直线及曲线拟合方法

直线及曲线拟合方法
直线及曲线拟合方法

以求n1为例

添加列,单击右键,选绿色的选项

更改坐标,CRGI由Y改为X

在列的标签上点击右键,选择属性

将Y 改为X

要作的是σε

ln ln - ,把应变速率和应力分别输入,Y 为应变速率,X 为应力

用设定列的值来分别求ln

数据全选,点击plot菜单的三个点的选项,或者左下角的三个点的图标。

菜单data 下选择数据组

分析菜单,线性拟合

右下角为拟合的直线方程信息,A B为方程的系数,R为线性相关性,记录斜率值,如果右

下键没有出现方程信息的窗口,点击最右面的那个选项。

选下一组数据

最后全部做完

Y A x i s T i t l e

X Axis Title

曲线拟合的方法及过程

一、课程设计题目: 对于函数 x e x x f --=)( 从00=x 开始,取步长1.0=h 的20个数据点,求五次最小二乘拟合多项式 5522105)()()()(x x a x x a x x a a x P -++-+-+= 其中 ∑ ===19 95.020 i i x x 二、原理分析 (1)最小二乘法的提法 当数据量大且由实验提供时,不宜要求近似曲线)(x y φ=严格地经过所有数据点),(i i y x ,亦即不应要求拟合函数)(x ?在i x 处的偏差(又称残差) i i i y x -=)(φδ (i=1,2,…,m) 都严格的等于零,但是,为了使近似曲线能尽量反应所给数据点的变化趋势,要求偏差i δ适当的小还是必要的,达到这一目标的途径很多,例如,可以通过使最大偏差i δmax 最小来实现,也可以通过使偏差绝对值之和∑i i δ最小来实 现……,考虑到计算方便等因素,通常用使得偏差平方和∑i i 2δ最小(成为最小 二乘原则)来实现。 按最小二乘原则选择近似函数的方法称为最小二乘法。 用最小二乘法求近似函数的问题可以归结为:对于给定数据),(i i y x (i=1,2,…,m),要求在某个函数类Φ中寻求一个函数)(x * ?,使 [][]2 1 )(2 1 * )()(mi n ∑∑=Φ∈=-=-m i i i x m i i i y x y x ??? (1-1) 其中)(x ?为函数类Φ中任意函数。 (1)确定函数类Φ,即确定)(x ?的形式。这不是一个单纯的数学问题,还与其他领域的一些专业知识有关。在数学上,通常的做法是将数据点),(i i y x 描

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,Y i)(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型,式中c=(c1,c2,…c n)是一些待定参数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在各点

圆曲线拟合

最小二乘法(least squares analysis)是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。最小二乘法通常用于曲线拟合(least squares fitting) 。这里有拟合圆曲线的公式推导过程和vc实现。

VC实现的代码: void CViewActionImageTool::LeastSquaresFitting() { if (m_nNum<3) { return; } int i=0;

double X1=0; double Y1=0; double X2=0; double Y2=0; double X3=0; double Y3=0; double X1Y1=0; double X1Y2=0; double X2Y1=0; for (i=0;i

origin两条曲线拟合步骤

o r i g i n两条曲线拟合步 骤 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

以英文版origin75为例: 首先是输入数据(以两个拟合曲线为例): 一、在origin里面增加两列:点击鼠标右键,选择add new column, 二、选择C列,并将 其设为X(点击鼠标 右键选择) 三、从excel表格中选择需要的数据复制过来 然后是曲线拟合: 一、画散点图 全选数据后点击表格左下角的散点符号即可画出散点图 二、断开两组数据的关联 任选一点,双击,将dependent改为independent 三、第一条曲线拟合 单击最小梯度数据点,然后选择analysis→fit exponential decay→ first order 这样第一条线就拟合出来了 四、第二条曲线拟合 拟合之前需要将第一条线的拟合方程剪切,因为直接拟合第二条会将第 一条曲线方程覆盖 先选择需要拟合的数据,选择data→2g1 data1:C(X),D(Y) 然后依旧是analysis→fit exponential decay→first order,然后将剪切的方程粘贴上去,这样两个方程 然后双击进行修 改。

去掉方程的文本框:鼠标放在文本框上,右键→properties→选择none即可 增加图名,右键add text即可。 最后是输出图件 一、输出图片格式 二、输出工程文件 file→export page file→save project as 单曲线拟合在输入数据的时候不需要增加列数,直接输入,然后拟合即可。 带有异常值的数据在输入时就要再增加两列输入异常值,并将其中一列设置为X,然后和两条曲线一样进行拟合即可。

最小二乘法圆拟合资料讲解

最小二乘法圆拟合

最小二乘法拟合圆公式推导及vc实现[r] 最小二乘法(least squares analysis)是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。最小二乘法通常用于曲线拟合 (least squares fitting) 。这里有拟合圆曲线的公式推导过程和 vc实现。

此处使用平方差与最小二乘法差的平方不一样,但是仍然具有实用估计价值,并且可以化简公式。

VC实现的代码:C++类 void CViewActionImageTool::LeastSquaresFitting() { if (m_nNum<3) { return; } int i=0; double X1=0; double Y1=0; double X2=0; double Y2=0;

double Y3=0; double X1Y1=0; double X1Y2=0; double X2Y1=0; for (i=0;i

1、曲线拟合及其应用综述

曲线拟合及其应用综述 摘要:本文首先分析了曲线拟合方法的背景及在各个领域中的应用,然后详细介绍了曲线拟合方法的基本原理及实现方法,并结合一个具体实例,分析了曲线拟合方法在柴油机故障诊断中的应用,最后对全文内容进行了总结,并对曲线拟合方法的发展进行了思考和展望。 关键词:曲线拟合最小二乘法故障模式识别柴油机故障诊断 1背景及应用 在科学技术的许多领域中,常常需要根据实际测试所得到的一系列数据,求出它们的函数关系。理论上讲,可以根据插值原则构造n 次多项式Pn(x),使得Pn(x)在各测试点的数据正好通过实测点。可是, 在一般情况下,我们为了尽量反映实际情况而采集了很多样点,造成了插值多项式Pn(x)的次数很高,这不仅增大了计算量,而且影响了函数的逼近程度;再就是由于插值多项式经过每一实测样点,这样就会保留测量误差,从而影响逼近函数的精度,不易反映实际的函数关系。因此,我们一般根据已知实际测试样点,找出被测试量之间的函数关系,使得找出的近似函数曲线能够充分反映实际测试量之间的关系,这就是曲线拟合。 曲线拟合技术在图像处理、逆向工程、计算机辅助设计以及测试数据的处理显示及故障模式诊断等领域中都得到了广泛的应用。 2 基本原理 2.1 曲线拟合的定义 解决曲线拟合问题常用的方法有很多,总体上可以分为两大类:一类是有理论模型的曲线拟合,也就是由与数据的背景资料规律相适应的解析表达式约束的曲线拟合;另一类是无理论模型的曲线拟合,也就是由几何方法或神经网络的拓扑结构确定数据关系的曲线拟合。 2.2 曲线拟合的方法 解决曲线拟合问题常用的方法有很多,总体上可以分为两大类:一类是有理论模型的曲线拟合,也就是由与数据的背景资料规律相适应的解析表达式约束的曲线拟合;另一类是无理论模型的曲线拟合,也就是由几何方法或神经网络的拓扑结构确定数据关系的曲线拟合。 2.2.1 有理论模型的曲线拟合 有理论模型的曲线拟合适用于处理有一定背景资料、规律性较强的拟合问题。通过实验或者观测得到的数据对(x i,y i)(i=1,2, …,n),可以用与背景资料规律相适应的解析表达式y=f(x,c)来反映x、y之间的依赖关系,y=f(x,c)称为拟合的理论模型,式中c=c0,c1,…c n是待定参数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的方法是最小二乘法。 2.2.1.1 线性模型的曲线拟合 线性模型中与背景资料相适应的解析表达式为: ε β β+ + =x y 1 (1) 式中,β0,β1未知参数,ε服从N(0,σ2)。 将n个实验点分别带入表达式(1)得到: i i i x yε β β+ + = 1 (2) 式中i=1,2,…n,ε1, ε2,…, εn相互独立并且服从N(0,σ2)。 根据最小二乘原理,拟合得到的参数应使曲线与试验点之间的误差的平方和达到最小,也就是使如下的目标函数达到最小: 2 1 1 ) ( i i n i i x y Jε β β- - - =∑ = (3) 将试验点数据点入之后,求目标函数的最大值问题就变成了求取使目标函数对待求参数的偏导数为零时的参数值问题,即: ) ( 2 1 1 = - - - - = ? ?∑ = i i n i i x y J ε β β β (4)

SPSS 10.0高级教程十二:多元线性回归与曲线拟合

SPSS 10.0高级教程十二:多元线性回归与曲线拟合 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。回归分析就是用于说明这种依存变化的数学关系。 §10.1Linear过程 10.1.1 简单操作入门 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。 例10.1:请分析在数据集Fat surfactant.sav中变量fat对变量spovl的大小有无影响? 显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。但此处我们要采用和方差分析等价的分析方法--回归分析来解决它。 回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。 这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。 10.1.1.1 界面详解 在菜单中选择Regression==>liner,系统弹出线性回归对话框如下:

除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。 【Dependent框】 用于选入回归分析的应变量。 【Block按钮组】 由Previous和Next两个按钮组成,用于将下面Independent框中选入的自变量分组。由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。下面的例子会讲解其用法。 【Independent框】 用于选入回归分析的自变量。

一种分段曲线拟合方法研究

一种分段曲线拟合方法研究 摘要:分段曲线拟合是一种常用的数据处理方法,但在分段点处往往不能满足连续与光滑.针对这一问题,本文给出了一种能使分段点处连续的方法.该方法首先利用分段曲线拟合对数据进行处理;然后在相邻两段曲线采用两点三次Hermite插值的方法,构造一条连结两条分段曲线的插值曲线,从而使分段点处满足一阶连续.最后通过几个实例表明该方法简单、实用、效果较好. 关键词:分段曲线拟合Hermite插值分段点连续 Study on A Method of Sub-Curve Fitting Abstract:Sub-curve fitting is a commonly used processing method of data, but at sub-points it often does not meet the continuation and smooth, in allusion to to solve this problem, this paper presents a way for making sub-point method continuous. Firstly, this method of sub-curve fitting deals with the data; and then uses the way of t wo points’ cubic Hermite interpolation in the adjacent, structures a interpolation curve that links the two sub-curves, so the sub-point meets first-order continuation; lastly, gives several examples shows that this method is simple, practical and effective. Key words:sub-curve fitting Hermite interpolation sub-point continuous

最小二乘法拟合圆公式推导及matlab实现

2014-10-01 | 最小二乘法拟合圆公式推导及matlab实现 最小二乘法(least squares analysis)是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。最小二乘法通常用于曲线拟合(least squares fitting) 。 这里有拟合圆曲线的公式推导过程和vc实现。

matlab 实现: function [xc,yc,R,f] = circfit(x,y) %CIRCFIT Fits a circle in x,y plane % [XC, YC, R, A] = CIRCFIT(X,Y) % Result is center point (yc,xc) and radius R.A is an % optional output describing the circle's equation: % x^2+y^2+a(1)*x+a(2)*y+a(3)=0 close all; clear all;clc; n=length(x); xx=x.*x; yy=y.*y; xy=x.*y; A=[sum(x) sum(y) n;sum(xy) sum(yy)... sum(y);sum(xx) sum(xy) sum(x)]; B=[-sum(xx+yy) ; -sum(xx.*y+yy.*y) ; -sum(xx.*x+xy.*y)]; f=A\B; xc = -.5*f(1); yc = -.5*f(2); R = sqrt((f(1)^2+f(2)^2)/4-f(3)); end

曲线拟合方法浅析

曲线拟合方法概述 工业设计张静1014201056 引言:在现代图形造型技术中,曲线拟合是一个重要的部分,是曲面拟合的基础。现着重对最小二乘法、移动最小二乘法、NURBS 三次曲线拟合法和基于RBF 曲线拟合法进行 比较,论述这几种方法的原理及其算法,基于实例分析了上述几种拟合方法的特性,以分析拟合方法的适用场合,从而为图形造型中曲线拟合的方法选用作出更好的选择。 1 曲线拟合的概念 在许多对实验数据处理的问题中,经常需要寻找自变量和对应因变量之间的函数关系,有的变量关系可以根据问题的物理背景,通过理论推导的方法加以求解,得到相应关系式。但绝大多数的函数关系却很复杂,不容易通过理论推导得到相关的表达式,在这种情况下,就需要采用曲线拟合的方法来求解变量之间的函数关系式。 曲线拟合(Curve Fitting) ,是用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之问的函数关系的一种数据处理方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,y i), i=1 , 2, 3…,m,其中各X i是彼此不同的。人们希望用一类与数据的规律相吻合的解析表达式y=f(x)来反映量x与y之间的依赖关系。即在一定意义下“最佳”地逼近或拟合已知数据。f(x)称作拟合函数,似的图 像称作拟合曲线。 2 曲线拟合的方法 2.1 最小二乘法 最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配,是进行曲线拟合的一种早期使用的方法一般最小二乘法的拟合函数是一元二次,可一元多次,也可多元多次。该方法是通过求出数据点到拟合函数的距离和 最小的拟合函数进行拟合的方法令f(x)=ax 2+bx+c ,计算数据点到该函数 所表示的曲线的距离和最小即:

曲线的圆弧拟合

曲线的圆弧拟合 —数学应用于实践之一 一、问题的提出 在实践中常出现需要将曲线拟合成圆弧的场合,例如数控机床通常只能作直线、圆弧或圆柱螺旋线的运动,因此必须把不同曲线轨迹转化成机床运动能够接受的形式。我们可以把直线看着为半径值非常大的圆弧,而圆柱螺旋线在圆柱底面的投影就是一段圆弧,因此下面着重由简到繁地介绍曲线拟合成圆弧的几种方法。 二、椭圆曲线的拟合 椭圆曲线是一种简单常见的曲线。现以椭圆曲线长轴为对称轴,取曲线的一半。这部分曲线可以用3圆弧法或5圆弧法拟合。这部分曲线拟合后,另部分曲线以长轴为对称,其拟合结果也容易得到了。 ⑴ 3圆弧法 如图1示,3圆弧法用3段相切圆弧拟合椭圆曲线段 。 a 设椭圆长半轴为a ,短半轴为b 。,则各圆弧半径计算公式如下: R 1=a b a b a b a 2)(2 222+--+ R 2= b b b a b a b a ++-+-2)(2 222 R 3=R 1 各圆心坐标为:)0,();,0();0,(132211a R O R b O R a O --- 用3圆弧法拟合椭圆曲线,计算方法简单,拟合圆弧段少,但对于长、短轴长度相差较大的椭圆曲线,拟合精度降低,如采用5圆弧法拟合,可以取得比较好的效果。 ⑵ 5圆弧法 如图2示,5圆弧法用5段相切圆弧拟合椭圆曲线段。

同样设椭圆的长半轴为a ,短半轴为b 。 各圆弧半径计算公式如下: R 1=a b /2; R 2=ab R 3=b a /2; R 4= R 2 R 5= R 1 各圆心坐标为: ) 0,();,();,0();,();0,(152243322211a R O y x O R b O y x O R a O ---- 从图2知:23213123321221)()(;;R b R a O O R R O O R R O O -+-=-=-= ∴υ=arc cos(32312 2 12322312O O O O O O O O O O ?-+) ω=arc tan( b R R a --31 ) )s i n ()(232υω --=R R x b R R R y +---=3232)c o s ()(υω 与3圆弧法相比,5圆弧拟合比3圆弧更接近理论曲线,因此5圆弧法有较 高的拟合精度。 三、复杂曲线的拟合 在这里复杂曲线是指非圆函数曲线和列表曲线。非圆函数曲线通过计算可转化成列表曲线。列表曲线由一系列有序点列P 1(x 1,y 1),P 2(x 2,y 2),…,P i (x i ,y i ),…,P n (x n ,y n )组成,可列成表格形式。列表曲线的数据也可以通过检测工具对实物逐点测量后获得。 下面介绍两种较常见的列表曲线拟合方法:

最小二乘法圆拟合

最小二乘法拟合圆公式推导及vc实现[r] 最小二乘法(least squares analysis)是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。最小二乘法通常用于曲线拟合(least squar es fitting) 。这里有拟合圆曲线的公式推导过程和vc实现。

此处使用平方差与最小二乘法差的平方不一样,但是仍然具有实用估计价值,并且可以化简公式。

VC实现的代码:C++类 void CViewActionImageTool::LeastSquaresFitting() { if (m_nNum<3) { return; } int i=0; double X1=0; double Y1=0; double X2=0; double Y2=0; double X3=0;

double Y3=0; double X1Y1=0; double X1Y2=0; double X2Y1=0; for (i=0;i

曲线拟合的数值计算方法实验

曲线拟合的数值计算方 法实验 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按原理求出变换后变量的,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。

3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近的一种方法。在或社会活动中,通过实验或观测得到量x 与y 的一组数据对(X i ,Y i )(i=1,2,...m ),其中各X i 是彼此不同的 。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x ,c )来反映量x 与y 之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x ,c)常称作拟合模型 ,式中c=(c 1,c 2,…c n )是一些待定参数。当c 在f 中出现时,称为线性模型,否则称为。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c 使得拟合模型与实际在各点的(或),c)-f (f y e k k k 的平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线。有许多求解拟合曲线的成功方法,对于线性模型一般通过建立和求解来确定参数,从而求得拟合曲线。至于,则要借助求解非线性方程组或用最优化方法求得所需参数才能得到拟合曲线,有时称之为非线性。 曲线拟合:与路径转化时的误差。值越大,误差越大;值越小,越精确。 2.最小二乘法拟合:

最小二乘法拟合圆公式推导及matlab实现

2009-01-17 | 最小二乘法拟合圆公式推导及matlab实现 最小二乘法(least squares analysis)是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。最小二乘法通常用于曲线拟合(least squares fitting) 。 这里有拟合圆曲线的公式推导过程和vc实现。

matlab 实现: function[R,A,B]=irc(x,y,N) %x,y是平面点的坐标,N是点个数 %R是拟合半径,A,B是圆心的平面坐标 x1=0; x2=0; x3=0; y1=0; y2=0; y3=0; x1y1=0; x1y2=0; x2y1=0; for i=1:N x1=x1+x(i); x2=x2+x(i)*x(i); x3=x3+x(i)*x(i)*x(i); y1=y1+y(i); y2=y2+y(i)*y(i); y3=y3+y(i)*y(i)*y(i); x1y1=x1y1+x(i)*y(i); x1y2=x1y2+x(i)*y(i)*y(i); x2y1=x2y1+x(i)*x(i)*y(i); end C=N*x2-x1*x1; D=N*x1y1-x1*y1; E=N*x3+N*x1y2-(x2+y2)*x1; G=N*y2-y1*y1; H=N*x2y1+N*y3-(x2+y2)*y1; a=(H*D-E*G)/(C*G-D*D); b=(H*C-E*D)/(D*D-G*C); c=-(a*x1+b*y1+x2+y2)/N; A=a/(-2); B=b/(-2); R=sqrt(a*a+b*b-4*c)/2; VC void CViewActionImageTool::LeastSquaresFitting() {

(完整版)最小二乘法圆拟合

最小二乘法圆拟合 1.最小二乘法圆拟合原理 1.1理论 最小二乘法(Least Square Method )是一种数学优化技术。它通过最小化误差的平方和找到一组数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。 1.2最小二乘圆拟合模型公式推导 在二维平面坐标系中,圆方程一般可表示为: ()22020)(r y y x x =-+- (1) 对于最小二乘法的圆拟合,其误差平方的优化目标函数为: [] 2 12020)()(∑=--+-=n i i i r y y x x S 式中:()i i y x ,n i ,...,2,1=为圆弧上特征点坐标;n 为参与拟合的特征点数。 在保持这优化目标函数特征的前提上,我们需要对其用一种稍微不同的改进方法来定义误差平方,且其避免了平方根,同时可得到一个最小化问题的直接解,定义如下: [] 2 122020)()(∑=--+-=n i i i r y y x x E (2) 则(2)式可改写为: ( )2 12 20 0220 02 22∑=-+-++-=n i i i i i r y y y y x x x x E (3) 令,02y B -=,02x A -=22020r y x C -+= 即(3)式可表示为:

() 2 22∑=++++=n i i i i i C By Ax y x E 由最小二乘法原理,参数A ,B ,C 应使E 取得极小值。根据极小值的求法,A ,B 和C 应满足 () 020 22=++++=??∑=i n i i i i i x C By Ax y x A E (4) () 020 22=++++=??∑=i n i i i i i y C By Ax y x B E (5) () 020 22=++++=??∑=n i i i i i C By Ax y x C E (6) 求解方程组,先消去参数C ,则 式()()∑=*-*n i i x n 064得 ( )0 02 202 030000002=+-++?? ? ??-+??? ??-∑∑∑∑∑∑∑∑∑∑==========n i i n i i i n i i i n i i n i n i i i n i i i n i n i i i n i i x y x y x n x n B y x y x n A x x x n (7) 式()()∑=*-*n i i y n 065得 ( )0 02 202 030002000=+-++?? ? ??-+??? ??-∑∑∑∑∑∑∑∑∑∑==========n i i n i i i n i i i n i i n i n i i i n i i n i n i i i n i i i y y x y x n y n B y y y n A y x y x n (8) 令 ??? ??-=∑∑∑===n i n i n i i i i x x x n M 000211(9) ?? ? ??-==∑∑∑===n i n i i i n i i i y x y x n M M 0002112(10) ?? ? ??-=∑∑∑===n i n i i i n i i y y y n M 000222(11)

曲线拟合和插值运算原理和方法

实验10 曲线拟合和插值运算 一. 实验目的 学会MATLAB 软件中软件拟合与插值运算的方法。 二. 实验内容与要求 在生产和科学实验中,自变量x 与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。 根据测量数据的类型有如下两种处理观测数据的方法。 (1) 测量值是准确的,没有误差,一般用插值。 (2) 测量值与真实值有误差,一般用曲线拟合。 MATLAB 中提供了众多的数据处理命令,有插值命令,拟合命令。 1.曲线拟合 已知离散点上的数据集[(1x ,1y ),………(n x ,n y )],求得一解析函数y=f (x),使f(x)在原离散点i x 上尽可能接近给定i y 的值,之一过程叫曲线拟合。最常用的的曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的平方和最小,即使求使21|()|n i i i f x y =-∑ 最小的f(x). 格式:p=polyfit(x,Y ,n). 说明:求出已知数据x,Y 的n 阶拟合多项式f(x)的系数p ,x 必须是单调的。 [例 1.9] >>x=[0.5,1.0,1.5,2.0,2.5,3.0]; %给出数据点的x 值 >>y=[1.75,2.45,3.81,4.80,7.00,8.60]; %给出数据点的y 值 >>p=polyfit (x,y,2); %求出二阶拟合多项式f(x)的系数 >>x1=0.5:0.05:3.0; %给出x 在0.5~3.0之间的离散值 >>y1=polyval(p,1x ); %求出f(x)在1x 的值 >>plot(x,y,?*r ?, 11,x y ?-b ?) %比较拟合曲线效果 计算结果为: p= 0.5614 0.8287 1.1560 即用f(x)=0.56142 x +0.8287x+1.1560拟合已知数据,拟合曲线效果如图所示。

曲线拟合的数值计算方法实验.

曲线拟合的数值计算方法实验 郑发进 2012042020022 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,Y i)(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型,式中c=(c1,c2,…c n)是一些待定参数。

曲线拟合方法

今天帮同学做了一个非线性函数的曲线拟合,以前没做过,所以是摸着石头过河。费了一下午时间,终于把曲线拟合出来了,顺道也学习了使用Matlab进行曲线拟合的方法,把学习所得记录下来,和大家共享。 一、单一变量的曲线逼近 Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。 假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。 1、在命令行输入数据: 》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475]; 》y=[5 10 15 20 25 30 35 40 45 50]; 2、启动曲线拟合工具箱 》cftool 3、进入曲线拟合工具箱界面“Curve Fitting tool” (1)点击“Data”按钮,弹出“Data”窗口; (2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图; (3)点击“Fitting”按钮,弹出“Fitting”窗口; (4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有: ?Custom Equations:用户自定义的函数类型 ?Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) ?Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w) ?Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2) ?Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving ?Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ ?Power:幂逼近,有2种类型,a*x^b 、a*x^b + c ?Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型 ?Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思) ?Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1)?Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b) 选择好所需的拟合曲线类型及其子类型,并进行相关设置: ——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待

origin两条曲线拟合步骤知识讲解

o r i g i n两条曲线拟合 步骤

以英文版origin75为例: 首先是输入数据(以两个拟合曲线为例): 一、在origin里面增加两列:点击鼠标右键,选择add new column, 二、选择C 列,并将其 设为X(点击 鼠标右键选 择)

三、从excel表格中选择需要的数据复制过来 然后是曲线拟合: 一、画散点图 全选数据后点击表格左下角的散点符号即可画出散点图 二、断开两组数据的关联 任选一点,双击,将dependent改为independent 三、第一条曲线拟合 单击最小梯度数据点,然后选择analysis→fit exponential decay→first order

这样第一条线就拟合出来了 四、第二条曲线拟合 拟合之前需要将第一条线的拟合方程剪切,因为直接拟合第二条会将第一条曲线方程覆盖 先选择需要拟 合的数据,选 择data→2g1 data1:C(X),D(Y)

然后依旧是analysis→fit exponential decay→first order,然后将剪切的方程粘贴上去,这样两个方程就出来了。 然后双击进行修改。 去掉方程的文本框:鼠标放在文本框上,右键→properties→选择none即可 增加 图名,右 键add text即可。 最后是输出图件 一、输出图片格式二、输出工程文件 file→export page file→save project as

单曲线拟合在输入数据的时候不需要增加列数,直接输入,然后拟合即可。带有异常值的数据在输入时就要再增加两列输入异常值,并将其中一列设置为X,然后和两条曲线一样进行拟合即可。

相关文档
最新文档