飞机航空发动机分类一览

飞机航空发动机分类一览
飞机航空发动机分类一览

(完整版)航空发动机试验测试技术

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与 强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和 系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机 其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很 高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时 的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的 关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部 件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验, 一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面 叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组 件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试 验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主 要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的 缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状 态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠 进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性 参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出 不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。 (3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。 3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量) 所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出 口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。 由于燃烧室中发生的物理化学过程十分复杂,目前还没有一套精确的设计计算方法。因此,燃烧室的研制和发展主要靠大量试验来完成。根据试验目的,在不同试验器上,采 用不同的模拟准则,进行多次反复试验并进行修改调整,以满足设计要求,因此燃烧室试 验对新机研制或改进改型是必不可少的关键性试验。

中国各民用航空公司飞机机队资料XXXX-2-7

中国各民用航空公司飞机机队资料 中国东方航空集团 IATA/ICAO代码:MU/CES 无线电呼号中文/英文:东航/CHINA EASTERN 三字结算码:781 机队组成:目前总数为261架,包括 7架空客A300 130架空客A320系列(15架空客A319、95架空客A320、20架空客A321) 30架空客A330/A340系列(5架空客A330-200、15架空客A330-300、5架空客A340-300、5架空客A340-600) 76架波音B737系列(16架波音B737-300、43架波音B737-700、17架波音B737-800) 3架波音B767 5架CRJ200 10架ERJ145 中国东方航空股份有限公司上海总部 (上海) 中国东方航空股份有限公司山东分公司

中国东方航空股份有限公司河北分公司 (石家庄) 中国东方航空股份有限公司江西分公司 (南昌) 中国东方航空股份有限公司山西分公司 (太原) 中国东方航空股份有限公司安徽分公司 (合肥)

中国东方航空股份有限公司浙江分公司 中国东方航空股份有限公司甘肃分公司 (兰州) 中国东方航空江苏有限公司 (南京) 中国东方航空武汉有限公司 (武汉) 中国东方航空西北公司 (西安)

中国东方航空云南有限公司 (昆明) 中国东方航空股份有限公司北京分公司 (北京) 中国东方航空股份有限公司四川分公司 (成都)

中国南方航空集团 IATA/ICAO代码:CZ/CSN 无线电呼号中文/英文:南航/CHINA SOUTHERN 三字结算码:784 机队组成:目前总数为345架包括 106架波音B737系列(25架波音B737-300、31架波音B737-700、50架波音B737-800) 2架波音B747 17架波音B757, 15架波音B777系列(4架波音B777-200、6架波音B777-200ER、5架波音B777F) 10架波音MD90 4架空客A300 163架空客A320系列(41架空客A319、65架空客A320、57架空客A321) 17架空客A330/A340系列(9架空客A330-200、8架空客A330-300) 5架ATR72 6架ERJ145 中国南方航空股份有限公司广州总部(广州) 中国南方航空股份有限公司北京分公司 (北京)

飞机分类

飞机依其分类标准的不同,可有以下划分方法: 1、按飞机的用途划分,有民用航空飞机和国家航空飞机之分。国家航空飞机是指军队、警察和海关等使用的飞机,民用航空飞机主要是指民用飞机和直升飞机,民用飞机指民用的客机、货机和客货两用机。 2、按飞机发动机的类型分,有螺旋桨飞机和喷气式飞机之分。螺旋桨史飞机,包括活塞螺旋桨式飞机和涡轮螺旋桨式飞机,飞机引擎为活塞螺旋桨式,这是最原始的动力形式。它利用螺旋桨的转动将空气向机后推动,借其反作用力推动飞机前进。螺旋桨转速愈高,则飞行速度愈快。喷气式飞机,包括涡论喷气式和涡论风扇喷气式飞机。这种机型的优点是结构简单,速度快,一般时速可达500-600英里;燃料费用节省,装载量大,一般可载客400-500人或100吨货物。 3、按飞机的发动机数量分,有单机(动机)飞机、双发(动机)飞机、三发(动机)飞机、四发(动机)飞机之分。 4、按飞行的飞行速度分,有亚音速飞机和超音速飞机之分,亚音速飞机又分低速飞机(飞行速度低于400公里/小时)和高亚音速飞机(飞行速度马赫数为0.8-8.9)。多数喷气式飞机为高亚音速飞机。 5、按飞机的航程远近分,有近程、中程、远程飞机之别。远程飞机的航程为1100公里左右,可以完成中途不着陆的洲际跨样飞行。中程飞机的航程为3000公里左右,近程飞机的航程一般小于1000公里。近程飞机一般用于支线,因此又称支线飞机。中、远程飞机一般用于国内干线和国际航线,又称干线飞机。 我国民航总局是采用按飞机客坐数划分大、中、小型飞机,飞机的客坐数在100座以下的为小型,100-200座之间为中型,200座以上为大型。航程在2400km以下的为短程,2400-4800Km 之间为中程,4800KM以上为远程。但分类标准是相对而言的。 军用飞机的分类: 按用途可分为:战斗机、攻击机、轰炸机、战斗轰炸机、侦察机、运输机、教练机、预警机、电子战飞机、反潜机等等。 目前西方国家将战斗机分为四代: 第一代:亚音速战斗机——代表机型:美制f86、苏制米格15、中国歼5等 第二代:强调超音速性能的战斗机——代表机型:美制f4、苏制米格21、中国歼7等 第三代:强调多用途的超音速战斗机——代表机型:美制f16、f15、苏制米格29、苏27等 第四代:强调隐身性能的多用途超音速战斗机——代表机型:美制f22、f35 在我国战斗机又称为“歼击机”,攻击机称为“强击机”,另从战斗机中分出“截击机”,但现在已很少使用“截击机”这一名称。 我国已装备部队的各种机型名称如下: 我国的国产军用飞机名称一般以其机型分类的第一个字再加上序号构成,如歼击机中有歼5、歼6;轰炸机中有轰5、轰6等,我国已装备部队的各种机型名称如下:

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.360docs.net/doc/7110823719.html,

航空发动机命名规则精编版

发动机命名 2009-10-14 20:38:54| 分类:军事学堂|字号大中小订阅 一、中国命名方法 型号标志+序号+改进代号 型号标志:共5种,即WP(涡轮喷气)、WS(涡轮风扇)、WJ(涡轮螺旋桨)、WZ (涡轮轴)、HS(活塞式) 序号:用阿拉伯数字表示 改进代号:用英文字母表示 例如:WP5(单发装歼5) WP5A(双发装轰5) WP6(双发装歼6和强5) WP6D(双发装出口型强5)WP7A(双发装歼8)WP7B(单发装歼7) WP8(双发装轰6) WS9(双发装歼轰7) WS10A(单发装歼10) WJ5A (四发装水轰5) WJ6(四发装运8)WJ9(双发装运12) WZ5(单发装武直6)WZ8(双发装武直9)HS700(单发装爱生206无人机) 二、英国命名法 英国最大的航空发动机公司事罗尔斯-罗伊斯公司(Rolls & Royce Ltd)。该公司有两个分公司其中达比(Derby)公司用河流的名称为发动机命名,如斯贝(Spey)MK511-5W(the river Spey位于苏格兰),遄达(Trent)900(the river Trent,位于苏格兰).(还有用RB命名的,其R中代表Rolls & Royce,B代表Bristol分公司)布里斯托尔(Bristol)分公司则用希腊神话中神的名称为发动机命名,如奥林帕斯(Olympus,山神) 如果发动机视为不同型号的飞机制造的,则在发动机型号名称中补充MK(Mark,及“标记”),

再加上编号或设计编号,来区分各个发动机。如Spey Mk511(三发用于客机三叉戟),Spey Mk202(双发用于鬼怪战斗机);Trent系列发动机是专用于客机的,故无MK,如Trent 900(四发装空客A380客机,555人) 三、美国命名法 型号标志+制造厂代号+序号标志 (1)型号标志 由发动机型号字母和类型代号组成 其中类型字母只有三个: --代表涡轮喷气发动机(turbo-jet engine) --代表涡轮风扇发动机(turbo-fan engine),过去曾用“TF”和“JT” --代表涡轮轴和涡轮螺旋桨发动机(turbo-shaft engine and (turbo-propeller engine) 类型代号有以下规定: 空军需从100号开始,海军需从400号开始,陆军需从700号开始 (2)制造厂代号 --通用电气公司(General Elecctric) --普拉特-惠特尼公司 --罗尔斯-罗伊斯公司(Pratt & Whitney) --普拉特-惠特尼加拿大公司(Pratt & Whitney Canada) (3) 序号标志 一串阿拉伯数字+序列编号+尾标字母

先进航空发动机设计与制造技术综述

先进航空发动机设计与制造技术综述 进入21世纪,世界航空发动机技术取得了巨大进步,并呈现加速发展的趋势。美国推重比10一级涡扇发动机F119作为第四代战斗机F22的动力装备部队,是当今航空动力技术最具标志性的成就。在此基础上,美国持续实施了多个技术研究计划,正在推动世界航空发动机技术继续向前发展。本文从未来高性能航空发动机采用的高级负荷压缩系统、高温升燃烧室、高效冷却涡轮叶片、推力矢量等方面,对其先进设计和制造技术的发展方向和趋势进行初步的分析研究。 高级负荷压缩系统 高压压气机技术发展的目标是单级压比高、级数少、推重比高、飞行性能好。对高级负荷的压缩系统,低展弦比设计、气动前掠设计、 整体叶盘、整体叶环、压气机稳定性主动控 制等技术是其中具有代表性的新技术。 1低展弦比叶片设计及制造 低展弦比叶片即宽弦叶片,它与窄弦叶 片相比,增宽了弦长,使压气机的长度缩短, 抗外物损伤能力、抗疲劳特性和失速裕度有 所提高。还可使压气机零件数减少,降低生 产和制造费用成本(图表1)。 90年代以来,英国罗·罗(R·R)公司、 美国普惠公司和GE 公司、法国SNECMA公 司不断研制和改进高压压气机钛合金宽弦叶片的气动和结构性能,广

泛应用于大涵道比涡扇发动机和高推重比小涵道涡扇发动机上。GE 公司TECH56技术计划的验证机和F119发动机、EJ200发动机都采用了这种宽弦叶片。 叶片的低展弦比设计,结合整体叶盘技术使得高压压气机在减少级数和提高叶片强度的同时,具有更好的气动稳定性。低展弦比叶片需要解决的关键技术问题是因重量增加而导致的轮盘与叶根结合处和轮盘本身的离心力增大问题。IHPTET计划在大型涡扇和涡喷发动机验证机上验证了该技术,该技术还将在F135和F136发动机上采用。 目前,低展弦比叶片已成为先进航空发动机压缩系统的关键技术,与3D气动掠形、空心结构、整体叶盘结构和更轻的钛金属基复合材料技术相结合,是未来的发展重点。 2大小叶片设计及制造 大小叶片就是在全弦长叶片后 增加一排小叶片,具有大大提高轴 流压气机叶片排增压比和减少气流 引起的振动等特点,是使轴流压气 机级增压比达到3或3以上的具有 发展潜力的技术(图表2)。90年 代,美国的霍尼韦尔(Honeywell) 和GE公司联合研制和验证了分流 小叶片。试验结果表明,采用大小

民用航空工业中长期发展规划(2013-2020年)汇总

民用航空工业中长期发展规划(2013-2020年) 航空工业是国家战略性高技术产业,是国防空中力量和航空交通运输的物质基础,是国民经济发展、科学技术创新的重要推动力量。大力发展民用航空工业,是满足民航运输快速增长需要的根本保证,是引领科技进步、带动产业升级、提升综合国力的重要手段。为优化航空工业自主发展体系,不断增强核心竞争力和可持续发展能力,实现民用航空工业跨越式发展,根据《中华人民共和国国民经济和社会发展第十二个五年规划纲要》、《国家中长期科学和技术发展规划纲要(2006-2020)》、《“十二五”国家战略性新兴产业发展规划》和国家对航空工业中长期发展的总体部署和要求,制定本规划。 一、发展现状及面临的形势 (一)发展现状 经过60多年的艰苦创业,我国已经基本建立独立自主的航空工业体系,取得了举世瞩目的成就。进入新世纪,我国民用航空工业进入快速发展时期,科研生产水平跃上了一个新台阶。一是民用飞机发展取得重要进展。新舟60涡桨支线飞机、H425直升机、运十二通用飞机等开始批量进入国内外市场,C919大型客机、ARJ21涡扇支线飞机、直十五中型直升机等重点产品研制稳步推进。二是技术水平明显提升。民用飞机关键技术攻关取得重要进

展。三是产业体系不断健全和完善。航空基础能力建设进一步加强,航空科研不断取得新成果,科技和产业国际合作不断深化,军民结合、寓军于民的产业格局正在逐步形成。 我国航空工业在取得巨大成就的同时,也面临不少困难和问题,与国际先进水平相比,仍存在较大差距。航空产品体系不完整,技术水平相对落后;基础研究薄弱,技术储备不足;民用飞机产业发展尚处于成长阶段,适航取证和适航审定能力不足;发动机、关键材料和元器件等仍然是制约我国民用航空工业发展的瓶颈。 (二)面临的形势 未来十年是加快推进中国特色社会主义现代化建设的关键时期,也是航空工业实现跨越发展的攻坚时期。综合判断国际国内形势,我国民用航空工业发展面临难得的机遇。一是产业发展受到高度重视和广泛关注,国家已将航空装备列入战略性新兴产业的重点方向,正在实施大型飞机重大专项,将推动我国民用航空工业实现快速发展。二是国民经济快速发展和国防现代化建设为民用航空工业发展提供广阔的市场空间,尤其是空域管理改革和低空空域开放步伐的加快,为通用飞机的发展带来了新的市场机遇。三是工业转型升级、创新能力和国际竞争力显著增强将为加快民用航空工业发展提供良好的科技和工业基础。 另一方面,世界航空工业经过百余年的发展,在市场上已形成了高度垄断。市场竞争日趋激烈,航空科学技术前进步伐不断

运输航空器的分类

运输航空器的分类 运输航空器根据其性质的不同分为三种类别。 一.根据运输航空器的进近类型分类 国际民航组织关于运输航空器进近分类的规定,即按该型航空器在着陆形态下以最大允许着陆重量进近着陆时失速速度的1.3倍,通常称着陆入口速度(Vat)的不同将航空器分成A、B、C、D、E五类: A类:Vat<91海里/小时(169公里/小时) B类:91海里/小时≤Vat<121海里/小时(224公里/小时) C类:121海里/小时≤Vat<141海里/小时(261公里/小时) D类:141海里/小时≤Vat<166海里/小时(307公里/小时) E类:166海里/小时≤Vat<211海里/小时(391公里/小时) 根据上述国际统一标准,将我国现有运输航空器和部分外国航空公司民用运输航空器分类如下,作为制定机场飞行程序和机场运行最低标准的依据,各类航空器在进近着陆中执行相应类别的着陆最低标准。此分类与我国空中交通管制部门为分配巡航高度层和进出走廊口高度的航空器分类不同。 A类:海岛人(Islander),双水獭(Twin Otter),TB20,运5,运12. B类:安24,安26,安30,BAE146-100,冲8(Dash8),空中国王(King Air),麻雀23(Metro-23),萨伯340B(Saab340B),肖特360(Shorts360),夏延ⅢA(CHEYENNAⅢA),运7,雅克42(YAK-42). C类:空中客车(Airbus)A300-600,A310-200,A310-300,安12,波音(Boeing)707-320,B737-200,B737-300,B737-400,B737-500,B747SP,B757-200,B767-200, C-130,DC9,福克100(Fokker100),奖状Ⅵ(CitationⅥ),L-100,里尔喷气55(Learjet55),MD82,伊尔76,运8。 D类:B737-200,B747-400,B767-300,DC10,L-1011,MD11,图154M(TY154M),伊尔62,伊尔86、B777、挑战者(CRJ)、A321。 二.根据使用升限分类 根据使用升限并参照国际民航组织的有关文件,将飞机分为A、B、C、D、E五类。

航空发动机整机的性能方案设计

航空发动机整机的性能方案设计 对于一款民用航空发动机来说,最重要的是什么?安全!省油!安!全!省!油!重要的话说三遍!正如有国外专家说的那样:民用发动机必须足够安全、足够省油,否则就是白给航空公司,人家也不要。 “丈母娘择婿指南” 那么大家说了,你就造个最安全、最省油的,很难吗?我们先不涉及制造、装配,仅谈一谈整机的性能设计问题。一款民用航空发动机要想和心目中的飞机搭伙过日子,就得首先被航空公司挑中。与中国大妈挑女婿的标准类似,能被选中的发动机也要满足以下几点要求:力气大(高推力)、吃得少(省油)、不要动不动就撂挑子(安全性高),最好全年无休(可靠性高),有病不去医院吃个药片就能好(维修成本低),同时还要足够沉稳内敛(低噪声)、讲究卫生(污染物排放少)。下面,就让我们一起走近民用航空发动机,看看它是怎样从整机性能上勤修内功征服丈母娘的吧。

事情是这样的,在我们周围的空气里面,住着无数调皮的空气分子。根据脾气秉性的不同,又分为氮气分子、氧气分子、水分子等各种类型。这些分子就像被一杆子打散的桌球,时时刻刻处于不停的运动和相互碰撞中。当它们前进的方向上有东西挡路时,就狠狠地撞上去。遇上其它空气分子还好,大不了大家都改个方向继续往前跑。若遇到列队迎敌的固体分子们,那就是一个被立刻反射回来的下场。当然,此时铜墙铁壁的固体分子也被狠狠地撞了一下腰。 分子们个体太小,碰撞一下的力量当然也是不值一提的。但架不住数量太多,每时每刻都有数以亿亿亿计的分子撞上来。所以宏观来看,空气中的任何物体都会持续受到一个压力的作用,即气压P。“咦?我就算初中毕业也知道这个P 应该叫压强吧?!”没错,说起这个名称,那还真有个原因:发动机内部各个部件的表面积和各流道截面的面积一般是固定不变的,如果每次计算压力都用压强乘以面积那也太傻了,所以直接扔掉面积不管,压力就是压强了! 显然,这个压力的大小与单位时间内撞上来的分子个数成正比。同样数量的空气分子被塞到大小不同的箱子中,它们对箱壁的压力也会不同。箱子越大,分子们越稀疏,撞到同一块地方的分子就越少,压力也就越小。具体说来就是,压力P

对航空发动机研究和发展规律的认识

收稿日期:2001-07- 18 对航空发动机研究和发展规律的认识 江和甫 蔡 毅 斯永华 (中国燃气涡轮研究院 成都#610500) 摘要:探讨了世界上航空发达国家航空发动机技术加速发展的态势。分析了我国航空动力技术预先研究的现状及存在的问题。加深了对航空发动机发展规律的认识。对如何振兴航空、动力先行,把我国航空发动机搞上去,走自主创新的发展道路提出了建议。关键词:航空发动机;研究;发展 Understanding the Law of aero -engine Research and Development JIANG He -fu &CAI Yi &SI Yong -hua (China Gas Turbine Establishment,Chengdu 610500)Abstract:T his paper discusses the accelerated developing trend of aero -eng ine technolog ies in developed countries.The present situation and existing problems in China aero -propulsion technology research have been introduced.A deeper understanding of the law of aero -engine development has been made.Also,suggestions to v italize China aviation industry w ith putting propulsion in the first place in a manner of /creating and acting on our ow n 0is put forward. Key words:aero -engine;research;development 1 引言 航空发动机研制涉及众多专业的前沿技术成果,是一种属于多学科综合技术的/高科技产品0。世界上能研制飞机的国家很多,真正能独立研制先进航空发动机的只有美国、英国、法国、俄罗斯等四个国家。因此,它是一个国家科学技术水平和综合 技术能力的标志,甚至是综合国力的象征。 2 现状分析 世界上航空发达国家诸如美国等都十分重视航 空动力技术的发展,倾注了巨大的人力、物力、财力,执行了一系列旨在促进航空动力技术进步的研究计划。如:美军方从20世纪50年代开始实施的航空推进技术探索发展计划以及70年代实施的先进战术战斗机发动机计划(ATFE );先进涡轮发动机燃气发生器计划(AT EGG)和飞机推进分系统综合计划。此外,NASA 在70年代末还实施了发动机部件改进计划,高效节能发动机计划(E 3),先进螺旋桨计划和发动机热端部件技术计划(HOST )。这些计划为各种先进军民用发动机提供了坚实的技术基础,并使美国达到了当今世界领先的水平,推出了一代又一代先进军民用发动机,跨上了一个又一个技术

航空发动机知识大全

航空发动机知识大全 飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。 飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示: 吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。

航空发动机基础知识

航空发动机基础知识 航空发动机基础知识 涡轮喷气发动机的诞生 涡轮喷气发动机的诞生 二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。 这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。 早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气

推进只是一个空想。1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。 涡轮喷气发动机的原理 涡轮喷气发动机的原理 涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。 涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。 工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。 压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。 随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。 高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化

航论-第二章 第1节 民用航空器的分类和应用

第二章民用航空器 第一节民用航空器的分类和应用 (一)课前复习 1.根据业务范围的不同,民用航空可以分为? 2.民航系统由哪三部分构成? (二)新课教学 一、航空器的分类 1.大气层的结构 (1)轻于空气的航空器 ①非动力驱动:气球 ②动力驱动:飞艇 (2)重于空气的航空器 ①非动力驱动:风筝、滑翔机 ②动力驱动:飞机、旋翼航空器、扑翼机 <莱特兄弟制作的“飞行者1号”1903年首飞:重于空气的航空器(动力驱动)> 二、民用飞机的分类 按用途可分为航线飞机和通用飞机。 1.航线飞机 航线又称运输机,可分为运输旅客的客机、运送货物的货机和客货兼载的客货两用机。(1)客机: ①按航程可以分为: A.远程客机:航程>8000km B.中程客机:航程:3000~8000km C.短程客机:航程<3000km ②按航发动机类型可以分为:活塞式和喷气式。 ③按航飞行速度可以分为:亚音速飞机和超音速飞机。 ④按机身直径可分为: A.宽体客机:机身直径>3.75m B.窄体客机:机身直径<3.75m (2)货机(了解) (3)客货两用机(了解) 2.通用航空飞机 通用飞机根据不同,可分为公务机、农业机、教练机和多用途轻型机四大类。

三、民用航空器的使用概况和要求 对民用航空器的使用要求是安全、快速、舒适、经济和符合环保要求。 1.安全性 安全是对航空运输的首要要求,保障安全是整个民航系统的首要任务。 2.快速性 自从民航进入喷气式时代以来,干线飞机的速度稳定在800~1000千米/小时的范围内,是其他交通工具无法比拟的。 3.舒适性 如:客舱宽敞、餐饮、娱乐设备 4.经济性 现代飞机采用耗油低、推力大的发动机。大量使用强度大、重量轻的复合材料,改善飞机气动外形。 5.环保要求 飞机的污染主要体现在:噪声污染和排气污染上。

先进航空发动机关键制造技术发展现状与趋势

先进航空发动机关键制造技术发展现状与趋势 一、轻量化、整体化新型冷却结构件制造技术1 整体叶盘制造技术整体叶盘是新一代航空发动机实现结构创新与 技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。在第四代战斗机的动力装置推重比10 发动机F119 和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50% 以上。目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。在未来推重比15~20 的高性能发动机上,如欧洲未来推重比15~20 的发动机和美国的IHPTET 计划中的推重比20的发动机,将采用效果更好的SiC 陶瓷基复合材料或抗氧化的C/C 复合材料制造整体涡轮叶盘。2 整体叶环(无盘转子)制造技术如果将整体叶盘中的轮盘部分去掉,就成为整体叶环,零件的重量将进一步降低。在推重比15~20 高性能发动机上的压气机拟采用整体叶环,由于采用密度较小的复合材料制造,叶片减轻,可以直接固定在承力环上,从而取消了轮盘,使结构质量减轻70%。目前正

在研制的整体叶环是用连续单根碳化硅长纤维增强的钛基复合材料制造的。推重比15~20 高性能发动机,如美国XTX16/1A 变循环发动机的核心机第3、4 级压气机为整体叶环转子结构。该整体叶环转子及其间的隔环采用TiMC 金属基复合材料制造。英、法、德研制了TiMMC 叶环,用于改进EJ200的3级风扇、高压压气机和涡轮。3 大小叶片转子制造技术大小叶片转子技术是整体叶盘的特例,即在整体叶盘全弦长叶片通道后部中间增加一组分流小叶片,此分流小叶片具有大大提高轴流压气机叶片级增压比和减少气流引起的振动等特点,是使轴流压气机级增压比达到3 或3 以上的有发展潜力的技术。4 发动机机匣制造技术在新一代航空发动机上有很多机匣,如进气道机匣、外涵机匣、风扇机匣、压气机机匣、燃烧室机匣、涡轮机匣等,由于各机匣在发动机上的部位不同,其工作温度差别很大,各机匣的选材也不同,分别为树脂基复合材料、铁合金、高温合金。树脂基复合材料已广泛用于高性能发动机的低温部件,如F119 发动机的进气道机匣、外涵道筒体、中介机匣。至今成功应用的树脂基复合材料有PMR-15(热固性聚酰亚胺)及其发展型、Avimid(热固性聚酰亚胺)AFR700 等,最高耐热温度为290℃~371℃,2020 年前的目标是研制出在425℃温度下仍具有热稳定性的新型树脂基复合材料。树脂基复合材料构件的制造技术是集自动铺带技术(ATL)、自动纤维铺放

中国各民用航空公司飞机机队资料

中国各民用航空公司飞机机队资料 本表更新于:2019年12月 资料来源有限,错误之处请予以指正,在此表示感谢! 讲明: 1.各航空公司总计数量由于仅统计本表内所列机型,与航空公司实际飞机总数会有出入 2.海南航空各机型数量已包括海航集团属下大新华航空、天津航空、新华航空、山西航空、扬子江快运、首都航空、祥鹏航空、西部航空的情形,未包含作为公务机的737和319的数量 3.中国货运航空机型数量已包括上海国际货运航空、长城航空公司的情形 4.中国东方航空机队数量暂未包含其全资子公司上海航空的机队,目前,上海航空保留品牌,独立运营 5.河南航空2018年8月25日起暂停运营,翡翠航空、银河航空2019年起暂停运营,飞机均处于停场状态

E19074--1650------------------44-----MA6013----------7----------6-------合计293305396303866672629115173297730101917233641328354 国际东 方 南 方 海 南 厦 门 上 海 四 川 山 东 重 庆 深圳 奥 凯 春 秋 顺 丰 华 夏 东 海 吉 祥 成 都 中 货 邮 政 联 合 翡 翠 幸 福 河 南 河 北 长 龙 昆 明 友 和 道 通 西 藏 大连中国各民用航空公司飞机机队资料 (按公司分类) 中国航空集团 中国国际航空公司的前身---民航北京治理局飞行总队于1955年1月1日正式成立。1988年民航北京治理局分设,成立中国国际航空公司。 依照国务院批准通过的《民航体制改革方案》,2002年10月,中国国际航空公司联合中国航空总公司和中国西南航空公司,成立了中国航空集团公司,并以联合三方的航空运输资源为基础,组建新的中国国际航空公司。2004年9月30日,作为中国航空集团公司控股的航空运输主业公司,中国国际航空股份有限公司在北京正式成立,连续保留原中国国际航空公司的名称,并使用中国国际航空公司的标志,连续被指定为唯独载国旗飞行的民用航空公司。2007年12月,中国国际航空公司正式加入世界上最大的航空联盟---星空联盟。

航空发动机性能仿真设计

航空发动机性能仿真 1、概述 发动机是飞行器的心脏,其性能对飞行器的发展有着至关重要的影响。传统的发动机总体设计,主要通过对原准机的研究和改进,并在详细设计中对各种部件性能试验和地面台架试车、高空模拟试验、飞行试验等整机试验来预测其性能,研制周期较长。 随着飞行器研制速度加快,传统设计模式已不能满足快速设计验证的要求。自上世纪80年代中后期,欧美航空行业开始推行数字化研发体系,分别推出NPSS和VIVACE计划,旨在通过建立航空发动机协同开发平台,来减少发动机的研发周期和成本。PROOSIS是2007年结束的VIVACE计划的重要成果之一。它是一款面向对象的飞行器动力系统性能仿真软件,具有完善的动力系统零部件模型库,可用于各类航空发动机系统的建模仿真分析。

2、PROOSIS的优点 丰富、开放并支持自定义的多学科模型库 PROOSIS包含多个领域的组件库,各组件的源代码完全开放,用户不仅可以修改这些代码,也可以自定义特殊组件;因此,用户既可以应用软件自带的组件构建发动机系统,也可以通过继承或重新定义的方式创建特殊的组件来构建发动机系统。

完美的多学科耦合分析 可以在同一个模型中综合分析控制、机械、电气、液压等耦合状况;从而使得用户可以将发动机的热力循环过程、控制系统、燃油和冷却系统的液力过程、电气系统等综合在同一个模型中进行综合分析,并能够将发动机模型嵌入到飞控模型中分析其性能对整个飞机的影响。 无需因果逻辑的面向对象编程语言EL 各变量之间不是赋值格式的关系,而是函数关系,模型的通用性、复用性都更好;模型可以实现信息隐藏、封装、单重继承或多重继承等;因此,同一个发动机模型,可以根据已知参数的不同,进行不同的分析。

先进航空发动机关键制造技术研究

先进航空发动机关键制造技术研究 作者:霍羿达王志东马文浩 来源:《科学与财富》2020年第21期 摘要:航空发动机是飞机的核心部分。在21世纪,航空发动机的设计和制造技术体现出了国家的科技发展水平,随着科学技术的不断发展,国家对航空领域的重视程度越来越高,所以通过对我国现有的发动机制造水平进行研究,能够对先进的航空发动机制造技术进行分析,研究出先进的发动机制造技术,促进我国航空领域的不断发展。 关键词:航空发动机;关键技术;制造研究 引言: 航空发动机技术具有高技术、高投入、高风险的特性,一般来说,单台发动机的研发时间一般在十年到二十年左右,所耗费的资金大约是10亿到20亿。从这些数据就能够看出航空发动机的重要性和难度。我国的航空发动机技术的发展与先进国家相比,仍然存在着很大的距离,因此,要想令我国的发动机技术水平得到提升,就需要投入大量的经费去进行技术方面的研究,只有这样才能够令先进航空发动机关键制造技术得到更好的发展。 一、我国航空发动机的发展 我国航空发动机经历了一个非常漫长的过程,航空发动机的作用就是为飞机提供推动力,在所有航空器进行工作的过程当中,航空发动机都是一个非常核心的部位,自从飞机研发成功之后,飞机的发动机也得到了飞速的发展,我国的航空业逐渐形成了各种各样、多种类、大范围的特点。从我国航空发动机的发展历程来看,发动机经历了两个时期,一个是活塞发动机时期,另外一个是燃气涡轮发动机时期,从活塞发动机时期到燃气涡轮发动机十期,可以看出航空领域发生了质的飞跃。 我国进行航空发动机的研制工作是在新中国成立之后,新中国刚刚成立的时候,我国的科学技术水平简直就是一张白纸,从最初的模仿、改造到现在可以独立研发出高水平的航空发动机,我国的科技人员经历了一个非常漫长且坎坷的过程。我国是世界上最大的发展中国家,航空发动机的事业直接体现出一个国家的国力标准和经济发展程度,如果一个国家没有先进的航空发动机事业,那么这个国家的航空事业便不会有大的成就,航空工业也不会得到迅速的发展。 二、航空发动机的制造工艺特点

航空发动机的分类

航空发动机分类 飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。 飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示: 吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。

相关文档
最新文档