求数列通项公式导学案

求数列通项公式导学案
求数列通项公式导学案

求数列通项公式的常用方法导学案

教学目标:

知识与技能:1、理解数列通项公式的意义,掌握等差、等比数列的通项公式的求法

2、掌握并能熟练应用数列通项公式的常用求法:公式法、累加法、累乘法、构造法等

过程与方法:通过对例题的求解引导学生从中归纳相应的方法,明确不同的方法适用不同的前提、形式,使学生形成解决数列通项公式的通法

情感态度与价值观:感受知识的产生过程,通过方法的归纳,形成事物及知识间联系与区别的哲学观点

重点难点

教学重点:掌握数列通项公式的求法

教学难点:根据数列的递推关系求通项

知识点回顾

1.数列的通项公式的定义:

问题1: 是不是任何数列都有通项公式?若有,是不是唯一的?

问题2:你会求什么数列的通项公式呢?

2.等差数列

定义式:_____________________

通项公式:① _________________②______________________

前n项和公式:①_______________②________________③ ____________ 3.等比数列

定义式:_____________________

通项公式:① _________________②______________________

前n项和公式:__________________

新授:数列通项公式求法

数列的通项公式是数列的核心内容之一,它如同函数中的解析式一样,有了解析式便可研究其性质等;而有了数列的通项公式便可求出任一项以及前n项和等.因此,求数列的通项公式往往是解题的突破口、关键点

观察法

已知数列的前几项,求通项公式

例1:根据数列的前4项,写出它的一个通项公式:

(1)9,99,999,9999,…

(2)

(3)

公式法

题型一:等差数列与等比数列的通项

例2.已知数列满足且

(1)若c=1,t=3 求数列的通项公式

(2)若c=3,t=0 求数列的通项公式

,

17

16

4

,

10

9

3

,

5

4

2

,

2

1

1

,

5

4

,

4

3

,

3

2

,

2

1

-

-

t

ca

a

n

n

+

=

+1

27

5

=

a

}

{

n

a

}

{

n

a

}

{

n

a

题型二:已知

求 解题过程: (1)令

得 (2)令

得 (3)在第二步求得的

的表达式中令 判断其值是否为 (4)写出数列通项公式

例3 已知下列数列

的前n 项和 求通项公式

练:已知

例4 已知数列

前n 项和 求

练:已知数列{an}的前n 项和为Sn ,且满足a1= 1/2,an+2SnSn-1=0

(n≥2).

(Ⅰ)问:数列{1/Sn}是否为等差数列?并证明你的结论; (Ⅱ)求an

累加法

一般地,对于形如 an+1-an=f(n)的通项公式, 只要f(n)能进行求和,则宜采用此方法求解

例5

练:

累乘法

6

练:

构造法

若数列{}n a 是相邻两项1+n a 与n a 满足

,则可考虑待定系数法

(其中x

为待定系数,满足 ),构造新的辅

助数列 ,首项 ,公比为 的等比数列, 求出 ,再进一步求通项

例7

练:

n S n a {

1

,2

,11=≥--=

n S n S S n n n a 11S a =1=n 2≥n 1--=n n n S S a n a 1=n 1

a n

n S n 42

+=n S }{n a 12+=n S n n a n

n n a n a S 的关系式,求及与题型三:知 关系式再分析求解。两项的

式两式相减,得出相邻系,得另一式子,与原关代替或可考虑用方法总结:

)2(11n n n n ≥-+{}n a n n a S 23+=n

a 的积是可求且若

)1()2()1(),(1

-???=+n f f f n f a a n

n {}{}的通项公式求数列

,则数且满足

中,已知数列n n n n a n n

a a a a 2

1 11+==+()

x a p x a n n +=++1}{x a n +01≠+x a 1-=p q

x ),(1是常数q p q pa a n n +=+x a +1q

§1.1数列概念导学案

数列概念 一.学习目标: 1、熟练掌握数列的概念,准确理解通项公式与函数的关系,提高归纳猜想能 力。 2、自主学习、合作探究,总结求数列通项公式的规律方法。 3、激情投入,惜时高效,培养良好的数学思维品质,体验数字变化之美。 重难点:数列的概念以及数列的通项公式 二.问题导学: 阅读课本P3-6思考并回答下列问题: 1.数列的概念: ①你能根据自己的理解写出数列的定义吗? ②数列的一般形式12,,...,...n a a a ,简记{}n a ,那么n a 与{}n a 有什么不同? 2.数列的通项公式: 给定一个数列:1、3、5、7……你能写出数列的第5项,第7项吗?第n 项呢? ○1你能试着写出数列通项公式的定义吗? ○2通项公式可看作是一个函数吗?它的定义域是什么?图像有什么特点? 3.数列的分类: 按项数分可以分为哪几类? 【小试牛刀】 1.下列说法不正确的是( ) A 、所有数列都能写出通项公式 B 、数列的通项公式不唯一 C 、数列中的项不能相等 D 、数列可以用一群孤立的点表示 2.已知数列{}n a 中,n a =2n-1,则3a 等于___________ 3.写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)2,3,4,5; 则n a = (2)1416 ,,3,;333 ;则n a = (3) 1111 ,,,;24816 则n a = (4)1,-3,5,-7; 则n a = 三.合作探究 例1、根据下面数列{}n a 的通项公式,写出它的前5项: (1) 21;21n n a n -=+ (2)cos 2 n n a π =; (3)2(1);n n a n =- 拓展:根据下面数列{}n a 的通项公式,写出它的第10项: (1) 2910n a n n =-+; (2)(1)1cos ;2 n n a π -=+ (3)请判断2是不是第(1)小题中的那个数列的项. 小结: 例2、写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)1,3,5,7; (2)0,2,0,2; (3)10,100,1000,10000; 变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数:

求数列通项公式的常用方法(有答案)

求数列通项公式的常用方法 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之 一。 2.解题步骤:若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 练习. 已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函

数、指数函数、分式函数,求通项 n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和; ③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。 二、累乘法 1. 适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之 二。 2.解题步骤:若 1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1 11 1()n n k a a f k a +==?∏ 例2 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故1 32 112 21 12211(1)(2)21 (1)1 2 [2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53 32 5 ! n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--= ??? ??=-+-+??+?+??=-?????=??? 所以数列{}n a 的通项公式为(1)1 2 325 !.n n n n a n --=??? 练习. 已知 1 ,111->-+=+a n na a n n ,求数列{an}的通项公式 答案: =n a ) 1()!1(1+?-a n -1.

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

2019-2020学年高中数学 《数列通项公式求法》导学案 新人教A版必修5.doc

2019-2020学年高中数学 《数列通项公式求法》导学案 新人教A 版 必修5 【学习目标】 1.会在各种条件下,选用适当的方法求数列的通项公式。 2.掌握定义法、公式法、累加法、累乘法、构造数列法在求通项公式中的应用。 【重点难点】 重点:由递推公式求数列的通项公式 难点:累加法、累乘法、构造数列法 【学习过程】 知识点一:定义法(教材链接:等差数列和等比数列的定义) 直接用等差数列或等比数列的定义求通项的方法叫定义法,适应于已知数列类型的题目. 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数 列{}n a 的通项公式. 例2.已知数列{} n a 的各项均为正数,前n 项和为n S ,且有332-=n n a S , (1)求数列{}n a 的通项公式。 (2)设数列{}n b 的通项公式是1 33log log 1+?= n n n a a b ,前n 项和为n T ,求证:对于任意的正整数n ,总有n T <1. 知识点三:由递推式求数列通项 对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等

比数列问题,有时也用到一些特殊的转化方法与特殊数列。 类型1 递推公式为)(1n f a a n n +=+(教材链接:第37页等差数列通项公式的探究) 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 (1)递推公式为n n a n f a )(1=+(教材链接:第50页等比数列通项公式的探究) 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例4. 已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 类型3 递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法:通过对系数q 的分解,把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1。 例5. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 类型4 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。(教材链接:第69页第6题)

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

等比数列的概念及通项公式导学案

1 等比数列的概念及通项公式 基本概念 新知: 1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1 n n a a -= (q ≠0) 2. 等比数列的通项公式: 21a a = ; 3211()a a q a q q a === ;24311()a a q a q q a === ; … … ∴ 11n n a a q a -==? 等式成立的条件 3. 等比数列中任意两项n a 与m a 的关系是: 3、等比数列的性质:对于等比数列}{n a ,若.,n m q p a a a a n m q p =+=+则 4、等比数列的}{n a 的单调性————————与首项和公比都有关 11-=n n q a a 例题 例一:判断数列是否为等比数列,若是请指出公比 (1)1,-1,1,-1,1,…(2)0,1,2,4,8,…(3)13 181-4121-1,,, 例二、指出下列等比数列中的未知项 (1)2,a ,8 (2)-4,b ,c ,2 1 问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G b G ab G a G =?=?= 新知1:等比中项定义 如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a , b 同号). 试试:数4和6的等比中项是 . 例三、(1)在等比数列}{n a 中,是否有)2(112 ≥=+-n a a a n n n ? (2)如果数列}{n a 中,对于任意的正整数),2(,2112 ≥=≥+-n a a a n n n n n 都有) (那么}{n a 一定是等比数列 吗?

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

北京第十八中学高三数学第一轮复习 65 数列的通项公式(2)教学案(教师版)

教案65 数列的通项公式(2) 一、课前检测 1.(1)数列9,99,999,…的通项公式为 ; 110-=?n n a ; (2)数列5,55,555,…的通项公式为 。 () 11095-=?n n a 。 2.已知数列{}n a 中,11a =,21(0a a a =-≠且1)a ≠,其前n 项和为n S ,且当2n ≥时,1 111n n n S a a +=-.(Ⅰ)求证:数列{}n S 是等比数列;(Ⅱ)求数列{}n a 的通项公式。 解:(Ⅰ)当2n ≥时,11+111111n n n n n n n S a a S S S S +-=-=---, 化简得211(2)n n n S S S n -+=≥, 又由1210,0S S a =≠=≠,可推知对一切正整数n 均有0n S ≠, ∴数列{}n S 是等比数列. (Ⅱ)由(Ⅰ)知等比数列{}n S 的首项为1,公比为a ,∴1n n S a -=. 当2n ≥时,21(1)n n n n a S S a a --=-=-, 又111a S ==, ∴21, (1),(1),(2).n n n a a a n -=?=?-≥? 二、知识梳理 (一)数列的通项公式 一个数列{a n }的 与 之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 解读: (二)通项公式的求法(6种方法) 5.构造法 构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,如某种数量关系,某个直观图形,或者某一反例,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉. 1)构造等差数列或等比数列 由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.

高中数学导学案 等差数列

2.2 等差数列 (一)教学目标 1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。 2. 过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。 3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。 (二)教学重、难点 重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。 难点:概括通项公式推导过程中体现出的数学思想方法。 (三)学法与教学用具 学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。 教学用具:投影仪 (四)教学设想 [创设情景] 上节课我们学习了数列。在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。 [探索研究] 由学生观察分析并得出答案: (放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,…… 2012年,在伦敦举行的奥运会上,女子举重项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。 水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×寸期).例如,按活期

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

最新中职数学——数列概念和通项公式导学案

数学学科导学案 教师寄语:做对国家有用的人 课题:数列的概念和通项公式 班级17级姓名陈兆侠组别二年级一、学习目标: (3)对于比较简单的数列,会根据其前几项写出它的一个通项公式.2.过程与方法:理解数列的定义,表示法,分类,初步学会求数列通项公式的方法。 3.情感态度价值观:提高观察,分析能力,理解从特殊到一般,从一般到特殊思想。 二、学习重、难点: 重点:了解数列的概念及其表示方法,会写出简单数列的通项公式难点:数列与函数关系的理解,用归纳法写数列的通项三、学习过程【导、探、议、练】 导 知识点一:数列及其有关概念 思考1:数列1,2,3与数列3,2,1是同一个数列吗? 思考2:数列的记法和集合有些相似,那么数列与集合的区别是什么? 梳理:(1)按照________排列的________称为数列,数列中的每一个数叫做这个数列的_____.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的__________(通常也叫做______),排在第二位的数称为这个数列的……排在第n位的数称为这个数列的__________. (2) 数列的一般形式可以写成,简记为_________. 知识点二:通项公式 思考1:数列1,2,3,4,…的第100项是多少?你是如何猜的? 思考 2 数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异 1.知识与能力: (1)理解数列及其有关概念; (2)理解数列的通项公式,并会用通项公式写出数列的任意一项;

同? (2)按项的大小变化分类,从第2项起,每一项都大于它的前一项的数列叫做___________;从第2项起,每一项都小于它的前一项的数列叫做;各项相等的数列叫做;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做_____________. 探、议 (一)自主探究 类型一:由数列的前几项写出数列的一个通项公式 例1 写出下列数列的一个通项公式,使它的前4项分别是下列各数: (1)5,10,15,20,… (2)1 2 , 4 1 , 6 1 , 8 1 ,… (3)-1,1,-1,1,… 跟踪训练1 写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1) 1 1×2 , 1 2×3 , 1 3×4 , 1 4×5 ,… (2) 22-1 2 , 32-1 3 , 42-1 4 , 52-1 5 ,… (3) 2 1 , 4 3 , 6 5 , 8 7 ,… 类型二:数列的通项公式的应用 例2 已知数列{a n}的通项公式a n= N 2 1 , n∈N*. (1)写出它的第5项; (2)判断 64 1 是不是该数列中的项,是,是第几项? 例3 判断16和45是否为数列} {1 3+ n中的项,如果是,请指出是第几项? 跟踪训练2 已知数列{a n}的通项公式为a n= 1 n(n+2) (n∈N*),那么1 120 是这个数列的第______项. 知识点三:数列的分类 思考:对数列进行分类,可以用什么样的分类标准? 梳理:(1)按项数分类,项数有限的数列叫做__________数列,项数无限的数列叫做__________数列.

常见数列通项公式的求法

常见数列通项公式的求法-中学数学论文 常见数列通项公式的求法 邹后林 (会昌中学,江西赣州342600) 摘要:数列的通项求法灵活多样,需要充分利用化归与转化思想。非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。现举数例。 关键词:数列;通项公式;求法 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-12-0031-01 例1:已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1 (n∈N*),等差数列{bn}中,bn0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列。 (1)求数列{an}、{bn}的通项公式; (2)求数列{an·bn}的前n项和Tn。 解:(1)∵a1=1,an+1=2Sn+1 (n∈N*), ∴an=2Sn-1+1 (n∈N*,n1), ∴an+1-an=2(Sn-Sn-1), 即an+1-an=2an,∴an+1=3an (n∈N*,n1)。 而a2=2a1+1=3,∴a2=3a1。 ∴数列{an}是以1为首项,3为公比的等比数列,∴an=3n-1 (n∈N*)。∴a1=1,a2=3,a3=9,

在等差数列{bn}中,∵b1+b2+b3=15, ∴b2=5。 又∵a1+b1、a2+b2、a3+b3成等比数列,设等差数列{bn}的公差为d,则有(a1+b1)(a3+b3)=(a2+b2)2。 ∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,∵bn0 (n∈N*),∴舍去d =-10,取d=2,∴b1=3,∴bn=2n+1 (n∈N*)。 (2)由(1)知Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①∴3Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)3n,② ∴①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n=3+2(3+32+33+…+3n-1)-(2n+1)3n

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

常见递推数列通项公式的求法典型例题及习题

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

数列通项公式 累乘和累加法 学案

名校学案,高二数学,必修五,数列,拔高训练,优质学案,专题汇编(附详解) 1 专题:求数列的通项公式——累加法和累乘法 学习目标 1. 掌握并能熟练应用数列通项公式的常用方法:累加法和累乘法; 2. 通过对例题的求解引导学生从中归纳相应的方法,明确不同的方法适用不同的前提、形式,使学生形成解决数列通项公式的通法; 3. 感受知识的产生过程,通过方法的归纳,形成事物及知识间联系与区别的哲学观点,体会数学累加思想和累乘思想。 ________________________________________________________________________________ 自学探究:回顾等差、等比数列的通项公式推导过程,完成下列任务。 例:已知数},{n a 其中,, 111n a a a n n +==+ ① 求它的通项n a 。 变题1:把①式改为;11+=+n n a a 变题2:把①式改为;21 n n n a a +=+ 小结1:通过求解上述几个题,你得到什么结论? 变题3:把①式改为;11n n a n n a += + 变题4:把①式改为;21 n n a a =+ 小结2:通过求解上述2个题,你得到什么结论? 挑战高考题: 1.(2015.浙江.17)已知数列{}n a 满足n n n a a a 2,211==+,)*∈N n (。 (1)求n a 2.(2008.江西.5)在数列{}n a 中,)11ln(,211n a a a n n ++==+,则=n a ( ). A.n ln 2+ B.n ln 1-n 2)(+ C.n n ln 2+ D.n n ln 1++ 你能否自己设计利用累加法或累乘法求解数列通项公式的题? 通过本节课的学习你收获了什么?

中职数学——数列概念和通项公式导学案电子教案

中职数学——数列概念和通项公式导学案

数学学科导学案 教师寄语:做对国家有用的人 课题:数列的概念和通项公式 班级 17级姓名陈兆侠组别二年级 一、学习目标: (3)对于比较简单的数列,会根据其前几项写出它的一个通项公式. 2.过程与方法:理解数列的定义,表示法,分类,初步学会求数列通项公式的方法。 3.情感态度价值观:提高观察,分析能力,理解从特殊到一般,从一般到特殊思想。 二、学习重、难点: 重点:了解数列的概念及其表示方法,会写出简单数列的通项公式难点:数列与函数关系的理解,用归纳法写数列的通项 三、学习过程【导、探、议、练】 导 知识点一:数列及其有关概念 思考1:数列1,2,3与数列3,2,1是同一个数列吗? 思考2:数列的记法和集合有些相似,那么数列与集合的区别是什么? 梳理:(1)按照________排列的________称为数列,数列中的每一个数叫做这个数列的_____.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的__________(通常也叫做______),排在第二位的数称为这个数列的……排在第n位的数称为这个数列的__________. (2) 数列的一般形式可以写成,简记为_________. 知识点二:通项公式 思考1:数列1,2,3,4,…的第100项是多少?你是如何猜的? 1.知识与能力: (1)理解数列及其有关概念; (2)理解数列的通项公式,并会用通项公式写出数列的任意一项;

思考 2 数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异同? (2)按项的大小变化分类,从第2项起,每一项都大于它的前一项的数列叫做___________;从第2项起,每一项都小于它的前一项的数列叫做;各项相等的数列叫做;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做 _____________. 探、议 (一)自主探究 类型一:由数列的前几项写出数列的一个通项公式 例1 写出下列数列的一个通项公式,使它的前4项分别是下列各数: (1)5,10,15,20,… (2)1 2 , 4 1 , 6 1 , 8 1 ,… (3)-1,1,-1,1,…跟踪训练1 写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1) 1 1×2 , 1 2×3 , 1 3×4 , 1 4×5 ,… (2) 22-1 2 , 32-1 3 , 42-1 4 , 52-1 5 ,… (3) 2 1 , 4 3 , 6 5 , 8 7 ,… 类型二:数列的通项公式的应用 例2 已知数列{a n}的通项公式a n= N 2 1 , n∈N*. (1)写出它的第5项; (2)判断 64 1 是不是该数列中的项,是,是第几项? 例3 判断16和45是否为数列} {1 3+ n中的项,如果是,请指出是第几项? 知识点三:数列的分类 思考:对数列进行分类,可以用什么样的分类标准? 梳理:(1)按项数分类,项数有限的数列叫做__________数列,项数无限的数列叫做__________数列.

相关文档
最新文档