映了发电机、变压器、线路、断路器和隔离开关等有关电气设备的数量、各回路中电气设备的连接关系及发电机、变压器与输电线路、负荷间以怎样的方式连接,直接关系到电力系统的可靠性、灵活性和安全性,直接影响发电厂、变电所电气设备的选择,配电装置的布置,保护与控制方式选择和检修的安全与方便性。而且电能的使用已经渗透到社会、经济、生活的各个领域,而在我国电源结构中火电设备容量占总装机容量的75%。本次设计是针对一台300MW机组火力发电厂电气部分的设计。在本次毕业论文设计当中介绍了有关发电厂的一些电气设备如发电机、变压器、断路器、电压互感器、电流互感器和电动机等以及介绍了主变的选择和短路电流的计算条件,最后介绍防雷的重要性以及防雷的有效措施。因此,我们在电厂以后的工作当中一定要时刻保持安全和认真的态度。 本文对发电厂的主要一次设备进行了选择,并根据短路电流计算,通过电器设备的短路动稳定、热稳定性对主要设备进行了校验。在主接线设计中,我们把两种接线方式在经济性,灵活性,可靠性三个方面进行比较,最后选择双母线接线方式。 关键词:电气设备,发电机,变压器,电力系统, ABSTRACT By power、generation、substation,、transmission and distribution of electricity, electricity production and consumption system, its functio n is the nature of primary energy into electricity by electric power equipment, after losing, substation and power distribution system will be power supply to the load center. Reflects the main electrical wiring generators, transformers, lines, the number of circuit breaker and isolating switch and related electrical equipment, electrical equipment in each circuit connection relationship and generator, transformer and transmission lines, in which way the load between connections, is directly related to reli ability, flexibility and security of power system, directly affect the choice of the electrical

30MW热电厂电气主接线设计

摘要 电气主接线系统是关乎发电厂运行安全的重要一环,系统设计必须做到安全可靠、运行切换灵活、检修方便、减少投资及占地。本文对某30MW机组电气主接线和厂用分支系统进行了讨论,确定了电压等级,优选了设计方案,对主要设备、导体进行了初步选型。并作出了电气主接线系统和厂用电系统的原则性系统图。 关键词:电气主接线,厂用分支,设计方案

目录 第1章前言 (1) 1.1 电气主接线的设计、意义…………………………………………………………错误!未定义书签。 1.2 厂用电接线的设计、和意义 (1) 1.3 本文的主要工作 (2) 第2章电气主接线设计的要求及方案确定 (2) 2.1 电气主接线设计的要求 (2) 2.1.1保证必要的供电可靠性 (2) 2.1.2保证电能质量 (2) 2.1.3具有一定的灵活性和方便性 (2) 2.1.4具有一定的经济性 (3) 2.2 电气主接线方案的确定 (3) 2.2.1不分段单母线接线型式 (3) 2.2.2单母线分段接线 (3) 2.2.3 单母线分段带旁路接线 (4) 2.3 电气主接线方案的论证 (4) 第3章厂用电系统的方案选择及论证 (5) 3.1 厂用电源方案设计 (5) 3.1.1厂用电压等级的选择 (5) 3.1.2 高压厂用电接线方案 (5) 3.1.3低压厂用电接线设计 (5) 3.1.4全厂辅助系统厂用电接线 (5) 3.2 厂用电接线方案的论证 (6) 第4章主要设备选型 (6) 4.1 发电机的选择 (6) 4.2主变压器的选择 (6) 4.2.1主变压器容量的选择 (6) 4.1.2主变型式的选择 (7) 4.3 高压启动、备用变压器 (7) 4.4电抗器的选择 (8) 4.5 导体的选择 (8) 第5章结论 (9) 参考文献 (10) 致谢 (11) 附录1电气主接线图 (12) 附录2厂用电接线图 (13)

某水电站电气主接线设计毕业设计(论文)word格式

前言 电力系统是由发电厂、变电站、线路和用户组成。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。把变压器、断路器等按预期生产流程连成的电路,称为电气主接线。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图,称为主接线电路图。 一、主接线的设计原则和要求 主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。由于电能生产的特点是发电、变电、输电和用电是在同一时刻完成的,所以主接线设计的好坏,也影响到工农业生产和人民生活。因此,主接线的设计是一个综合性的问题。必须在满足国家有关技术经济政策的前提下,正确处理好各方面的关系,全面分析有关影响因素,力争使其技术先进、经济合理、安全可靠。 Ⅰ. 电气主接线的设计原则 电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 1.接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少或不用断路器的接线,如线路—变压器组或桥形接线等。若能满足继电保护要求时,也可采用线路分支接线。在110-220KV 配电装置中,当出线为2 回时,一般采用桥形接线;当出线不超过4 回时,一般采用分段单母线接线。在枢纽变电站中,当110-220KV 出线在4 回及以上时,一般采用双母接线。在大容量变电站中,为了限制6-10KV 出线上的短路电流,一般可采用下列措施:

3×100-MW火力发电厂电气部分设计资料讲解

目录 摘要 ............................................................................................................................... - 2 -1 绪论 ............................................................................................................................... - 3 - 1.1 设计任务的内容 ................................................................................................ - 3 - 1.2 设计的目的 ........................................................................................................ - 3 - 1.3 设计的原则 ........................................................................................................ - 3 - 2 主接线方案的确定 ....................................................................................................... - 4 - 2.1 主接线方案拟定 ................................................................................................ - 4 - 2.2 主接线方案 ........................................................................................................ - 4 - 2.3 主接线方案确定 ................................................................................................ - 6 - 3 厂用电的设计 ............................................................................................................... - 7 - 3.1 厂用电源选择 .................................................................................................... - 7 -设计总结 ........................................................................................................................... - 8 -参考文献 ........................................................................................................................... - 9 -

电气主接线设计原则和设计程序

电气主接线设计原则和设计程序 4.5.1电气主接线的设计原则 电气主接线的设计是发电厂或变电站电气设计的主体。它与电力系统、电厂动能参数、基本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。因此,主接线设计,必须结合电力系统和发电厂或变电站的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理地选择主接线方案。 电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 在工程设计中,经上级主管部门批准的设计任务书或委托书是必不可少的。它将根据国家经济发展及电力负荷增长率的规划,给出所设计电厂(变电站)的容量、机组台数、电压等级、出线回路数、主要负荷要求、电力系统参数和对电厂(变电站)的具体要求,以及设计的内容和范围。这些原始资料是设计的依据,必须进行详细的分析和研究,从而可以初步拟定一些主接线方案。国家方针政策、技术规范和标准是根据国家实际状况,结合电力工业的技术特点而制定的准则,设计时必须严格遵循。设计的主接线应满足供电可靠、灵活、经济、留有扩建和发展的余地。设计时,在进行论证分析阶段,更应合理地统一供电可靠性与经济性的关系,以便于使设计的主接线具有先进性和可行性。 4.5.2 电气主接线的设计程序 电气主接线的设计伴随着发电厂或变电站的整体设计进行,即按照工程基本建设程序,历经可行性研究阶段、初步设计阶段、技术设计阶段和施工设计阶段等四个阶段。在各阶段中随要求、任务的不同,其深度、广度也有所差异,但总的设计思路、方法和步骤基本相同。 电气主接线的设计步骤和内容如下: 1.对原始资料分析 (1)工程情况,包括发电厂类型(凝汽式火电厂,热电厂,或者堤坝式、引

(完整版)火电厂电气一次部分毕业设计论文

题目:火电厂电气一次部分毕业设计

学院:信息电子技术学院年级: 专业:电气工程及其自动化姓名: 学号:

摘要 发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。 在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。 本设计是电气工程及其自动化专业学生毕业前的一次综合设计,它是将本专业所学知识进行的一次系统的回顾和综合的利用。设计中将主要从理论上在电气主接线设计,短路电流计算,电气设备的选择,配电装置的布局,防雷设计,发电机、变压器和母线的继电保护等方面做详尽的论述,并与三河火力发电厂现行运行情况比较,同时,在保证设计可靠性的前提下,还要兼顾经济性和灵活性,通过计算论证该火电厂实际设计的合理性与经济性。在计算和论证的过程中,结合新编电气工程手册规范,采用CAD软件绘制了大量电气图,进一步完善了设计。 关键字主接线设计;短路电流;配电装置;电气设备选择;继电保护

Power plants is an important part of power system, and also affect the safety of the whole power system with operation. In power plant, a wiring and secondary wiring is the important part of electrical part. This design is the electrical engineering and automation of professional students before graduation design, it is a comprehensive professional knowledge learnt this a systematic review and comprehensive utilization. Design mainly from theory will in the main electrical wiring design, short-circuit current calculation, electrical equipment choice, power distribution equipment layout, lightning protection design, generator, transformer and busbar protection etc, and a detailed discussion with the current operation sanhe coal-fired power plants, meanwhile, in comparison to ensure that the design reliability premise, even give attention to two or morethings economy and flexibility, through calculation demonstrates that the practical rationality of the design of power with economy. In the process of calculation and argumentation, combined with the new electric engineering manuals, using CAD software standard drawing a lot of electrical diagrams, further improve the design. Keywords Lord wiring design; Short-circuit current; Distribution device; Electrical equipment selection; Relay protection

关于火力发电厂的电气一次系统设计方法分析

关于火力发电厂的电气一次系统设计方法分析 摘要电是支持人们生产经营活动顺利开展的重要支柱,随着我国社会经济的飞速发展,对于电力的需求逐渐增大,极大程度上提升了电能资源生产压力。当前,我国仍以火力发电的方式为主,因此,为提升发电质量和效率,保障电力运输的稳定性,应加大对火力发电厂中电力一次系统设计的重视程度,注意设备之间的连接方式,通过引进先进电气一次系统设计理念等方式,创新火力发电程序,转变传统火电厂发电模式。本文从选择发电机、主变压器等五个方面重点分析电气一次系统设计的方式。 关键词电力一次系统;发电机;变压器;接线方式 火力发电仍是我国主要的发电方式,因此,应重视对火力发电厂的建设,电气一次系统作为发电厂运行过程中重要组成部分,不仅直接关系着发电厂工作模式,也影响着整体工作效率。工作人员需结合发电厂实际情况,创新电气一次系统的设计方式,在设计过程中必须严格遵循我国相关标准,并不断引进先进接线方式和电气设备,做好电气一次系统的日常维护,确保火力发电厂的顺利运行。 1 选择合适的发电机 一次设备是电力系统的主体,主要是指直接生产、运送、调配电能的设备[1],发电机是其中重要组成部分,在设计电力一次系统时,应根据火力发电厂的实际供电范围,选择恰当的发电机容量,须坚持与发电厂汽轮机容量相一致的原则,具体包括以下几方面:首先,根据发电厂的额定电压、功率因数确定发电机型号与容量;其次,有机统一汽轮机额定出力能与发电机额定容量;接着,保障汽轮机最大连续容量与发电机最大连续容量相协调;最后,确保冷却器(发电机零部件)进水温度与汽轮机冷却水的温度相一致[2]。发电机的选择应同时满足以上四个原则,使其更好地运行,进而提升发电厂整体工作效率和经济效益。 2 选择恰当的主变压器 选择主变压器主要与机组容量有关,不同的机组容量,主变压器的形式也有所不同,具体包括以下三种形式,如表1所示[3]: 从表1中可知,主变压器共有两种形式,即单相变压器与三相变压器,在选择单相变压器时,应注意其备用相的设置原则:当系统中的安装机组≦2台时,可不设置备用相;当系统中的安装机组≧3台时[4],应设置一台或一台以上的备用相,但需要注意的是,如果发电厂附近有企业所属电厂已经设置备用相(同等参数),也可以不在系统中设置备用相。 连接主变压器设备和发电机设备采取单元的方式,因此,在确定主变压器本身容量时,应注意遵循以下原则:主变压器本身容量=发电机最大连续容量-常用工作变压器计算负荷。

发电厂电气部分课程设计主接线设计

1 需求分析 1.1主接线设计依据 1.1.1变电所在系统中的地位 变电所在电力系统中的地位和作用是决定电气主接线的主要因素。变电所有枢纽变电所(电压等级为330~500kv)、地区变电所(电压等级为220~330kv)、一般(终端)变电所(电压等级为100kv)三类,由于它们在电力系统中的地位和作用不同,对其电气主接线的可靠性、灵活性和经济性的要求也不同。 由原始设计参数知本设计变电所为110kv一般性变电所。 1.1.2变电所近远期发展规模 变电所电气主接线的设计,应根据5-10年电力发展规划进行。根据负荷的 大小、分布、增长速度,根据地区网络情况和潮流分布,分析各种可能的运行方式,来确定电气主接线的形式以及连接电源数和出线回数。一般装设两台主变压器。 1.1.3 负荷大小和重要性 对一级负荷,必须有两个独立电源供电,且当一个电源失去后,应保证全部一级负荷不间断供电;对二级负荷,一般要有两个电源供电,且当一个电源失去后,应保证大部分二级负荷供电;三级负荷一般只需要一个电源供电。 由原始设计参数知本设计110kv变电所一二级负荷占50%以上,所以主接线必须保证一二类负荷的可靠性。 1.1.4系统备用容量 装有2台(组)及以上主变压器的变电所,其中一台(组)主变压器事断开,其余主变压器的容量应保证70%的全部负荷,在计及过负荷能力后的允许时间内,应保证一二级用户负荷。 1.2主接线基本要求 根据有关规定:变电站电气主接线应根据变电站在电力系统的地位,变电站的规划容量,负荷性质线路变压器的连接、元件总数等条件确定。并应综合考虑供电可靠性、运行灵活、操作检修方便、投资节约和便于过度或扩建等要求。 1.2.1 供电可靠性

中型发电厂电气主接线设计

电气主接线设计 1.1对原始资料的分析 设计电厂为中型凝汽式电厂,其容量为2×100+2×300=800MW,占电力系统总容量800/(3500+800)×100%=18.6%,超过了电力系统的检修备用8%~15%和事故备用容量10%的限额,说明该厂在未来电力系统中的作用和地位至关重要,但是其年利用小时数为5000h,小于电力系统电机组的平均最大负荷利用小时数(2006年我国电力系统发电机组年最大负荷利用小时数为5221h)。该厂为凝汽式电厂,在电力系统中将主要承担腰荷,从而不必着重考虑其可靠性。 从负荷特点及电压等级可知,10.5kV电压上的地方负荷容量不大,共有6回电缆馈线,与100MW 发电机的机端电压相等,采用直馈线为宜。300MW发电机的机端电压为20kV,拟采用单元接线形式,不设发电机出口断路器,有利于节省投资及简化配电装置布置;110kV电压级出线回路数为5回,为保证检修出线断路器不致对该回路停电,拟采取双母线带旁路母线接线形式为宜;220kV与系统有4回路线,送出本厂最大可能的电力为800-200-25-800×8%=511MW,拟采用双母线分段接线形式。 1.2主接线方案的拟定 在对原始资料分析的基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。 发电、供电可靠性是发电厂生产的首要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因而根据对原始资料的分析,现将主接线方案拟订如下: (1)10.5kV电压级:鉴于出线回路多,且发电机单机容量为100MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线接线形式,2台100MW机组分别接在母线上,剩余功率通过主变压器送往高一级电压110kV。由于两台100MW机组均接于10.5kV母线上,有较大短路电流,为选择轻型电器,应在各条电缆馈线上装设出线电抗器。 (2)110kV电压级:出线回数大于4回,为保证检修出线断路器不致对该回路停电,采取双母线带旁路母线接线形式,以保证其供电的可靠性和灵活性。 (3)220kV电压级:出线4回,考虑现在断路器免维护减小投资,采用双母线分段接线。通过两台三绕组变压器联系10.5kV及110kV电压,以提高可靠性。2台300MW机组与变压器组成单元接线,直 页脚内容2

火力发电厂电气主接线设计

原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 6.3kV),凝汽式机组2 ? 100MW(U N = 10.5kV),厂用电率6.2%,机组年利用小时T max = 6500h。 系统规划部门提供の电力负荷及与电力系统连接情况资料如下: (1) 6.3kV电压级最大负荷30MW,最小负荷25MW,cos? = 0.8,电缆馈线10回; (2) 220kV电压级最大负荷260MW,最小负荷210MW,cos? = 0.85,架空线5回; (3) 500kV电压级与容量为3500MWの电力系统连接,系统归算到本电厂500kV母线上の电抗标么值x S* = 0.021(基准容量为100MVA),500kV架空线4回,备用线1回。

根据设计要求,本课程设计是对2*100MW+2*50MWの发电厂进行电气主接线进行设计。首先对给出の原始资料和数据进行分析和计算,对发电厂の工程情况和电力系统の情况进行了解。在设计过程中根据发电厂の各部分厂用电の要求,设计发电厂の各电压等级の电气主接线并选择各变压器の型号;进行参数计算,设计两个及以上の方案,进行方案の经济比较最后对厂用电の电气主接线の方案进行确定。 关键词:发电厂主接线变压器

1 前言 (1) 2 原始资料分析 (1) 3 主接线方案の拟定 (2) 3.1 6.3kV电压级 (2) 3.2 220kV电压级 (2) 3.3 500kV电压级 (2) 3.4主接线方案图 (2) 4 变压器の选择 (4) 4.1 主变压器 (4) 4.2 联络变压器 (5) 5 方案の经济比较 (6) 5.1 一次投资计算 (6) 6 主接线最终方案の确定 (7) 7 结论 (8) 8 参考文献 (9)

2×600MW火电厂电气部分设计

学业作品题目:2×600MW火电厂电气部分设计 学院:机电学院 班级:电力201301班 姓名:李超 学号:201308011107 指导老师:姜永豪 完成日期年月日

目录 摘要........................................................ III III第一章前言. (1) 1.1 电力工业的发展概况 (1) 1.2 本次课设的主要问题及应达到的技术要求 (1) 第二章电气主接线设计 (2) 2.1 对原始资料的分析 (2) 2.2 主接线方案 (3) 2.3比较并确定主接线方案 (3) 第三章变压器的选择 (5) 3.1 主变压器选择 (5) 3.2 短路电流分析计算 (6) 3.3 短路电流计算目的及规则................. 错误!未定义书签。 3.4短路等值电抗电路 (7) 3.5各短路点短路电流计算 (8) 第四章电气设备的选择 (12) 4.1电气设备选择概述 (12) 4.2电气设备选择的一般原则及校验内容 (12) 4.3 断路器和隔离开关的选择 (12) 4.4母线、电缆的选择 (16) 4.5发电机出口处电抗器选择 (17) 第五章配电装置 (12) 5.1屋内配电装置 (12) 5.2屋外配电装置 (12) 第六章防雷设计 (12) 致谢 (19) 结论 (19) 参考文献 (19)

摘要 火力发电是现在电力发展的主力军,在现在提出和谐社会,循环经济的环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不可再生能源的影响,虽然现在在我国已有部分核电机组,但火电仍占领电力的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电技术必须不断提高发展,才能适应和谐社会的要求。 “十五”期间我国火电建设项目发展迅猛。2001年至2005年8月,经国家环保总局审批的火电项目达472个,装机容量达344382MW,其中2004年审批项目135个,装机容量107590MW,比上年增长207%;2005年1至8月份,审批项目213个,装机容量168546MW,同比增长420%。随着中国电力供应的逐步宽松以及国家对节能降耗的重视,中国开始加大力度调整火力发电行业的结构。 关键词:火力发电;火电厂;电气部分设计

《发电厂电气部分》含答案版

发电厂电气部分》复习 第一章能源和发电 1、火、水、核等发电厂的分类 依据一次能源的不同,发电厂可分为:火力发电厂、水力发电厂、核电厂、风力发电厂等。 火电厂的分类: (1)按蒸汽压力和温度分:中低压发电厂,高压发电厂,超高压发电厂,亚临界压力发电厂,超临界压力发电厂。 (2)按输出能源分:凝汽式发电厂,热电厂 (3)按原动机分:凝汽式汽轮发电厂,燃气轮机发电厂,内燃机发电厂,蒸汽-- 燃气轮轮机发电厂。 水力发电厂的分类: 按集中落差的方式分类:堤坝式水电厂(坝后式,河床式),引水式水电厂,混合式水电厂。 (2)按径流调节的程度分类:无调节水电厂,有调节水电厂(根据水库对径流的调节程度:日调节水电厂,年调节水电厂,多年调节水电厂)。 核电厂的分类:压水堆核电厂,沸水堆核电厂。

2、抽水蓄能电厂的作用 调峰,填谷,调频,调相,备用。 3、火电厂的电能生产过程及其能量转换过程P14 火电厂的电能生产过程概括的说是把煤中含有的化学能转变为电能的过程。整个过程可以分为三个系统:1、燃料的化学能在锅炉燃烧中转变为热能,加热锅炉中的水使之变为蒸汽,称为燃烧系统;2、锅炉中产生的蒸汽进入汽轮机,冲动汽轮机转子旋转,将热能转变为机械能,称为汽水系统;3、由汽轮机转子旋转的机械能带动发电机旋转,把机械能变为电能,称为电气系统。 能量的转换过程是:燃料的化学能-热能-机械能-电能。 4、水力发电厂的基本生产过程答:基本生产过程是:从河流较高处或水库内引水,利用水的压力或流速冲动水轮机旋转,将水能转变成机械能,然后由水轮机带动发电机旋转,将机械能转换成电能。 第二章发电、变电和输电的电气部分 1、一次设备、二次设备的概念 一次设备:通常把生产、变换、输送、分配和使用电能的设备,如发电机、变压器和断路器等称为一次设备 二次设备:对一次设备和系统的运行状态进行测量、控制、监视和保护的设备,称二次设

我的火力发电厂电气部分毕业设计

我的火力发电厂电气部分毕业设计 一设计的原始资料 1 凝气式发电厂 ⑴凝气式发电机组3台:3*200MW;出口电压:15.75KV; 发电机次暂态电抗:0.125;额定功率因数:0.87。 ⑵机组年利用小时数:T max=6000小时。 ⑶厂用电率:6%。 ⑷发电机出口处主保护动作时间取0.1秒。 ⑸环境温度:最高温度40o C,年平均气温20 o C。 2 发电厂出线 220KV出线3回,两回经15KM架空在A1变电站220KV母线与系统连接,另一回经10KM架空在A2变电站220KV母线与系统连接,A1和A2两变电站220KV母线经15KM一回架空连接。正常时A1和A2断开运行。 3 电力系统情况 220KV系统容量为无穷大,选基准容量100MVA归算到A1变电站220KV母线短路容量为(A1和A2断开)2500MVA;归算到A2变电站220KV母线短路容量为(A1和A2断开)2000MVA。 二设计的任务与要求 1 设计的任务 ⑴电气主接线方案设计。 ⑵短路电流计算。 ⑶电气设备选择。 ⑷发电机电压母线选择。 2 设计要求 ⑴电气主接线方案设计应合理,主接线方案论证与比较不能少于两个方案。 ⑵短路电流及电气设备选择计算方法应正确。 ⑶主接线图形符号,线条及图签符合规,接线正确,图面布局合理,参数标注正确,图形清晰美观。 ⑷论文格式应符合要求,结构严谨,逻辑性强,层次分明,文理通顺,无错别字,要求打印,统一用A4纸。 ⑸独立完成,严禁抄袭或请人代作。 ⑹按分配时间阶段完成相应任务。

三重点研究问题 电气主接线,电气设备选择。 四设计(论文)成果要求 1 毕业设计论文说明书及计算书 装订次序: (1)毕业设计(论文)任务书(抄录原件有关容); (2)目录; (3)毕业设计(论文)正文。 正文包括方案论证(变压器选择、技术论证和经济比较)、短路计算图表、电气设备选择(高压开关电器、互感器、避雷器、母线等)及设备表、结论和体会。 (4)计算书 2 发电厂电气主接线图、短路电流计算接线及等效阻抗图、220KV开关站纵剖面图、发电厂继电保护图(要求计算机绘图[A3]各一份和手工绘图[1号图纸] 发电厂电气主接线图一份)。 3 参考文献 [1] 熊银信主编发电厂电气部分(第三版)中国电力 2004.8 [2] 西北电力电力工程电气一次设计手册水利电力 1989 [3] 西北电力电力工程电气二次设计手册水利电力 1989 [4] 珩主编电力系统稳态分析中国电力 1998 [5] 光琦主编电力系统暂态分析中国电力 2002 [6] 贺家宋从矩合编电力系统继电保护 2003 4 专业文献(汉字要求3000字以上) 四时间安排 本次设计时间共12周,各部分设计容的时间安排大致如下: 收集资料,熟悉任务 1周 方案论证比较 2周 短路电流计算 2周 电气设备选择计算 3周 计算机绘图 2周 编制设计说明书 1周 答辩 1周 总计 12周

中型发电厂电气主接线设计

电气主接线设计 1、1对原始资料的分析 设计电厂为中型凝汽式电厂,其容量为2×100+2×300=800MW,占电力系统总容量800/(3500+800)×100%=18、6%,超过了电力系统的检修备用8%~15%与事故备用容量10%的限额,说明该厂在未来电力系统中的作用与地位至关重要,但就是其年利用小时数为5000h,小于电力系统电机组的平均最大负荷利用小时数(2006年我国电力系统发电机组年最大负荷利用小时数为5221h)。该厂为凝汽式电厂,在电力系统中将主要承担腰荷,从而不必着重考虑其可靠性。 从负荷特点及电压等级可知,10、5kV电压上的地方负荷容量不大,共有6回电缆馈线,与100MW发电机的机端电压相等,采用直馈线为宜。300MW发电机的机端电压为20kV,拟采用单元接线形式,不设发电机出口断路器,有利于节省投资及简化配电装置布置;110kV电压级出线回路数为5回,为保证检修出线断路器不致对该回路停电,拟采取双母线带旁路母线接线形式为宜;220kV 与系统有4回路线,送出本厂最大可能的电力为800-200-25-800×8%=511MW,拟采用双母线分段接线形式。 1、2主接线方案的拟定 在对原始资料分析的基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。发电、供电可靠性就是发电厂生产的首要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因而根据对原始资料的分析,现将主接线方案拟订如下: (1)10、5kV电压级:鉴于出线回路多,且发电机单机容量为100MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线接线形式,2台100MW机组分别接在母线上,剩余功率通过主变压器送往高一级电压110kV。由于两台100MW机组均接于10、5kV母线上,有较大短路电流,为选择轻型电器,应在各条电缆馈线上装设出线电抗器。 (2)110kV电压级:出线回数大于4回,为保证检修出线断路器不

相关文档
最新文档