蔡氏电路中混沌现象的观察研究

蔡氏电路中混沌现象的观察研究
蔡氏电路中混沌现象的观察研究

2.6.3 蔡氏电路中混沌现象的观察研究

混沌是自然界客观存在的一种现象,而混沌电路是至今为止最方便有效的一种实验观察手段。由于混沌现象对电路参数的极度敏感性,用一般电路实验手段来观察,其参数调节比较困难,相比之下在Multisim 环境下进行仿真观察是非常容易实现的。

用来实现混沌现象的混沌电路很多,其中以著名的美藉华裔学者蔡少棠1984年提出的一种三阶非线性自治电路(称之蔡氏电路)最为典型。该电路具有电路结构简单,混沌现象丰富等特点,因而得到了广泛的学术研究和工程应用。蔡氏电路的理论模型如图2-70所示。

R

R

L 17.4m

图2-70 蔡氏电路的理论模型

图中,C 1、C 2为两个线性电容,L 为线性电感,R C 为线性电阻,而R 则为一非线性电阻(R 习惯被称之为蔡氏二极管,Chua’s diode ),具有图2-71所示的压控特性,R 可由五段分段线性的线性电阻构成。

图2-71 蔡氏电路非线性电阻的特性

实现该非线性电阻R 的方案也很多,典型的电路之一如图2-72所示,由双运放与6只线性电阻构成。

图2-72 由双运放构成的蔡氏二极管

将图2-70所示电路中的R C 分成两电阻串联,即21R R R c +=,其中2R =Ωk 1,1R 是Ωk 1的可调电位器。

我们就可以在基于上述参数的蔡氏电路上,通过Multisim 的仿真,清楚的观察到倍周期分岔、阵发混沌以及奇怪吸引子等一系列混沌所特有的现象。

U R

1.编辑原理图

首先编辑非线性电阻R构成电路,如图2-73 (a)所示。在这个图中取用两个输入接线端,是为了把该电路设置成如图2-73 (b)所示的R子电路。

(a) (b)

图2-73 Multisim中编辑出的非线性电阻R及其子电路

子电路的创建方法是在选中图中所有的部分(按住鼠标,拖一个把该电路部分全部包围进去的方框,如电路窗口中仅有这部分电路,也可选择Edit/Select All命令),启动Place/Replace by Subcricuit命令,即可得。设置子电路的目的是使蔡氏电路的电路图形更加简洁。

接着编辑蔡氏电路原理图,如图2-74所示,其中就调用了前面已编辑好的子电路R。

图2-74 Multisim环境下的蔡氏电路原理图

由于蔡氏电路中混沌现象的出现对电阻R C的敏感性,故要打开R1的属性(Potentiometer)对话框,对其Value页中的Increment由5%的缺省值改为1%。

2.仿真操作

(1)混沌信号时域波形的观察

在仪表工具栏中选中示波器XSC1并连接到电路中,如图2-75所示。

图2-75 混沌信号时域波形的观察电路

根据理论计算,混沌双吸引子的大约出现在21R R R c +=等于1.7k ?左右,所以通过键可以调节R 1的大小,先把R 1设置在70%左右。再打开示波器的面板,将Timebase 区域中的Scale 设置为2ms/Div ,Channel A 区域中的Scale 设置为2V/Div ,启动Multisim 的仿真开关,将在示波器的面板上出现如图2-76所示的混沌信号的时域波形。

图2-76 混沌信号时域波形

调节R 1大小,观察混沌时域信号的变化情况。可以发现,随着R 1数值的减小,混沌时域信号的振幅在降低,但在30%时,混沌信号转变为正弦波信号,且振幅值激剧增大。而随着R 1数值的增大,混沌信号上下变动的周期逐渐增长;81%时混沌信号转变为叠加一直流信号的正弦波;90%以后,该电路振幅减小,振荡慢慢消失。所以在R C 值为1.4k ?与1.8k ?之间,能够观察到电路逐渐通向混沌。

做上述仿真时要注意启动仿真开关后,电路要有一个起振过程,对于某些硬件配置不高的电脑,可能要较长的时间。

(2)倍周期分岔、阵发混沌以及混沌吸引子的观察

下面来观察系统通向混沌的过程。

图2-77所示的电路可用来观察蔡氏电路所产生的吸引子相图。

图2-77 用来观察蔡氏电路所产生的吸引子相图的电路

当调节R 1为90%即21R R R c +=等于1.9k Ω时观察到的周期1吸引子如图2-78所示。注意示波器面板的设置。

图2-78 周期1吸引子

接着随着R 1的减小,系统会出现倍周期分岔,产生周期1、2、4、8、16等一系列吸引子。当R 1为88% 时,产生的周期2吸引子如图2-79。

图2-79 周期2吸引子

R1为85% 时,电路已经分岔出无穷多个周期,而处在混沌状态。其螺旋吸引子如图2-80。

图2-80 螺旋吸引子

请注意由于受可调电阻1% 的变化间隔的限制,难以很好的看清倍周期分岔的过程。有兴趣的读者不妨用虚拟器件来代替之,以便任意配置参数,从而更精确的观察到周期2、4、8等一系列吸引子。

随着R1的进一步减小,系统会在产生周期3、6等吸引子后,再次进入混沌。R1为81% 时的单涡卷吸引子如图2-81。

图2-81 单涡卷吸引子

随着R1继续减小,逐渐出现了双吸引子。R1为70% 即R C=1.7kΩ时典型的双涡卷吸引子,如图2-82所示。

图2-82 双涡卷吸引子

蔡氏混沌非线性电路的分析研究

研究生课程论文(2018-2018学年第二学期> 蔡氏混沌非线性电路的研究 研究生:***

蔡氏混沌非线性电路的研究 *** 摘要:本文介绍了非线性中的混沌现象,并从理论分析和仿真两个角度研究非线性电路中的典型混沌电路-蔡氏电路。只要改变蔡氏电路中一个元件的参数,就可产生多种类型混沌现象。利用数学软件MATLAB对蔡氏电路的非线性微分方程组进行编程仿真,就可实现双蜗卷和单蜗卷状态下的同步,并能准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract:This paper introduces the chaos phenomenon in nonlinear circuits. Chua’scircuit was a typical chaos circuit,and theoretical analysis and simulation was made to research it.Many kinds of chaos phenomenonenwould generate as long as one component parameter was altered in Chua’s circuit.On the platform of Matlab ,mathematical model of Chua’s circuit were programmed and simulatedto realize the synchronization of dual and single cochlear volume.At the same time, behavior characteristics of chaos attractor is able to be observed correctly. Key words:chaos phenomenon;Chua’S circuit;simulation 引言: 混沌是一种普遍存在的非线性现象,随着计算机的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。混沌行为是确定性因素导致的类似随机运动的行为,即一个可由确定性方程描述的非线性系统,其长期行为表现为明显的随机性和不可预测性。混沌中蕴含着有序,有序的过程中也可能出现混沌。混沌的基本特征是具有对初始条件的敏感依赖性,即初始值的微小差别经过一段时间后可以导致系统运动过程的显著差别。混沌揭示了自然界的非周期性与不可预测性问题而成为20 世纪三大重要基础

蔡氏电路MATLAB混沌仿真

蔡氏电路的Matlab混沌 仿真研究 班级: 姓名: 学号:

摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract This paper introduce s the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in C hua’s circuit.On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words:chaos phenomenon;Chua’s circuit;Simulation

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验 长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。 【实验目的】 1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。 2.学会测量非线性器件伏安特性的方法。 【实验仪器】 非线性电路混沌实验仪 【实验原理】 图1 非线性电路 图2 三段伏安特性曲线 1.非线性电路与非线性动力学: 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。较理想的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。图1 电路的非线性动力学方程为: 11211Vc g )Vc Vc (G dt dVc C ?--?=L 2122 i )Vc Vc (G dt dVc C +-?=

非线性电路中的混沌现象实验报告doc

非线性电路中的混沌现象实验报告 篇一:非线性电路混沌实验报告 近代物理实验报告 指导教师:得分: 实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节 实验者:班级材料0705学号 XX67025 姓名童凌炜 同组者:班级材料0705学号 XX67007 姓名车宏龙 实验地点:综合楼 404 实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌 实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括: 1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结 1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系 1.3, 100kHz正弦波振荡波作为参考信号 2. 低频信号发生器 用以输出正弦波信号,提供给约结作为交流 信号 3. 数字示波器 用以测量结电压、超流、混沌特性和参考信号等各个

物理量的波形 实验目的: 1. 了解混沌的产生和特点 2. 掌握吸引子。倍周期和分岔等概念 3. 观察非线性电路的混沌现象 实验原理简述: 混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。混沌的最本质特征是对初始条件极为敏感。 1. 非线性 线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。除此之外,非线性关系还具有某些不同于线性关系的共性: 1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移 1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因 2. 倍周期,分岔,吸引子,混沌 借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。 虫口方程如下:xn?1???xn(1?xn)

非线性混沌电路实验报告

非线性电路混沌及其同步控制 【摘要】 本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。 【关键词】 混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数 一.【引言】 1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。通过本实

验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。 二.【实验原理】 1.有源非线性负阻 一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v呈线性变化,所谓正阻,即I-U是正相关,i-v曲线的 斜率 u i ? ? 为正。相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两 端的电压增大时,电流减小,并且不是线性变化。负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。 一般实现负阻是用正阻和运算放大器构成负阻抗变换器电路。因为放大运算器工作需要一定的工作电压,因此这种富足成为有源负阻。本实验才有如图1所示的负阻抗变换器电路,有两个运算放大器和六个配置电阻来实现。 图1 有源非线性负阻内部结构 用电路图3以测试有源非线性负阻的i-v特性曲线,如图4示为测试结果曲线,分为5段折现表明,加在非线性元件上的电压与通过它的电流就行是相反的,

蔡氏电路报告

非线性电路课程报告 电气工程学院 蔡氏混沌电路的MATLAB仿真 摘要: 混沌是非线性系统中的常见现象。本文应用MATLAB软件对蔡氏电路进行了仿真分析,并对仿真结果作了讨论,指出了这种研究方法的应用前景。

关键词: 蔡氏电路混沌动力学吸引子系统仿真 1.引言 作为一种普遍存在的非线性现象, 混沌的发现对科学的发展具有深远的影响。混沌行为是确定性因素导致的类似随机运动的行为,即:一个可由确定性方程描述的非线性系统,其长期行为表现为明显的随机性和不可预测性, 我们就认为该系统存在混沌现象.混沌具有三个特点:随机性;遍历性;规律性。混沌有一个很重要的性质:系统行为对初始条件非常敏感。混沌理论是架起确定论和概率论两大理论体系之间的桥梁,与相对论、量子力学一起被称为20世纪物理学的三大革命。近年来,混沌现象及其应用成为一个研究热点,学者们对混沌在通讯工程、电子工程、生物工程、经济学等领域中的应用进行着广泛的研究。许多学者通过非线性电路对混沌行为进行了广泛地研究, 其中最典型的是蔡氏电路,它是能产生混沌行为的最小、最简单的三阶自治电路。 在电路与系统领域,由于蔡氏电路的提出,对混沌理论及其应用的研究也变得十分活跃。蔡氏混沌电路是一个物理结构及数学模型都相对简单的混沌系统,然而它也是一个典型的混沌电路,对蔡氏电路的研究有助于理解混沌的演化过程及其了解混沌相关特性。由于混沌动力学系统的复杂性,绝大多数混沌动力学系统难以用已知的函数表示其通解,所以通过数值计算对混沌行为的时空演化进行描述是研究混沌的一种重要方法。 MATLAB软件是以矩阵计算为基础的数值计算、模型仿真的优秀数学工具。借助MATLAB软件强大的数值计算及仿真能力,使得对许多复杂的混沌系统的研究变得相对容易和直观。 本文对其进行深入的数学分析;在MATIAB环境下,建立了该电路的仿真模型,通过改变电路中的线性电阻值和系统状态变量初始值,对其非线性动力学行为进行仿真分析。分析结果表明:在此种蔡氏电路中,可以观测到混沌产生的全过程。 2.蔡氏混沌电路 蔡氏电路是一种物理结构和数学模型简单的混沌系统,该混沌系统也常被用来进行混沌理论及应用方面的研究。该电路使用三个储能元件和一个分段线性电阻,电路如图1所示。可以把电路分为线性部分和非线性部分.其中线性部分包括:电阻R、电感L(含内阻r)和两个电容C1 与C2;非线性部分只有一个分段线性电阻R n,其伏安特性如图2所示。非线性电阻是压控非线性电阻,它具有分段的伏安特性。

非线性电路的应用——混沌电路

非线性电路的应用——混沌电路 摘要 本文给出了一种含有由两个运算放大器组成的非线性负电阻的蔡氏混沌电路,如图一所示。利用非线性电阻电路,设计了如图二所示的非线性伏安特性曲线。图二即为在示波器中得到的伏安特性曲线。在实现图二的伏安特性曲线的基础上,设计了图三所示的混沌电路。使用示波器,连续改变混沌电路的敏感参数(如图中的可变电阻由2K欧姆逐渐减小到零),得到了各种情况下的涡旋现象,得到双涡旋到大极限环变化时的参数,从理论分析与仿真实验两个角度分别研究蔡氏电路的混沌行为,研究结果表明在相同的混沌行为预期下,仿真实验与理论分析结论十分吻合,仿真实验能准确地观测到混沌吸引子的行为特征.通过利用Mutisim7.0进行仿真,观察到由直流平衡态经周期倍增分岔到Hopf分岔形成类似于Rossler吸引子,然后再过渡到双涡卷状的蔡氏吸引子大极限环的全过程。 关键词 蔡氏电路;非线性伏安特性曲线;Mutisim7.0仿真;双涡卷混沌吸引子;倍周期分岔 引言 蔡式电路是美国贝克莱大学的蔡少棠教授设计的能产生混沌行为的最简的一种自治电路。该典型电路并不唯一。蔡式电路在非线性系统及混沌研究中,占有极为严重的地位。 许多非线性动力系统的特性曲线不是跟踪简单、有规则和可预测的轨线,而是围绕像随机且似乎不规则但是明确的形式滑动。只要有关的过程是非线性的,甚至简单的严格确定性的模型可能发展这样复杂的行为。这行为被理解或接受为混沌,而且它已经导致非线性科学和动力系统工程的惊人发展。 混沌理论是近年来国际上兴起的新理论,它广泛应用于电路系统,并具有很强的抽象性,不容易被接受.本文通过对一种含由两个运算放大器组成的非线性电阻的RLC电路混沌现象实验分析,让人们从感性上更加清晰地了解混沌现象产生的机理,熟悉混沌现象产生的条件,掌握电路中混沌状态的基本规律,使人们对电路中的混沌现象具有更具体、更形象的认识。 正文 电路中存在混沌现象已经是在理论和实验中证明了的不争的事实。在传统的电路理论中,通常将电路划分为线性电路和非线性电路两大类。从严格意义上来讲,线性电路是不存在的,它仅仅是在特定的工作点附近呈现出所谓的“线性”特征,一旦电路的外部条件或内部参数发生变化使其偏离工作点(有时仅仅是微小的偏离),电路的线性特征将会大大地削弱,如发生信号波形失真、电路出现“噪声过量”等现象。非线性是所有电气电路、电子电路具有的固有特性。 混沌科学的发展,不仅大大拓宽了人们的视野,并加深了人们对客观世界的认识,而且由于混沌的奇异特性,尤其是对初始条件微小变化的高度敏感性及

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象 ,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于 1963年洛伦兹(E.Lorenz )研究天气预报时用到的三个动力学方程 ,后 来又从数学和实验上得到证实。无论是复杂系统 ,如气象系统、太阳系,还是简单系统,如钟 摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、 但实际是非周期有序运动,即混沌 现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同 步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授 1985年提 出的著名的蔡氏电路(Chua ' s Circuit )。就实验而言,可用示波器观察到电路混沌产生的全 过程,并能得 到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、 LC 振荡器和RC 移相器三部分;采用 物理实验方法研究 LC 振荡器产生的正弦波与经过 RC 移相器移相的正弦波合成的相图(李萨 如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象; 测量非线性单元电路的电流一电压特性; 了解非 线性电路混沌现象的本质; 学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量 非线性器件伏安特性的方法。 【实验原理】 1. 非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件 R ,它是一个有源非线性负阻器件。 电感器L 和电容C 2组成一个损耗可以忽略的谐振回路; 可变电阻R V 和电容器C 串联将振荡 器产生的正弦信号移相输出。 本实验中所用的非线性元件 R 是一个三段分段线性元件。 图2 所示的是该电阻的伏安特性曲线, 从特性曲线显示中加在此非线性元件上电压与通过它的电 流极性是相反的。由于加在此元件上的电压增加时, 通过它的电流却减小, 因而将此元件称 为非线性负阻元件。 图1电路的非线性动力学方程为: C 2 dU C L 二 G (U C 1 -U C 21)I L (1) dt 1 21 C 1 du e ’ dt =G (U C 2 -Uq) _g Uq Ld L

非线性电阻的应用——混沌现象

非线性电阻电路的应用 --混沌电路 作者:0908190162 周勇权 【摘要】 本文从能产生混沌行为的一种最简自治电路——蔡氏电路着手,以非线性负电阻电路为基础,简单介绍了非线性负电阻混沌电路实验的实验原理。通过实现非线性负电阻电路和设计混沌电路,熟悉非线性电阻电路的应用,了解混沌电路最基本的原理。同时利用Multisim仿真软件模拟测定非线性负电阻的伏安特性曲线,观察不同参数条件下混沌现象。 【关键字】 非线性电阻电路混沌现象蔡氏电路 Multisim 【引言】 混沌(Chaos)的英文意思是混乱的,无序的。混沌研究最先起源于Lorenz研究天气预报时用到的三个动力学方程。后来的研究表明,无论是复杂系统,如气象系统,太阳系,还是简单系统,如钟摆,滴水龙头等,皆因存在着内在随机性而出现类似无轨,但实际是非周期有序运动,即混沌现象。混沌现象及其应用是非线性科学研究领域的一个热点。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同步应用研究的重要途径。近年来,学者对非线性电路中的混沌现象进行了广泛地研究。蔡式混沌电路是一个典型的非线性电路,在适当的电路参数范围内能够产生混沌现象,该电路结构简单、易于工程实现,因而获得了广泛的重视和研究。本文以蔡式混沌电路为例进行仿真研究。首先,借助Multisim仿真软件模拟显示非线性负电阻电路的伏案特性曲线,再通过将点测法得到的曲线与之对比来验证蔡氏电路;其次,通过对实验电路中敏感参数的研究,得出其对混沌电路的影响,观察不同时期的混沌现象,并分析总结。

【正文】 一、实验目的 1、通过实验感性地认识混沌现象,理解非线性科学中“混沌”一词的含义; 2、学会借助Multisim仿真软件对电路进行研究; 3、掌握非线性电阻的非线性特征,以及其非线性电阻特征的测量方法; 4、以非线性电阻电路为基础,设计混沌电路,观察混沌现象。 二、实验器材 示波器函数信号发生器电压表电流表5端运算放大器直流电源电阻 三、实验过程 1、非线性负电阻电路 在混沌电路中,非线性电阻的实现是整个实验成功的关键所在。 (1)实验原理:本实验用两个运算放大器(型号为OPA1013CN8)和六个电阻来实现非线性负电阻电路。电路图如下:

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于1963年洛伦兹(E.Lorenz)研究天气预报时用到的三个动力学方程,后来又从数学和实验上得到证实。无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、但实际是非周期有序运动,即混沌现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授1985年提出的著名的蔡氏电路(Chua ’s Circuit)。就实验而言,可用示波器观察到电路混沌产生的全过程,并能得到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性;了解非线性电路混沌现象的本质;学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。 【实验原理】 1.非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。本实验中所用的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为: 1121)(1 C C C C U g U U G dt dU C ?--?= L C C C i U U G dt dU C +-?=)(2112 2 (1) 2C L U dt di L -=

非线性电路课程报告-蔡氏电路的Matlab仿真研究

西安交通大学电气工程学院 非线性电路报告蔡氏电路的Matlab仿真研究 Administrator

蔡氏电路的Matlab仿真分析 摘要:对一种典型的产生混沌现象的电路——蔡氏混沌电路进行了分析研究。从理论分析和仿真两个角度分别研究蔡氏电路中的混沌现象。蔡氏电路是一个典型的混沌电路,只要改变其中一个元件的参数,就可产生多种类型混沌现象。在Matlab 的平台上编制相关系统 对蔡氏电路进行了仿真研究。 关键词:蔡氏电路,非线性负电阻;混沌电路;吸引子

引言 随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。而非线性电路是混沌及混沌同步应用研究的重要途径之一,其中一个最典型的电路是三阶自治蔡氏电路。在这个电路中观察到了混沌 吸引子。蔡氏电路是能产生混沌行为最简单的自治电路,所有从三阶自治常微分方程描述的系统中得到的分岔和混沌现象都能够在蔡氏电路中通过计算机仿真和示波器观察到。经过若干年的研究及目前对它的分析,无论是在理论方面、模拟方面还是实验方面均日臻完善。在理论和实践不断取得进展时, 人们也不断开拓新的应用领域,如在通信、生理学、化学反应工程等方面不断产生新的技术构想,并有希望很快成为现实。 1混沌概念及其相关特征 1.1混沌和吸引子的定义 混沌至今没有统一的定义,但人们一致的看法是:一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,此处所说的若干特性主要是如下三个方面:(1)振荡信号的功率连续分布,且可能是带状分布的,这个特征表明振荡为非周期的,也就是说明信号貌似噪声的原因。(2)在相空间,该系统的相邻近的轨道线彼此以指数规律迅速分离,从而导致对初始值得极端敏感性,这使得系统的行为长期不可预测。(3)在轨道线存在的相空间的某一特定的有界部分内,轨道线具有遍历性和混合性。遍历性是指任何一条轨道线会探访整个特定的有界部分,混合性是指初始间单关系将弥漫的动力学行为所消除。 混沌吸引子:吸引子是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它。若吸引子的轨线对初始条件高度敏感依赖,该吸引子就称为混沌吸引子。吸引子无外乎两种状态,即单个点和稳定极限环。系统的吸引子理论是关于吸引子的科学理论,它是混沌学的重要组成部分。 奇异(怪)吸引子:具有分数维结构的吸引子称为奇异吸引子。奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。它具有自相似性,同时具有分形结构。奇异吸引子是混沌运动的主要特征之一。奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和李雅普诺夫不稳定性)有着密切关系,它具有不同属性的内外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳定”的方向;一切到达奇异吸引子内的运动都互相排斥,对应于“不稳定”方向。 1.2混沌的基本特征 混沌具有两个基本的特征:一是运转状态的非周期性,即混沌系统输出信号的周期为无穷大,且在功率上与纯粹噪声信号难以分辨,因而是随机信号,然而混沌系统是确定性动力学系统,本身并不包含任何随机因素的作用,其产生随机输出信号的原因完全是因为系统内部各变量之间的强非线性耦合。因此,其输出的随机信号在理论上是可以精确重复的。二是对初始条件的高度敏感性,即若存在对初始条件的任何微小的偏离(扰动),则此偏离随着系统的演化将迅速以指数率增长,使得在很短的时间内系统的状态与受扰前便失去任何的相关性,因此,混沌仅具有极为短期的预测性。混沌状态具有以下三个关键(核心)概念:即对初始条件的敏感性、分形、奇异吸引子。 2蔡氏电路与非线性负电阻的实现

12.非线性电路混沌

非线性电路混沌 长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解.但是自然界在相当多情况下,非线性现象却起着很大的作用。1963年美国气象学家LORENZ 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。1975年混沌作为一个新的科学名词首次出现在科学文献中。此后,非线性动力学迅速发展,并成为有丰富内容的研究领域,该学科涉及非常广泛的科学从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是由非线性系统本质产生的。本实验将引导学生自己建立一个非线性电路,该电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法形容LC 振荡器产生的正弦波与经过RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性,从而对非线性电路及混沌现象有一初步了解;学会自己制作和测量一个带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法 [实验原理] 1.非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。本实验中所用的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为: 1121 )(1C C C C U g U U G dt dU C ????= L C C C i U U G dt dU C +??=)(2112 2 (1) 2C L U dt di L ?= 式中,导纳,和分别为表示加在电容器C V R G /1=1C U 2C U 1和C 2上的电压,表示流过电感器L的电流,G表示非线性电阻的导纳。 L i 2.有源非线性负阻元件的实现

-非线性电路混沌现象的探究以及基于Multisim的仿真设计

非线性电路混沌现象的探究以及基于Multisim的仿真设计

摘要 本文从非线性电路中的混沌现象着手,详细回顾了混沌电路的实验原理、实验方法以及实验现象,并通过一元线性回归对有源非负阻的伏安特性曲线实进行了拟合。此外,本文也着重通过MultiSim软件,对实验中的混沌电路进行了仿真,仔细记录了仿真下来的各个波形。同时,也利用该软件,通过搭建电路,用示波器获得了有源非线性负阻的伏安特曲。 关键词 混沌电路有源非线性负阻MultiSim软件

一、引言 混沌是二十世纪最重要的科学发现之一,被誉为继相对论和量子力学之后的第三次物理革命,它打破了确定性与随机性之间不可逾越的分界线,将经典力学研究推进到一个崭新的时代。由于混沌信号是一种貌似随机而实际却是由确定信号系统产生的信号,使得混沌在许多领域(如保密通信,自动控制,传感技术等)得到了广泛的应用[1]。 20多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性、有序性和无序的统一,大大拓宽了人们的视野,加深了人们对客观世界的认识。目前混沌控制与同步的研究成果已被用来解决秘密通信、改善和提高激光器性能以及控制人类心律不齐等问题。 混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。理论和实践都证明,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特征。混沌现象出现在非线性电路中是极为普遍的现象,通过改变电路中的参数可以观察到倍周期分岔、阵法混乱和奇异吸引子等现象。 二、混沌电路简介 对电路系统来说,在有些二阶非线性非自治电路或三阶非线性自治电路中,出现电路的解既不是周期性的也不是拟周期的,但在状态平面上其相轨迹始终不会重复,但是有界的,而且电路对初始条件十分敏感,这便是非线性电路中的混沌现象。 根据Li-York定义,一个混沌系统应具有三种性质: (1)存在所有阶的周期轨道; (2)存在一个不可数集合,此集合只含有混沌轨道,且任意两个轨道既不趋向远离也不趋向接近,而是两种状态交替出现,同时任一轨道不趋于任一周期轨道,即此集合不存在渐近周期轨道; (3)混沌轨道具有高度的不稳定性。 可见,周期轨道与混沌运动有密切关系,表现在两个方面: 第一,在参数空间中考察定常的运动状态,系统往往要在参量变化过程中先经历一系列周期制度,然后进入混沌状态; 第二,一个混沌吸引子里面包含着无穷多条不稳定的周期轨道,一条混沌轨道中有许许多多或长或短的片段,它们十分靠近这条或那条不稳定的周期轨道。 根据文献[2][3],混沌主要特征表现在: (1)敏感依赖于初始条件; (2)伸长与折叠; (3)具有丰富的层次和自相似结构; (4)在非线性耗散系统中存在混沌吸引子。 同时,混沌运动还具有如下特征: (1)存在可数无穷多个稳定的周期轨道; (2)存在不可数无穷多个稳定的非周期轨道; (3)至少存在一个不稳定的非周期轨道。 非线性电路是指电路中至少包含一个非线性元件的电路。事实上一切实际元件都是非线性的。因为给任何元件上加足够大的电压或电流后都将破坏其线性。

实验六 非线性电路中混沌现象的实验研究

实验六非线性电路中混沌现象的实验研究非线性是自然界中普遍存在的现象,正是非线性才构成了变化莫测的世界。长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。但是自然界在相当多的情况下,非线性现象却起着很大的作用。1963 年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。于是,1975 年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学迅速发展,并成为有丰富内容的研究领域。该学科涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是由非线性系统产生的。本实验将引导学生自已建立一个非线性电路。该电路包括有源非线性负阻,LC 振荡器和移相器三部分。采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象,测量非线性单元电路的电流——电压特性,从而对非线性电路及混沌现象有一深刻了解,学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。 【实验目的】 1.学习测量非线性单元电路的伏安特性。 2.学习用示波器观察观测LC振荡器产生的波形与经RC 移相后的波形及其相图。3.通过观察LC振荡器产生的波形周期分岔及混沌现象,对非线性有一初步的认识。 【实验原理】 1.非线性电路与非线性动力学 实验电路如图1 所示,图1 中只有一个非线性元件R,它是一个有源非线性负阻器件。电感器L 和电容器C2 组成一个损耗可以忽略的振荡回路;可变电阻RVl+RV2 和电容器C1串联将振荡器产生的正弦信号移相后输出。较理想的非线性元件R 是一个三段分段线性元件。图2 所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

混沌系统的电路实现与仿真分析

混沌系统的电路实现与仿真分析 1. 设计思路 混沌系统模块化设计方法的主要思路是,根据系统的无量纲状态方程,用模块化设计理念设计相应的混沌电路,其中主要的模块包括:反相器模块、积分器模块、反相加法比例运算模块和非线性函数产生模块。 2. 设计过程 第一步,对混沌系统采用Matlab 进行数值分析,观察状态变量的时序图、相图,观察系统状态变量的动态范围; 第二步,对变量进行比例压缩变换。我们通常取电源电压为±15V ,集成运放的动态范围为±13.5V ,如果系统状态变量的动态范围超过±13.5,则状态变量的动态范围超过了集成运放的线性范围,需要进行比例压缩变换,如没有超出,则不需要进行变换。 举例:变换的基本方法 ?????? ?=== w k z v k y u k x 32 1 代入原状态方程,然后重新定义u →x ,v →y ,w →z 得到的状态方程即为变量压缩后的状态方程。 第三步,作时间尺度变换。将状态方程中的t 变换为τ0t ,其中τ0为时间尺度变换因子,设τ0=1/R 0C 0,从而将时间变换因子与积分电路的积分时间常数联系起来。 第四步,作微分-积分变换。 第五步,考虑到模块电路中采用的是反相加法器,将积分方程作标准化处理。 第六步,根据标准积分方程,可得到相应的实现电路。 第七步,采用Pspice 仿真软件或Multisim 仿真软件对电路进行仿真分析。

3. 设计举例:Lorenz 系统的电路设计与仿真 Lorenz 系统的无量纲归一化状态方程为 bz xy z y xz cx y ay ax x --=--=+-= (1) 其中当a=10,b=8/3,c=28时,该系统可以展现出丰富的混沌行为。 MATLAB 仿真程序如下: function dx=lorenz(t,x) %?¨ò?oˉêy a=10; b=8/3;c=28; %?¨ò??μí32?êy %***************************************** dx=zeros(3,1); dx(1)=a*(x(2)-x(1)); dx(2)=c*x(1)-x(1).*x(3)-x(2); dx(3)=x(1).*x(2)-b*x(3); %*********************************?¨ò?×′ì?·?3ì clear; options=odeset('RelTol',1e-6,'AbsTol',[1e-6,1e-6,1e-6]); t0=[0 500]; x0=[1,0,0]; [t,x]=ode45('Lorenz',t0,x0,options); n=length(t); n1=round(n/2); figure(1); plot(t(n1:n),x(n1:n,1)); %×′ì?xμ?ê±Dòí? xlabel('t','fontsize',20,'fontname','times new roman','FontAngle','normal'); ylabel('x1','fontsize',20,'fontname','times new roman','FontAngle','normal'); figure(2); plot(x(n1:n,1),x(n1:n,3)); %x-z?àí? xlabel('x','fontsize',20,'fontname','times new roman','FontAngle','italic'); ylabel('Z','fontsize',20,'fontname','times new roman','FontAngle','italic'); figure(3); plot3(x(n1:n,1),x(n1:n,2),x(n1:n,3)); %x-y-z?àí? xlabel('x','fontsize',20,'fontname','times new roman','FontAngle','italic'); ylabel('y','fontsize',20,'fontname','times new roman','FontAngle','italic');

非线性电路中的混沌现象_电子版实验报告

1.计算电感L 本实验采用相位测量。根据RLC 谐振规律,当输入激励的频率 LC f π21= 时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示 波器上显示的是一条过二四象限的45度斜线。 测量得:f=30.8kHz ;实验仪器标示:C=1.145nF 由此可得: mH C f L 32.23)108.30(10145.114.341 412 39222=?????== -π 估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则: 3 2 222108.7)()(4)(-?=+=C C u f f u L L u 即 mH L u 18.0)(= 最终结果:mH L u L )2.03.23()(±=+ 2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据: 99999.9 -11.750 23499.9 -11.550 13199.9 -11.350 -11.150 -10.950 -10.750 -10.550

-10.150 -9.550 -9.350 -9.150 -8.350 -8.150 上表为实验记录的原始数据表,下表为数据处理时使用Excle计算的数据及结果。

(2)数据处理: 根据R U I R R 可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:

R R R R U U I I =-=11 由此可得对应的1R I 值。 对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得: 图中可以发现,(0.00433464,-9.150)和(0.00118629,-1.550)两个实验点是折线的拐点。故我们在 V U 150.9750.11-≤≤-、 550V .1U 9.150-≤<-、V 150.1U 1.550-≤<-这三个区间分别使用 线性回归的方法来求相应的I-U 曲线。 ?? ? ??≤≤+≤≤+-≤≤+= -1.150U 1.550- 0.00000976U 0.00075901- -1.550U 9.150- 240.0.000609U 0.00040784- 9.150U 11.750- 0.02018437U 0.00170003 I 经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证 明在区间内I-V 线性符合得较好。

蔡氏电路MATLAB混沌仿真

蔡氏电路MATLAB混沌仿真

————————————————————————————————作者:————————————————————————————————日期: 2

3 蔡氏电路的Matlab 混沌 仿真研究 班级: 姓名: 学号:

4 摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB 仿真 Abstract This paper introduces the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in Chua’s circuit .On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words :chaos phenomenon ;Chua’s circuit ;Simulation

0902201-02 基于蔡氏电路的混沌电路研究

基于蔡氏电路的混沌电路分析 唐永洪,付云峰,王德玉 (哈尔滨工业大学能源科学与工程学院飞行器动力工程,哈尔滨,150001) 摘要:对一种典型的产生混沌现象的电路——蔡氏混沌电路进行了分析研究,并运用multisim10.0软件进行仿真。测定有源非线性负电阻的伏安特性曲线,观察不同参数条件下出现的倍周期分岔,阵发混沌,奇异吸引子等一系列不同的混沌现象。同时分析了电感值为15mH下出现的变异双二倍周期、变异单二倍周期、对称倍周期、死区等低电感参数下的新特性,以及典型蔡氏电路混沌现象随电感变化的关系,并简单描述了混沌电路在保密通信、自动控制等领域的应用。 关键词:蔡氏电路,非线性负电阻;混沌电路;吸引子 引言 混沌是本世纪最重要的科学发现之一,被誉为是继相对论和量子力学后的第三次物理革命,它打破了确定性与随机性之间不可逾越的分界线,将经典力学研究推进到一个崭新的时代[1]。混沌信号是一种貌似随机而实际却是由确定信号系统产生的信号,混沌电路因具有丰富的非线性动力学特性,在非线性科学、信息科学、保密通信、混沌密码以及其他工程领域获得了广泛的应用,已成为非线性电路与系统的一个热点课[2]。 非线性电路中的混沌现象是最早引起人们关注的现象之一,在非线性电路中能够得到很好的混沌实验结果,蔡氏混沌电路[3-5]就是一个典型的混沌电路。我们在模拟蔡氏混沌电路观察混沌现象时,由于实验的条件不能得到精确控制,而混沌电路又对初始条件具有高度的敏感性,以至于实验现象不明显。因此本文采用multisim10.0对电路进行仿真[6],在理想条件观察不同参数条件下出现的倍周期分岔,吸引子,奇异吸引子等一系列不同的混沌现象。 1混沌概念及其相关特征 1.1混沌和吸引子的定义 混沌至今没有统一的定义,但人们一致的看法是:一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,此处所说的若干特性主要是如下三个方面:(1)振荡信号的功率连续分布,且可能是带状分布的,这个特征表明振荡为非周期的,也就是说明信号貌似噪声的原因。(2)在相空间,该系统的相邻近的轨道线彼此以指数规律迅速分离,从而导致对初始值得极端敏感性,这使得系统的行为长期不可预测。(3)在轨道线存在的相空间的某一特定的有界部分内,轨道线具有遍历性和混合性。遍历性是指任何一条轨道线会探访整个特定的有界部分,混合性是指初始间单关系将弥漫的动力学行为所消除。 混沌吸引子:吸引子是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它。若吸引子的轨线对初始条件高度敏感依赖,该吸引子就称为混沌吸引子。吸引子无外乎两种状态,即单个点和稳定极限环。系统的吸引子理论是关于吸引子的科学理论,它是混沌学的重要组成部分。 奇异(怪)吸引子:具有分数维结构的吸引子称为奇异吸引子。奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。它具有自相似性,同时具有分形结构。奇异吸引子是混沌运动的主要特征之一。奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和李雅普诺夫不稳定性)有着密切关系,它具有不同属性的内外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳

相关文档
最新文档