2021-2022年高考数学一轮总复习第七章不等式及推理与证明题组训练40不等式与不等关系理

2021-2022年高考数学一轮总复习第七章不等式及推理与证明题组训练40不等式与不等关系理
2021-2022年高考数学一轮总复习第七章不等式及推理与证明题组训练40不等式与不等关系理

2021年高考数学一轮总复习第七章不等式及推理与证明题组训练40不等

式与不等关系理

1.(xx·北京大兴期末)若a<5,则一定有( ) A .aln 23<5ln 2

3

B .|a|ln 23<5ln 23

C .|aln 23|<|5ln 23|

D .a|ln 23|<5|ln 2

3

|

答案 D

2.若a ,b 是任意实数,且a>b ,则下列不等式成立的是( )

A .a 2>b 2

B.b

a <1 C .lg(a -b)>0

D .(13)a <(13)b

答案 D

解析 方法一:利用性质判断.

方法二(特值法):令a =-1,b =-2,则a 2

,b a >1,lg(a -b)=0,可排除A ,B ,C

三项.故选D.

3.设a∈R ,则a>1是1

a <1的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

答案 A

解析 若a>1,则1a <1成立;反之,若1a <1,则a>1或a<0.即a>1?1a <1,而1

a <1错误!a>1,

故选A.

4.若a ,b 为实数,则1a <1

b 成立的一个充分而不必要的条件是( )

A .b <a <0

B .a <b

C .b(a -b)>0

D .a >b

答案 A

解析 由a>b ?1a <1b 成立的条件是ab >0,即a ,b 同号时,若a >b ,则1a <1

b ;a ,b 异

号时,若a>b ,则1a >1

b

.

5.(xx·广东东莞一模)设a ,b ∈R ,若a +|b|<0,则下列不等式成立的是( ) A .a -b>0 B .a 3

+b 3

>0 C .a 2-b 2<0 D .a +b<0

答案 D

6.设a ,b 为实数,则“0

a ”的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件 答案 D

解析 一方面,若0b>1a ,∴b<1a 不成立;另一方面,若b<1

a ,则

当a<0时,ab>1,∴0

7.已知00 B .2a -b >1 C .2ab

>2 D .log 2(ab)<-2

答案 D

解析 方法一(特殊值法):取a =14,b =3

4

验证即可.

方法二:(直接法)由已知,0

4,log 2(ab)<-2,故选D.

8.设0

B .log 12b

C .2b <2a

<2 D .a 2

答案 C

解析 方法一(特殊值法):取b =14,a =1

2.

方法二(单调性法): 0

y =log 12x 在(0,+∞)上为减函数,

∴log 12b>log 12a ,B 不对;

a>b>0?a 2>ab ,D 不对,故选C.

9.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,若两人步行速度、跑步速度均相同,则( )

A .甲先到教室

B .乙先到教室

C .两人同时到教室

D .谁先到教室不确定

答案 B

解析 设步行速度与跑步速度分别为v 1和v 2显然0

s

v 1+s v 2,乙用时间为4s v 1+v 2

, 而s v 1+s v 2-4s v 1+v 2=s (v 1+v 2)2-4sv 1v 2v 1v 2(v 1+v 2)=s (v 1-v 2)2v 1v 2(v 1+v 2)>0, 故s v 1+s v 2>4s v 1+v 2

,故乙先到教室. 10.(xx·浙江台州一模)下列四个数中最大的是( ) A .lg2 B .lg 2 C .(lg2)2

D .lg(lg2)

答案 A

解析 因为lg2∈(0,1),所以lg(lg2)<0; lg 2-(lg2)2=lg2(12-lg2)>lg2(1

2-lg 10)=0,

即lg 2>(lg2)2

lg2-lg 2=1

2lg2>0,即lg2>lg 2.

所以最大的是lg2.

11.设a =log 36,b =log 510,c =log 714,则( ) A .c>b>a B .b>c>a

C .a>c>b

D .a>b>c

答案 D

解析 a =log 36=1+log 32,b =log 510=1+log 52,c =log 714=1+log 72,则只要比较log 32,log 52,log 72的大小即可,在同一坐标系中作出函数y =log 3x ,y =log 5x ,y =log 7x 的图像,由三个图像的相对位置关系,可知a>b>c ,故选D.

12.已知实数x ,y ,z 满足x +y +z =0,且xyz>0,设M =1x +1y +1

z ,则( )

A .M>0

B .M<0

C .M =0

D .M 不确定

答案 B

解析 ∵xyz>0,∴x ≠0,y ≠0,z ≠0.又∵x+y +z =0,∴x =-(y +z),M =1x +1y +1

z =

yz +xz +xy xyz =yz +x (y +z )xyz =yz -(y +z )(y +z )xyz =-y 2

-z 2

-yz xyz .∵-y 2-z 2

-yz

=-[(y +12z)2+3

4

z 2]<0,xyz>0,∴M<0.故选B.

13.(1)若角α,β满足-

π2<α<β<π

2

,则2α-β的取值范围是________. 答案 (-3π2,π

2

)

解析 ∵-π2<α<β<π2,∴-π<α-β<0.∵2α-β=α+α-β,∴-3π

2<2α-

β<π

2

.

(2)若1<α<3,-4<β<2,则α-|β|的取值范围是________.

答案 (-3,3)

解析 ∵-4<β<2,∴0≤|β|<4.∴-4<-|β|≤0.又∵1<α<3,∴-3<α-|β|<3. 14.(xx·《高考调研》原创题)设α∈(0,1

2),T 1=cos(1+α),T 2=cos(1-α),则

T 1与T 2的大小关系为________. 答案 T 1

解析 T 1-T 2=(cos1cos α-sin1sin α)-(cos1cos α+sin1sin α)=-2sin1sin α<0.

15.(1)若a>1,b<1,则下列两式的大小关系为ab +1________a +b. 答案 <

解析 (ab +1)-(a +b)=1-a -b +ab =(1-a)(1-b),

∵a>1,b<1,∴1-a<0,1-b>0,∴(1-a)(1-b)<0,∴ab +10,b>0,则不等式-b<1

x

答案 (-∞,-1b )∪(1

a

,+∞)

解析 由已知,-b<0,a>0,∴1

x ∈(-b ,a)=(-b ,0)∪{0}∪(0,a).

∴x ∈(-∞,-1b )∪(1

a

,+∞).

16.设a>b>c>0,x =a 2

+(b +c )2

,y =b 2

+(c +a )2

,z =c 2

+(a +b )2

,则x ,y ,z 的大小顺序是________. 答案 z>y>x

解析 方法一(特值法):取a =3,b =2,c =1验证即可.

方法二(比较法):∵a>b>c>0,∴y 2-x 2=b 2+(c +a)2-a 2-(b +c)2=2c(a -b)>0,∴y 2

>x 2

,即y>x.

z 2-y 2=c 2+(a +b)2-b 2-(c +a)2=2a(b -c)>0, 故z 2

>y 2

,即z>y ,故z>y>x.

17.已知a +b>0,比较a b 2+b a 2与1a +1

b

的大小.

答案

a b 2+b a 2≥1a +1b

解析 a b 2+b a 2-? ????1a +1b =a -b b 2+b -a

a

2=

(a -b)? ??

??1b 2-1a 2=(a +b )(a -b )2

a 2

b 2

. ∵a +b>0,(a -b)2

≥0,∴(a +b )(a -b )2

a 2

b 2

≥0.

∴a b 2+b a 2≥1a +1b

. 18.已知a>0且a≠1,比较log a (a 3+1)和log a (a 2+1)的大小. 答案 log a (a 3+1)>log a (a 2+1) 解析 当a>1时,a 3>a 2,a 3+1>a 2+1. 又y =log a x 为增函数, 所以log a (a 3

+1)>log a (a 2

+1); 当0

所以log a (a 3+1)>log a (a 2+1).

综上,对a>0且a≠1,总有log a (a 3+1)>log a (a 2+1).

1.(xx·山东)已知实数x ,y 满足a x

(0ln(y 2+1)

B .sinx>siny

C .x 3>y 3 D.

1x 2+1>1y 2+1

答案 C

解析 方法一:因为实数x ,y 满足a x y. 对于A ,取x =1,y =-3,不成立; 对于B ,取x =π,y =-π,不成立;

对于C ,由于f(x)=x 3在R 上单调递增,故x 3>y 3成立; 对于D ,取x =2,y =-1,不成立.选C.

方法二:根据指数函数的性质得x>y ,此时x 2,y 2的大小不确定,故选项A 、D 中的不等式不恒成立;根据三角函数的性质,选项B 中的不等式也不恒成立;根据不等式的性质知,选项C 中的不等式成立.

2.(xx·北京平谷区质检)已知a ,b ,c ,d 均为实数,有下列命题: ①若ab>0,bc -ad>0,则c a -d

b >0;

②若ab>0,c a -d

b >0,则b

c -ad>0;

③若bc -ad>0,c a -d

b

>0,则ab>0.

其中正确命题的个数是( ) A .0 B .1 C .2 D .3

答案 D

解析 对于①,∵ab>0,bc -ad>0,c a -d b =bc -ad

ab >0,∴①正确;对于②,∵ab>0,又

c a -

d b >0,即bc -ad ab >0,∴②正确;对于③,∵bc -ad>0,又c a -d b >0,即bc -ad

ab >0,∴ab>0,∴③正确.

3.(xx·浙江温州质检)设a ,b ∈R ,则“a>1,b>1”是“ab>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A

解析 a>1,b>1?ab>1;但ab>1,则a>1,b>1不一定成立,如a =-2,b =-2时,ab =4>1.故选A.

4.(xx·湖北黄冈质检)已知x>y>z ,x +y +z =0,则下列不等式中成立的是( ) A .xy>yz B .xz>yz C .xy>xz D .x|y|>z|y| 答案 C

5.下面四个条件中,使a>b 成立的充分而不必要的条件是( ) A .a>b +1 B .a>b -1 C .a 2>b 2 D .a 3>b 3

答案 A

解析 ①由a>b +1,得a>b +1>b ,即a>b.而由a>b 不能得出a>b +1,因此,使a>b 成立的充分不必要条件是a>b +1;②B 是非充分必要条件;③C 是非充分也非必要条件;④D 是充要条件,故选A.

6.若a ,b ,c ∈R ,a>b ,则下列不等式成立的是( ) A .a 2>b 2 B .a|c|>b|c| C.1a <1b D.

a c 2

+1>b c 2+1

答案 D

解析 方法一:(特殊值法)

令a =1,b =-2,c =0,代入A ,B ,C ,D 中,可知A ,B ,C 均错,故选D. 方法二:(直接法)

∵a>b ,c 2

+1>0,∴a c 2+1>b c 2+1

,故选D.

7.如果a ,b ,c 满足cac B .c(b -a)>0 C .cb 20 答案 C

解析 由题意知c<0,a>0,则A ,B ,D 一定正确,若b =0,则cb 2=ab 2.故选C. 8.已知a>b>0,且ab =1,设c =2

a +

b ,P =log

c a ,N =log c b ,M =log c (ab),则有( )

A .P

B .M

C .N

D .P

答案 A

解析 因为a>b>0,且ab =1,所以a>1,02ab =2,0

a +

b <1,所以

log c a

9.已知有三个条件:①ac 2>bc 2;②a c >b

c ;③a 2>b 2,其中能成为a>b 的充分条件的是________.

答案 ①

解析 由ac 2

>bc 2

可知c 2

>0,即a>b ,故“ac 2

>bc 2

”是“a>b”的充分条件;②当c<0时,ab 的充分条件.

10.(xx·皖南七校联考)若a1b

B .2a >2b

C .|a|>|b|

D .(12)a >(12

)b

答案 B

解析 由a0,因此a·1ab 1

b 成立;由a-b>0,因

此|a|>|b|>0成立;又y =(12)x 是减函数,所以(12)a >(1

2

)b 成立.

11.已知m>1,a =m +1-m ,b =m -m -1,则以下结论正确的是( ) A .a>b B .a =b

C .a

D .a ,b 的大小不确定

答案 C

解析 a =m +1-m =

1m +1+m

,b =m -m -1=

1m +m -1

,因为m +1+

m>m +m -1,所以a

12.已知a<0,-1

解析 ∵a-ab =a(1-b)<0,∴a0,∴ab>ab 2.∵a -ab 2=a(1-b 2

)<0,∴a

.综上,a

①若a 2-b 2=1,则a -b<1;②若1b -1a =1,则a -b<1;③若|a -b|=1,则|a -b|<1;

④若|a 3-b 3|=1,则|a -b|<1.

其中的真命题有________.(写出所有真命题的编号) 答案 ①④

解析 对于①,a 2-b 2=(a -b)(a +b)=1,若a -b≥1,又a>0,b>0,则a +b>a -b≥1,此时(a +b)·(a-b)>1,这与“a 2-b 2=(a +b)(a -b)=1”相矛盾,因此a -b<1,①正确.对于②,取a =2,b =23,有1b -1

a =1,此时a -b>1,因此②不正确.对于③,取a

=9,b =4,有|a -b|=1,但此时|a -b|=5>1,因此③不正确.对于④,由|a 3

-b 3|=1,得|a -b|(a 2+ab +b 2)=1,|a -b|(a 2+ab +b 2)>|a -b|·(a 2-2ab +b 2)=|a -b|3,于是有|a -b|3<1,|a -b|<1,因此④正确. 综上所述,其中的真命题有①④.

14.(xx·吉林一中期末)若0

A.12 B .a 2+b 2

C .2ab

D .b

答案 D

解析 方法一:0a ,所以2a<1,所以0

2.同理a =1

-b12,所以12

-2ab =(a -

b)2

>0.可排除C 项.再对B ,D 两项作差有a 2

+b 2

-b =(1-b)2

+b 2

-b =2b 2

-3b +1=2(b -34)2-18.把结果视为关于b 的函数,定义域b∈(1

2,1),得a 2+b 2-b<0,所以a 2+b 2

方法二:用特殊值法.根据题目条件0

A .2b

>2a

>2c

B .2a >2b >2c

C .2c >2b >2a

D .2c >2a >2b

答案 A

解析 因为log 14ba>c ,又

因为指数函数y =2x

是单调增函数,所以2b

>2a

>2c

,故选A. 16.已知2b

<2a

<1,则下列结论错误的是( )

A .a 2

B.b a +a b >2 C .ab

D.1a >1b

答案 D

解析 因为函数h(x)=2x 在R 上单调递增,由2b <2a <1,即2b <2a <20,可得b

,排除A ,C ;由b a >0,a b >0,a ≠b ,可得b a +a b

>2,排除B ,选D.

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

基本不等式练习题

3.4基本不等式 重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题. 考纲要求:①了解基本不等式的证明过程。 ②会用基本不等式解决简单的最大(小)值问题. 经典例题:若a,b,c都是小于1的正数,求证:,,不可能同时大于. 当堂练习: 1.若,下列不等式恒成立的是() A。B。 C。 D. 2. 若且,则下列四个数中最大的是() A. B.C.2ab D。a 3。设x>0,则的最大值为 ( )A.3 B. C。 D.-1 4.设的最小值是( ) A. 10 B. C. D。 5. 若x, y是正数,且,则xy有( ) A.最大值16B.最小值C.最小值16 D.最大值 6. 若a, b,c∈R,且ab+bc+ca=1, 则下列不等式成立的是 ( ) A. B. C.D。 7。若x〉0, y>0,且x+y4,则下列不等式中恒成立的是 ( )

A. B。 C。 D。 8。a,b是正数,则三个数的大小顺序是() A.B。 C.D. 9.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有( ) A.B. C.D。 10.下列函数中,最小值为4的是 ( ) A。B. C. D. 11. 函数的最大值为。 12. 建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2 的造价为200元和150元,那么池的最低造价为元. 13。若直角三角形斜边长是1,则其内切圆半径的最大值是。 14。若x, y为非零实数,代数式的值恒为正,对吗?答。 15.已知:, 求mx+ny的最大值. 16。已知.若、, 试比较与的大小,并加以证明. 17。已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求的最小值. 18. 设.证明不等式对所有

2019届高考数学考前30天基础知识专练8(不等式推理与证明)

高三数学基础知识专练 不等式 推理与证明 一.填空题(共大题共14小题,每小题5分,共70分) 1、在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察 2、一元二次不等式ax +bx +c >0的解集为(α,β)(α>0),则不等式cx +bx +a >0的解集为 __________________. 3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线.已知直线 b ?平面α,直线a ?平面α,直线b //平面α,则直线b //直线a ”,这个结论显然是错误的,这是因为________________(填写下面符合题意的一个序号即可). (1)大前提错误 (2)小前提错误 (3)推理形式错误 (4)非以上错误 4、设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (n )= . 5、在等差数列{a n }中,公差为d ,前n 项和为S n ,则有等式d n n na S n 2 )1(1-+=成立.类比上述 性质,相应地在等比数列{b n }中,公比为q ,前n 项和为T n ,则有等式_____成立. 6、下列推理中属于合情合理的序号是_____________. (1)小孩见穿“白大褂”就哭; (2)凡偶数必能被2整除,因为0能被2整除,所以0是偶数; (3)因为光是波,所以光具有衍射性质; (4)鲁班被草划破了手而发明了锯. 7、设?????≥-<=-2 ),1(log 22)(2 21x x x x f x ,则不等式2)(>x f 的解集为____________. 8、若函数13)2(2)(2≥?+++= x a x a x x x f 能用均值定理求最大值,则a 的取值范围是____. 9、设a >b >c >0,且 c a m c b b a -≥ -+-11恒成立,则m 的最大值为___________. 10、某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋 35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件 下,最少要花费____________元. 11、已知0,0>>b a 且1=+b a ,则)1 )(1(b b a a ++ 的最小值为_______________. 12、设f (x )=x 3+x ,a ,b ,c ∈R 且a +b >0,b +c >0,a +c >0, 则f (a )+f (b )+f (c )的值的符号为____(填“正数” 或“负数). 13、删去正整数数列1,2,3,…中的所有完全平方数,得到一个新数列,则这个数列的第2019项为__________. 14、下面使用类比推理正确的序号是__________. (1)由“(a +b )c =ac +bc ”类比得到:“()()()a b c a c b c +?=?+?”; (2)由“在f (x )=ax 2+bx (a ≠0)中,若f (x 1)=f (x 2)则有f (x 1+x 2)=0”类比得到“在等差数列{a n }中,S n 为前n 项和,若S p =S q ,则有S p+q =0”; (3)由“平面上的平行四边形的对边相等”类比得到“空间中的平行六面体的对面是

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

听课答案-第六单元-不等式、推理与证明

全品高考复习方案数学(理科) RJA 第六单元不等式、推理与证明 1.编写意图 (1)重视不等式本身的知识、方法的讲解和练习力度,以基本的选题和细致全面的讲解进行组织,使学生掌握好不等式本身的重要知识和方法,为不等式的应用打下良好的基础. (2)二元一次不等式(组)所表示的平面区域和简单的线性规划问题,是高考重点考查的两个知识点,我们不把探究点设置为简单的线性规划问题,而是设置为目标函数的最值(这样可以涵盖线性规划和非线性规划),含有参数的平面区域以及生活中的优化问题,这样在该讲就覆盖了高考考查的基本问题. (3)对于合情推理,主要在于训练学生的归纳能力,重点在一些常见知识点上展开. 2.教学建议 (1)在各讲的复习中首先要注意基础性,这是第一位的复习目标.由于各讲的选题偏重基础,大多数例题、变式题学生都可以独立完成,在基础性复习的探究点上要发挥教师的引导作用,教师引导学生独立思考完成这些探究点,并给予适度的指导和点评. (2)要重视实际应用问题的分析过程、建模过程.应用问题的难点是数学建模,本单元涉及了较多的应用题,在这些探究点上教师的主要任务就是指导学生如何通过设置变量把实际问题翻译成数学问题,重视解题的过程. (3)不等式在高考数学各个部分的应用,要循序渐进地解决,在本单元中涉及不等式的综合运用时,我们的选题都很基础,在这样的探究点上不要试图一步到位,不等式的综合运用是整个一轮复习的系统任务,在本单元只涉及基本的应用,不要拔高. (4)推理与证明是培养学生良好思维习惯,学习和运用数学思想方法,形成数学能力的重要一环.要站在数学思想方法的高度,对多年来所学习的数学知识和数学方法进行较为系统的梳理和提升.务必使学生对数学发现与数学证明方法有一个较为全面的认识. 3.课时安排 本单元共7讲,一个小题必刷卷(九),建议每讲1个课时完成,小题必刷卷1个课时完成,本单元建议用8个课时完成复习任务. 第33讲不等关系与不等式 考试说明了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景. 考情分析 考点考查方向考例考查热度 不等式的性 比较数、式的大小2017全国卷Ⅰ11 ★☆☆质 不等式性质 求参数的值、范围★☆☆的应用 真题再现 ■[2017-2013]课标全国真题再现 [2017·全国卷Ⅰ]设x,y,z为正数,且2x=3y=5z,则()

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

不等式的证明及著名不等式知识梳理及典型练习题

不等式的证明及着名不等式 一、知识梳理 1.三个正数的算术—几何平均不等式 (1)定理 如果a ,b ,c 均为正数,那么a +b +c 3____3abc ,当且仅当________时, 等号成立. 即三个正数的算术平均________它们的几何平均. (2)基本不等式的推广 对于n 个正数a 1,a 2,…,a n ,它们的算术平均________它们的几何平均,即a 1+a 2+…+a n n ____n a 1a 2…a n ,当且仅当______________时,等号成立. 2.柯西不等式 一、二维形式的柯西不等式 二维形式的柯西不等式的变式: .,,,,, )( 1等号成立时当且仅当则都是实数若二维形式的柯西不等式定理bc ad d c b a =22222) ())((bd ac d c b a +≥++bd ac d c b a +≥+?+2222)1(bd ac d c b a +≥+?+2222)2 ( .,,,,, )( 2等号成立时使或存在实数是零向量当且仅当是两个向量设柯西不等式的向量形式定理βαββαk k =≤.,:1221等号成立时当且仅当式得二维形式的柯西不等平面向量坐标代入b a b a ,=2 221122212221)()()(b a b a b b a a +≥++式: 得三维形式的柯西不等将空间向量的坐标代入,2 332211232221232221)()()(b a b a b a b b b a a a ++≥++++.)3,2,1(,,,,等号成立时使得或存在一个数即共线时当且仅当 ,i kb a k i i ===221221222221212211)()(R,y ,x ,y , )( 3y y x x y x y x x -+-≥+++∈那么设二维形式的三角不等式定理

2019届高三数学文一轮复习:第七章 不等式 推理与证明 课时跟踪训练38含解析

课时跟踪训练(三十八) [基础巩固] 一、选择题 1.观察下面关于循环小数化分数的等式:0.3·=39=13,0.1· 8·=1899=211,0.3· 5· 2·=352999,0.0005· 9·=11000×5999=5999000,据此推测循环小数0.23·可化成分数( ) A.2390 B.9923 C.815 D.730 [解析] 0.23·=0.2+0.1×0.3·=15+110×39=730. 选D. [答案] D 2.已知数列{a n }为11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规 律,则a 99+a 100的值为( ) A.3724 B.76 C.1115 D.715 [解析] 由给出的数列{a n }的前10项得出规律,此数列中,分子与分母的和等于2的有1项,等于3的有2项,等于4的有3项,…,等于n 的有n -1项,且分母由1逐渐增大到n -1,分子由n -1逐渐减小到1(n ≥2),当n =14时即分子与分母的和为14时,数列到91项,当n =15即分子与分母的和为15时,数列 到104项,所以a 99与a 100是分子与分母和为15中的第8项与第9项,分别为78, 69,∴a 99+a 100=78+69=3724,选A. [答案] A 3.观察下列各式:55=3125,56=15625,57=78125,…,则52018的末四位数字为( ) A .3125 B .5625 C .0625 D .8125

[解析]∵55=3125,56=15625,57=78125, 58=390625,59=1953125,…,∴最后四位应为每四个循环,2018=4×504+2,∴52018最后四位应为5625. [答案] B 4.(2017·安徽合肥一中模拟)《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形 如以下形式的等式具有“穿墙术”:22 3=2 2 3,3 3 8=3 3 8,4 4 15=4 4 15, 55 24=5 5 24,…,则按照以上规律,若9 9 n=9 9 n具有“穿墙术”,则n= () A.25 B.48 C.63 D.80 [解析]由22 3=2 2 3,3 3 8=3 3 8,4 4 15=4 4 15,5 5 24=5 5 24,…, 可得若99 n=9 9 n具有“穿墙术”,则n=9 2-1=80,故选D. [答案] D 5.(2017·湖北宜昌一中、龙泉中学联考)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;乙说:“我们四人中有人考得好”;丙说:“乙和丁至少有一人没考好”;丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对了的两人是() A.甲丙B.乙丁 C.丙丁D.乙丙 [解析]如果甲对,则丙、丁都对,与题意不符,故甲错,乙对;如果丙错,则丁错,因此只能是丙对,丁错,故选D. [答案] D 6.如图所示,面积为S的平面凸四边形的第i条边的边长记为a i(i=1,2,3,4), 此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若a1 1= a2 2= a3 3= a4 4=k,

最新数学不等式高考真题【精】

1.(2018?卷Ⅱ)设函数 (1)当时,求不等式的解集; (2)若,求的取值范围 2.(2013?辽宁)已知函数f(x)=|x﹣a|,其中a>1 (1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集; (2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.3.(2017?新课标Ⅲ)[选修4-5:不等式选讲] 已知函数f(x)=|x+1|﹣|x﹣2|. (Ⅰ)求不等式f(x)≥1的解集; (Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围. 4.(2017?新课标Ⅱ)[选修4-5:不等式选讲] 已知a>0,b>0,a3+b3=2,证明: (Ⅰ)(a+b)(a5+b5)≥4; (Ⅱ)a+b≤2. 5.(2017?新课标Ⅰ卷)[选修4-5:不等式选讲] 已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分) (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围. 6.(2017?新课标Ⅱ)[选修4-5:不等式选讲] 已知a>0,b>0,a3+b3=2,证明: (Ⅰ)(a+b)(a5+b5)≥4; (Ⅱ)a+b≤2. 7.(2018?卷Ⅰ)已知 (1)当时,求不等式的解集 (2)若时,不等式成立,求的取值范围 8.(2018?卷Ⅰ)已知f(x)=|x+1|-|ax-1| (1)当a=1时,求不等式f(x)>1的解集 (2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围 9.(2017?新课标Ⅲ)[选修4-5:不等式选讲] 已知函数f(x)=|x+1|﹣|x﹣2|. (1)求不等式f(x)≥1的解集; (2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围. 10.(2014?新课标II)设函数f(x)=|x+ |+|x﹣a|(a>0). (1)证明:f(x)≥2; (2)若f(3)<5,求a的取值范围. 11.(2015·福建)选修4-5:不等式选讲 已知,函数的最小值为4.(1)求的值;

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

第六章质量检测不等式推理与证明

第六章不等式推理与证明 (时间120分钟,满分150分) 、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1 .不等式(x + 1) x — 1> 0的解集是 A . {x|x > 1} 解析:■/ x — 1> 0, /? x > 1. 同时 x + 1> 0,即卩 x > — 1.二 x > 1. 答案:B 2 .下列命题中的真命题是 答案: x w 0 x 2> 1,从而得 x > 1 或 x W — 1. 答案:D 2x + 1 4 .若集合 A = {x||2x — 1|v 3}, B = {x| v 0},贝V A Q B 是 3 — x 1 A . {x|— 1 v x v — 2或 2v x v 3} B . {x|2v x v 3} 1 1 C . {x|—v x v 2} D . {x|— 1v x v — ^} 解析:T I2X — 1|v 3, ??? — 3v 2x — 1v 3.A — 1v x v 2. 2x + 1 又v 0, (2x + 1)(x — 3) > 0, 3 — x … 1 1 …x > 3 或 x v — 2* - - A Q B = {x| — 1 v x v — 2). {x|x > 1} C . {x|x > 1 或 x =— 1} {x|x >— 1 或 x = 1} A 门. .右 C .若 a > b , c > d ,贝U ac > bd a > b ,贝U a 2 > b 2 解析: 由 a >|b|,可得 a >|b|>0? 2 2 B .若 |a|> b ,则 a > b D .若 a > |b|,贝U a 2> b 2 a 2> b 2. x 2, x w 0 3 .已知函数 f(x) = 2x — 1, x >0 若f(x)> 1,则x 的取值范围是 A . ( — m,— 1] B . [1 ,+m ) C . ( — m, 0] U [1,+m ) ( — m, — 1] U [1 ,+m ) 解析:将原不等式转化为: x > 0 检测

高考数学真题汇编8 不等式 理( 解析版)

2012高考真题分类汇编:不等式 1.【2012高考真题重庆理2】不等式 01 21 ≤+-x x 的解集为 A.??? ??- 1,21 B.??????-1,21 C.[)+∞???? ??-∞-,121. D.[)+∞???? ? ? -∞-,121, 对 【答案】A 【解析】原不等式等价于0)12)(1(<+-x x 或01=-x ,即12 1 <<-x 或1=x ,所以不等式的解为12 1 ≤<- x ,选A. 2.【2012高考真题浙江理9】设a 大于0,b 大于0. A.若2a +2a=2b +3b ,则a >b B.若2a +2a=2b +3b ,则a >b C.若2a -2a=2b-3b ,则a >b D.若2a -2a=a b -3b ,则a <b 【答案】A 【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则 ()2ln 220x f x '=?+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其 余选项用同样方法排除.故选A 3.【2012高考真题四川理9】某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A 、1800元 B 、2400元 C 、2800元 D 、3100元 【答案】C. 【解析】设生产x 桶甲产品,y 桶乙产品,总利润为Z , 则约束条件为???????>>≤+≤+0 012 2122y x y x y x ,目标函数为300400Z x y =+,

不等式的证明测试题与答案

不等式的证明 班级 _____ _____ 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)((b a b a ++ 的最小值是 ( ) A .2 B .22 C .24 D .4 2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的 ( ) A .必要条件 B .充分条件 C .充要条件 D .必要或充分条件 3.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是 ( ) A . 111<+b a B . 111≥+b a C . 21 1<+b a D . 21 1≥+b a 4.已知a 、 b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是 ( ) A .a c ≥b B .a b ≥c C .bc ≥a D .a b ≤c 5.设a =2,b=37-,26-= c ,则a 、b 、c 间的大小关系是 ( ) A .a >b>c B .b>a >c C .b>c>a D .a >c>b 6.已知a 、b 、m 为正实数,则不等式 b a m b m a >++ ( ) A .当a < b 时成立 B .当a > b 时成立 C .是否成立与m 无关 D .一定成立 7.设x 为实数,P=e x +e -x ,Q=(sin x +cos x )2,则P 、Q 之间的大小关系是 ( ) A .P ≥Q B .P ≤Q C .P>Q D . P b 且a + b <0,则下列不等式成立的是 ( ) A . 1>b a B . 1≥b a C . 1

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

第6章 第36讲-不等式、推理与证明

课时达标 第36讲-不等式、推理与证明 一、选择题 1.用反证法证明命题:“若a +b +c 为偶数,则自然数a ,b ,c 恰有一个偶数”时正确的反设为( ) A .自然数a ,b ,c 都是奇数 B .自然数a ,b ,c 都是偶数 C .自然数a ,b ,c 中至少有两个偶数 D .自然数a ,b ,c 中都是奇数或至少有两个偶数 D 解析 “自然数a ,b ,c 中恰有一个偶数”的否定是“自然数a ,b ,c 都是奇数或至少有两个偶数”.故选D. 2.分析法又称执果索因法,若用分析法证明:“设 a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( ) A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0 D .(a -b )(a -c )<0 C 解析 b 2-a c <3a ?b 2-ac <3a 2?(a +c )2-ac <3a 2?a 2+2ac +c 2-ac -3a 2<0 ?-2a 2+ac +c 2<0?2a 2-ac -c 2>0?(a -c )(2a +c )>0?(a -c )(a -b )>0. 3.(2019·焦作一中月考)若a ,b ∈R ,则下面四个式子中恒成立的是( ) A .lg(1+a 2)>0 B .a 2+b 2≥2(a -b -1) C .a 2+3ab >2b 2 D.a b <a +1b +1 B 解析 在B 项中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立. 4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ) A .恒为负值 B .恒等于零 C .恒为正值 D .无法确定正负 A 解析 由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减可知f (x )是R 上的单调递减函数,由x 1+x 2>0可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.

相关文档
最新文档