发动机冷却系统

发动机冷却系统
发动机冷却系统

发动机冷却系统

冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。

发动机的冷却系有风冷和水冷之分。以空气为冷却介质的冷却系成为风冷系;以冷却液为冷却介质的称水冷系。

1、冷却系统的循环

汽车发动机的冷却系为强制循环水冷系,即利用水泵提高冷却液的压力,强制冷却液在发动机中循环流动。冷却系主要由水泵、散热器、冷却风扇、补偿水箱、节温器、发动机机体和气缸盖中的水套以及附属装置等组成。

在冷却系统中,其实有两个散热循环:一个是冷却发动机的主循环,另一个是车内取暖循环。这两个循环都以发动机为中心,使用是同一冷却液。

一、冷却发动机的主循环:

主循环中包括了两种工作循环,即“冷车循环”和“正常循环”。冷车着车后,发动机在渐渐升温,冷却液的温度还无法打开系统中的节温器,此时的冷却液只是经过水泵在发动机内进行“冷车循环”,目的是使发动机尽快地达到正常工作温度。随着发动机的温度,冷却液温度升到了节温器的开启温度(通常这温度在80摄氏度后),冷却循环开始了“正常循环”。这时候的冷却液从发动机出来,经过车前端的散热器,散热后,再经水泵进入发动机。

二、车内取暖的循环:

这是一个取暖循环,但对于发动机来说,它同样是一个发动机的冷却循环。冷却液经过车内的采暖装置,将冷却液的热量送入车内,然后回到发动机。有一点不同的是:取暖循环不受节温器的控制,只要打开暖气,这循环就开始进行,不管冷却液是冷的、还是热的。

2、冷却系统部件分析

在整个冷却系统中,冷却介质是冷却液,主要零部件有节温器、水泵、水泵皮带、散热器、散热风扇、水温感应器、蓄液罐、采暖装置(类似散热器)。

1)冷却液:

冷却液又称防冻液,是由防冻添加剂及防止金属产生锈蚀的添加剂和水组成的液体。它需要具有防冻性,防蚀性,热传导性和不变质的性能。现在经常使用乙二醇为主要成分,加有防腐蚀添加及水的防冻液。

2)节温器:

从介绍冷却循环时,可以看出节温器是决定走“冷车循环”,还是“正常循环”的。节温器在80摄氏度后开启,95摄氏度时开度最大。节温器不能

关闭,会使循环从开始就进入“正常循环”,这样就造成发动机不能尽快达到或无法达到正常温度。节温器不能开启或开启不灵活,会使冷却液无法经过散热器循环,造成温度过高,或时高时正常。如果因节温器不能开启而引起过热时,散热器上下两水管的温度和压力会有所不同。

3)水泵:

水泵的作用是对冷却液加压,保证其在冷却系中循环流动。水泵的故障通常为水封的损坏造成漏液,轴承毛病使转动不正常或出声。在出现发动机过热现象时,最先应该注意的是水泵皮带,检查皮带是否断裂或松动。

4)散热器:

发动机工作时,冷却液在散热器芯内流动,空气在散热器芯外通过,热的冷却液由于向空气散热而变冷。散热器上还有一个重要的小零件,就是散热器盖,这小零件很容易被忽略。随着温度变化,冷却液会“热胀冷缩”,散热器器因冷却液的膨胀而内压增大,内压到一定时,散热器盖开启,冷却液流到蓄液罐;当温度降低,冷却液回流入散热器。如果蓄液罐中的冷却液不见减少,散热器液面却有降低,那么,散热器盖就没有工作!

5)散热风扇:

正常行驶中,高速气流已足以散热,风扇一般不会在这时候工作;但在慢速和原地运行时,风扇就可能转动来助散热器散热。风扇的起动由水温感应器控制。

6)水温感应器:

水温感应器其实是一个温度开关,当发动机进水温度超出90摄氏度以上,水温感应器将接通风扇电路。如果循环正常,而温度升高时,风扇不转,水温感应器和风扇本身就需要检查。

7)蓄液罐:

蓄液罐的作用是补充冷却液和缓冲“热胀冷缩”的变化,所以不要加液过满。如果蓄液罐完全用空,就不能仅仅在罐中加液,需要开启散热器盖检查液面并添加冷却液,不然蓄液罐就失去功用。

8)采暖装置:

采暖装置在车内,一般不太出问题。从循环介绍可以看出,此循环不受节温器控制,所以冷车时打开暖气,这个循环是会对发动机的升温有稍延后的影响,但影响实在不大,不用为了让发动机升温而使人冻着。也正因为这循环的特点,在发动机出现过热的紧急情况下,打开车窗,暖气开大最大,对发动机的降温会有一定的帮助。

3.冷却系统的设计

冷却系统的作用是在所有工况下,保证发动机在最适宜的温度下工作,冷却系统匹配的是否合适将直接影响到发动机的使用寿命和燃油经济性,所以在冷却系统的设计及计算中,散热器的选型以及风扇的匹配对冷却系统起着至关重要的作用。

为便于组织气流,散热器布置在整车的前面,但由于受到整车布置空间的限制,在其前面还布置了空调冷凝器,这会增加风阻,影响散热器的进风量,从而影响冷却系统的冷却能力。风扇布置在散热器后面,靠风扇电机带动。

冷却系的主要功用是把受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。

冷却系按照冷却介质不同可以分为风冷和水冷,如果把发动机中高温零件的热量直接散入大气而进行冷却的装置称为风冷系。而把这些热量先传给冷却水,然后再散入大气而进行冷却的装置称为水冷系。由于水冷系冷却均匀,效果好,而且发动机运转噪音小,目前汽车发动机上广泛采用的是水冷系。

一、冷却系统的功用

冷却系统的功用是使发动机在所有工况下都保持在适当的温度范围内。冷却系统既要防止发动机过热,也要防止冬季发动机过冷。在发动机冷起动之后,冷却系统还要保证发动机迅速升温,尽快达到正常的工作温度。

二、水冷系统的组成

发动机的冷却系统有风冷与水冷之分,以空气为冷却介质的冷却系统称风冷系统;以冷却液为冷却介质的为水冷系统。汽车发动机,尤其是轿车发动机大都采用水冷系统,只有少数汽车发动机采用风冷系统。

汽车发动机的水冷系统均为强制循环水冷系统,即利用水泵提高冷却液的压力,强制冷却液在发动机中循环流动。这种系统包括水泵、散热器、冷却风扇、节温器、补偿水桶、发动机机体和气缸盖中的水套以及其他附加装置等。冷却液在冷却系统中的循环路径。冷却液在水泵中增压后,经分水管进入发动机的机体水套。

冷却液从水套壁周围流过并从水套壁吸热而升温。然后向上流入气缸盖水套,从气缸盖水套壁吸热之后经节温器及散热器进水软管流入散热器。在散热器中冷却液向流过散热器周围的空气散热而降温,最后冷却液经散热器出水软管返回水泵,如此循环不止。在汽车行驶或冷却风扇工作时,空气从散热器周围高速流过以增强对冷却液的冷却。

铜制或不锈钢制的分水管或直接铸在机体上的分水道,沿其纵向开有出水孔,并与机体水套相通,离水泵越远出水孔越大,其数目通常与气缸数相同。分水管或分水道的作用是使多缸发动机各气缸的冷却强度均匀一致。

有些发动机的水冷系,其冷却液的循环流动方向与上述相反,可称其为逆流式水冷系。在这种水冷系中,温度较低的冷却液首先被引入气缸盖水套,然后才流过机体水套。

由于它改善了燃烧室的冷却而允许发动机有较高的压缩比,从而可以提高发动机的热效率和功率。大多数汽车装有暖风系统。暖风机是一个热交换器,也可称作第二散热器。在装有暖风机的水冷系中,热的冷却液从气缸盖或机体水套经暖风机进水软管流入暖风机芯,然后经暖风机出水软管流回水泵。吹过暖风机芯的空气被冷却液加热之后,一部分送到挡风玻璃除霜器,一部分送入驾驶室或车厢。

三、冷却液

冷却液是水与防冻剂的混合物。冷却液用水最好是软水,否则将在发动机水套中产生水垢,使传热受阻,易造成发动机过热。纯净水在0℃时结冰。如果发动机冷却系统中的水结冰,将使冷却水终止循环引起发动机过热。尤其严重的是水结冰时体积膨胀,可能将机体、气缸盖和散热器胀裂。

为了适应冬季行车的需要,在水中加入防冻剂制成冷却液以防止循环冷却水的冻结。最常用的防冻剂是乙二醇。冷却液中水与乙二醇的比例不同,其冰点也不同。50%的水与50%的乙二醇混合而成的冷却液,其冰点约为-35.5℃。

在水中加入防冻剂还同时提高了冷却液的沸点。例如,含50%乙二醇的冷却液在大气压力下的沸点是130℃。因此,防冻剂有防止冷却液过早沸腾的附加作用。

防冻剂中通常含有防锈剂和泡沫抑制剂。防锈剂可延缓或阻止发动机水套壁及散热器的锈蚀或腐蚀。冷却液中的空气在水泵叶轮的搅动下会产生很多泡沫,这些泡沫将妨碍水套壁的散热。泡沫抑制剂能有效地抑制泡沫的产生。

在使用过程中,防锈剂和泡沫剂会逐渐消耗殆尽,因此,定期更换冷却液是十分必要的。在防冻剂中一般还要加入着色剂,使冷却液呈蓝绿色或黄色以便识别。

本文简要介绍及比较国内外乙二醇型汽车发动机冷却液标准的现况,重点论述了传统型汽车发动机冷却液存在的问题及新型汽车发动机冷却液的发展趋势。

本文简要介绍及比较国内外乙二醇型汽车发动机冷却液标准的现况,重点论述了传统型汽车发动机冷却液存在的问题及新型汽车发动机冷却液的发展趋势。

近年来,随着世界汽车工业的快速发展,对汽车发动机冷却液的质量要求来高;与此同时,出於环境保护和人类自身健康因素的考虑,一些国家和汽车造厂家对发动机冷却液的组成也提出了具体要求。在这种情况下,发动机冷却液标准需要不断修订与完善,并且更新换代。综观而言,新型优质长效防冻液(即发动机冷却液)呈快速发展之势。

发动机冷却液标准的现况

国外发动机冷却液标准的现况

目前,由於美国和日本汽车工业在世界汽车工业的重要地位,美国材料与试验学会(ASTM)、美国汽车工程学会(SAE)制订的发动机冷却液产品标准和试验方法以及日本工业标准(JIS)已成为世界各国发动机冷却液行业最有影响的标准和方法。

美国ASTM D3306“轿车和轻负荷卡车用乙二醇型发动机防冻冷却液”与日本JIS K 2234“发动机防冻冷却液”标准对玻璃器皿腐蚀性能指标要求的对比情况见表1。

综合对比美国与日本发动机冷却液产品标准性能指标,可以看出ASTM、SAE 制订的发动机冷却液产品标准中,玻璃器皿腐蚀试验及模拟使用腐蚀质量指标较低,且差别较大。虽然如此,却不能认为日本发动机冷却液标准比美国标准要求高,因为在控制铸铝合金传热腐蚀性能指标方面,美国标准比日本标准严格。美国标准铸铝合金传热腐蚀的控制指标为不大於1mg/cm2,但日本标准仅为“报告”,没有具体指标;因此,从控制发动机冷却液防腐性能方面看,美、日标准各有侧重。另外,美国发动机冷却液的实际防腐蚀性能指标,也比标准规定指标要高很多。表2是美国德士古(TEXACO)公司生产的各种发动机冷却液产品的玻璃器皿防腐性能、储备硷度和pH值,可见美国发动机冷却液产品的实际性能指标很好。

中国发动机冷却液标准的现况

目前,中国现行发动机冷却液产品标准有三个,即石油化工行业标准“SH/T0521-1999汽车及轻负荷发动机用乙二醇型冷却液”、交通行业标准“JT225-1996汽车发动机冷却液安全使用技术条件”和军用标准“YLB 1006A-1997军用长效防冻液”。其中,由於SH/T0521

-1999基本上是等效采用美国ASTM D3306-94“轿车及轻型卡车用乙二醇型发动机冷却液”标准,对发动机冷却液产品的质量指标进行了全面的规,因此,它在上述三个标准中对产品质量要求最高,包括浓缩液和-25号、-30号、-35号、-40号、-45号及-50号六个冷却液产品。符合该标准的发动机冷却液适用於各种道路车辆,尤其是发动机及其冷却系统中含有铸铝合金材料的高级轿车使用。交通行业标准JT225-1996是根据汽车运输行业对汽车安全运行的要求而提出的强制性标准,它从发动机冷却液如何保汽车安全运行的角度出发,提出了关键性的技术要求,是冷却液生产企业保其产品可以在汽车上使用的最低要求,该标准将发动机冷却液分为-25号、-35号和-45号三个牌号。由於该标准中没有模拟使用腐蚀、铝泵气穴腐蚀和考察高温传热条件下,冷却液对铸铝合金防腐性能的铸铝合金传热腐蚀指标,因此,即使符合该标准的防冻液产品,也不一定适用於含铸铝合金材料的轿车发动机冷却系统。“YLB 1006A-1997军用长效防冻液”标准主要应用於部队。

传统型汽车发动机冷却液存在的问题

自从1927年乙二醇型防冻液开始应用於汽车发动机冷却系统以来,曾用作金属防腐剂和乙二醇抗衰变剂的物质较多,既有有机物,也有无机物。

然而,随着人们对发动机冷却液的深入研究,发现有添加剂的防腐剂在使用中存在一些问题。

硼砂:它是最早加入乙二醇防冻液中的防腐剂,对钢铁有良好的腐蚀抑制效果,也是最好的缓剂之一,但在传热条件下对铝金属部件表面有明显的腐蚀作用。

磷酸盐:对发动机冷却系统中大部分金属都有保护作用,也能防止铝水泵的气穴腐蚀,还是良好的缓剂;但在高热负荷和高温条件下容易使铝表面发生腐蚀。此外,磷酸盐遇硬水时很容易沉淀析出,欧洲许多汽车厂家明确规定禁止在其生产的汽车中使用含磷酸盐的防冻液。

亚硝酸盐:它是黑色金属的有效防腐剂,但已经实亚硝酸盐与三乙醇胺一起使用时,能生成含致癌物质的亚硝酸胺,一些国家的有关法规和汽车厂家明确规定禁止使用。

三乙醇胺:对铝合金有良好的防腐性能,日本生产的防冻液一直将其作为主要防腐剂广泛使用。但它除了会与亚硝酸盐反应生成致癌物外,在乙二醇防冻液中,还会与铜生成络合物附在铁、铝等金属表面加速腐蚀。美国是首先禁止使用胺类防腐剂的国家,欧洲各国及日本的汽车造厂家也随之出现限制和禁止在防冻液中使用三乙醇胺。

钼酸盐:对冷却系统中的多种金属有防腐蚀作用,也是使用较多的防腐剂,但有些汽车厂家生产的车辆,如德国大众系列车型,明确禁止使用含钼酸盐的防冻液产品。

当这些产品在使用中防腐剂配方组成失去平衡时,其副作用就会更加明显。

新型汽车发动机冷却液的发展趋势和性能特点

优秀的防冻液产品除了要有足够的防冻性能外,由於汽车发动机及其冷却系统使用的金属品种多,如铜、铁、钢、铝、焊锡等,因此,必须在各种使用条件下对多种金属零部件具有优异的防腐蚀性能。目前,汽车防冻液产品配方按所使用的添加剂类型,可分为全有机型、无机型和有机物、无机物混合型三种。全有机型配方近年来在国外发展比较快,使用量逐渐增加。研究指出,全有机型配方防冻液的优点是其使用寿命和储存寿命长,如美国德士古(TEXACO)公司生产的HAVOLINE DEX-COOL乙二醇型长寿命发动机防冻/冷却液在汽车上的使用寿命长达五年,储存期最少八年。

但其缺点包括:有机酸及其盐在乙二醇水溶液中的溶解度较小,产品外观不够清澈透明;有机酸的价格高;有机酸型防冻液的起泡性较大,需要使用性能优良的消泡剂才能使产品的泡沫倾向指标合格,当起泡倾向不能很好地控制时,在使用

中有产生气穴腐蚀的危险。无机型防冻液的优点是生产工艺简单、生产成本较低,缺点是使用寿命相对较短。有机物、无机物相结合的混合型配方,从总体上看同时具有全有机和无机配方的优点,克服了彼此的缺点,因此是较好的选择,同时也适合中国的国情。

冷却系统一

1、护罩

2、电动风扇

3、V带

4、散热器

5、从动风扇

6、水泵带轮

7、水泵组件

8、气缸体水道

9、气缸盖水道10、热敏开关11、进气歧管出水管12、膨胀箱管13.冷却液膨胀箱14、排汽管15、冷却液下橡胶软管16、冷却液上橡胶软管17、电动风扇双速

热敏开关18、膨胀箱盖

冷却系统二

1、水泵带轮

2、轴承

3、水泵轴

4、散热器

5、曲轴带轮

6、进气歧管

7、加热器

8、控制阀

9、热敏开关10、节温器11、水泵叶轮

12、水泵壳体

汽车冷却系统工作原理

虽然汽油发动机已进行了大量改进,但是在将化学能转换成机械能的过程中,汽油发动机的效率仍然不高。汽油中的大部分能量(约70%)被转换成热量,而散发这些热量则是汽车冷却系统的任务。事实上,一辆在高速公路上行驶的汽车,其冷却系统所散失的热量足以供两个普通房屋取暖!冷却系统的主要工作是将热量散发到空气中以防止发动机过热,但冷却系统还有其他重要作用。

汽车中的发动机在适当的高温状态下运行状况最好。如果发动机变冷,就会加快组件的磨损,从而使发动机效率降低并且排放出更多污染物。因此,冷却系统的另一重要作用是使发动机尽快升温,并使其保持恒温。

本文将介绍汽车冷却系统的零件及其原理。首先,让我们先了解一下基础知识。

燃料在汽车发动机内持续燃烧。燃烧过程中产生的热量大部分从排气系统中排出,但仍有部分热量滞留在发动机中,从而使其升温。当冷却液的温度约为93℃时,发动机达到最佳运行状态。在这个温度下:

?燃烧室的温度足以使燃料完全蒸发,因此可以更好地使燃料燃烧并减少气体排放。

?如果用于润滑发动机的润滑油较稀薄,粘稠度较低,则发动机零件可以更灵活地运转,而发动机在围绕自身部件旋转的过程中消耗的能量

也将减少。

?金属零件更不易磨损。

汽车冷却系统分为两种类型:液冷和风冷。

液冷

液冷汽车的冷却系统通过发动机中的管道和通路进行液体的循环。当液体流经

高温发动机时会吸收热量,从而降低发动机的温度。液体流过发动机后,转而流向热交换器(或散热器),液体中的热量通过热交换器散发到空气中。

风冷

某些早期的汽车采用风冷技术,但现代的汽车几乎不使用这种方法了。这种冷却方法不是在发动机中进行液体循环,而是通过发动机缸体表面附着的铝片对气缸进行散热。一个功率强大的风扇向这些铝片吹风,使其向空气中散热,从而达到冷却发动机的目的。

因为大多数汽车采用的是液冷,所以本文将着重对液冷系统进行说明。

汽车中的冷却系统中有大量管道。我们从泵开始逐一考察整个系统,在下一节,我们将对系统的各个部件进行详细说明。

泵将液体输送至发动机缸体后,液体便开始在气缸周围的发动机通道里流动。接着,液体又通过发动机的气缸盖返回。恒温器位于液体流出发动机的位置。如果恒温器关闭,则液体将经过恒温器周围的管道直接流回到泵。如果恒温器打开,液体将首先流入散热器,然后再流回泵。

加热系统也有一个单独的循环过程。该循环从气缸盖开始输送液体,使其流经加热器风箱,然后又流回泵。

对于配备有自动变速器的汽车,通常会有一个独立的循环过程来冷却内置于散热器的变速器油液。变速器油液由变速器通过散热器内另一个热交换器抽吸得到。汽车可以在远低于零摄氏度到远高于38℃的宽泛温度范围内工作。因此,不管使用何种液体对发动机进行降温,其必须具有非常低的凝固点、很高的沸点以及能吸收大量热量。

水是吸收热量的最有效的液体之一,但水的凝固点太高,不适用于汽车发动机。大多数汽车使用的液体是水和乙二烯乙二醇的混合液 (C2H6O2),也称为防冻液。通过将乙二烯乙二醇添加到水中,可以显著提高沸点、降低凝固点。

冷却液的温度有时可以达到121-135℃。即使添加了乙烯乙二醇,这么高的温度仍然会使冷却液沸腾,所以需要使用其他的方法提高冷却液的沸点。

冷却系统通过施加压力可以进一步提高冷却液的沸点。正如高压锅中的水可以达到较高沸点一样,通过对系统加压可以提高冷却液的沸点。大多数汽车都具有0.98-1.05千克/平方厘米的压力限制,这可将沸点提高25℃,以便使冷却液可以承受高温。

防冻液也含有抗腐蚀的添加剂。

水泵是由连接发动机曲轴的皮带驱动的简易离心泵。每当发动机运转时,水泵就会使液体进行循环。类似于汽车中使用的离心泵

水泵运转时通过离心力将液体输送到外面,并从中部持续抽吸液体。泵的入口位于离中心较近的位置,因此从散热器返回的液体可以接触到泵叶片。泵叶片

将液体送至泵的外部,液体由这里进入发动机。从泵流出的液体首先流经发动机缸体和气缸盖,然后流入散热器,最后返回到泵。

发动机缸体和气缸盖具有许多通过铸造或机械加工而成的通道,以便于液体流

发动机燃烧室的温度可达2500℃,因此冷却气缸周围的区域非常重要。排气阀周围的区域尤其非常重要,阀周围的气缸盖内的所有空间(不属于结构中的部分)几乎都充满了冷却液。如果发动机运行时间太长而不冷却,发动机将熄火。在这种情况下,金属的温度几乎可以将活塞与气缸焊接到一起。这通常会导致发

要减小对冷却系统的要求,一个有趣的方法是,减少从燃烧室传输到发动机金属零件的热量。通过将气缸盖顶部的内侧镀上一层很薄的陶瓷,就可以达到这个目的。陶瓷的导热性较弱,因此传导至金属的热量就会减少,排放出的热量将会增多。

散热器是一种热交换器。它用来将热冷却液携带的热量通过风扇传导到其周围的空气中。

大多数现代化汽车都使用铝散热器。这些散热器通过将薄铝片铜焊到扁平的铝管而制成。冷却液通过并排安装的管道从入口处流至出口处。这些铝片从管道传导热量,并通过散热器将热量散发到空气中。

有时,这些管道中插入一种称为湍流器的散热片,可以增加管道中流动液体的湍流。如果这些管道当中液体的流动很平稳,则只会直接冷却与管道接触的液体。从管道中流动的液体传导至管道热量的多少取决于管道和接触管道的液体之间的温度差异。因此,如果与管道接触的液体得到快速冷却,那么传输的热量会比较少。通过在管道内制造湍流,混合所有液体,将与管道接触的液体保持高温以

通常散热器每侧各有一个油箱,每个油箱中都会有一个变速器冷却器。在上图中,可以看到油液从变速器进入冷却器的入口和出口。变速器冷却器跟散热器内的散热器很相似,不同的只是油液不是与空气交换热量,而是与散热器当中的冷却液交换热量。

压力水箱盖可以将冷却液的沸点提高25℃。一个简单的盖子怎么会有这么大的作用呢?与高压锅中提高水的沸点的原理相同。压力水箱盖本身就是一个压力

释放阀,汽车中通常设置的压力为1.05千克/平方厘米。将水加压后,水的沸点就会升高。

散热器盖与储液罐的剖面图(电机过热按钮,可看到动画效果)

冷却系统中液体的温度升高时,液体发生膨胀,导致压力增加。压力水箱盖是释放压力的唯一出口,因此盖子上弹簧的设置决定了冷却系统的最大压力。当压力达到1.05千克/平方厘米时,压力阀会被冲开,使冷却液从冷却系统中流出。冷却液经溢流管进入溢流箱的底部。该装置将空气阻隔在系统之外。散热器冷却时,冷却系统中便形成真空,这将打开另一个弹簧负荷阀,然后再从溢流箱底部重新吸水以填补已排出的水。

恒温器的主要作用是使发动机快速升温,并保持恒温。它是通过调节流经散热器的水量而实现的。在低温情况下,散热器的出口将完全被阻塞,即所有的冷却液经由发动机进行再次循环。

冷却液的温度一旦升高到82-91℃之间,恒温器便会打开,从而使液体流经散热器。

如果有机会对恒温器进行测试,您会发现它简直不可思议。您可以将一个恒温器放入坐在炉子上的沸水壶中。恒温器受热后,其控制阀会开启约2.5厘米,这显然是在变魔术!如果您感兴趣,可以去汽车零件商店花几美元买一个来试试。

恒温器的秘密就在位于恒温器的发动机侧的小气缸中。气缸充满了蜡,这些蜡在82℃左右开始融化(不同的恒温器会在不同的温度打开,但82℃较为普遍)。控制阀的连杆压入这些蜡中。蜡在融化时显著膨胀,并将连杆从气缸中推出从而打开控制阀。如果您阅读了温度计工作原理并且用瓶子和吸管做过试验,则在操作中会看到这一过程——蜡只膨胀了一点,因为它在受热膨胀后从固态变成了液态。

温室气体通风孔和天窗所用的自动开启装置中也采用了与上述同样的技术。

与恒温器类似,必须对冷却风扇加以控制以使发动机保持恒温。

前轮驱动汽车装有电扇,因为发动机通常横向安装,即发动机的输出朝向汽车的一侧。风扇可以通过恒温开关或发动机计算机进行控制,这些风扇将在温度升

配备纵向发动机的后轮驱动汽车通常装有发动机驱动冷却风扇。这些风扇具有恒温控制粘性离合器。该离合器位于风扇的中心,被散热器流出的气流所包围。这类特殊的粘性离合器有时更像是全轮驱动汽车的粘性耦合器。

您可能听说过这一建议,当汽车过热时,打开所有车窗,并且在全速运转风扇时运行加热器。这是因为加热系统实际上是一个二级冷却系统,可以反映汽车上

位于汽车仪表板的暖气风箱实际上是一种小型散热器。该加热器风扇使空气流

加热器风箱从气缸盖吸取出热的冷却液,然后又使其重新流回泵中,因此,加热器在恒温器打开或关闭时均可以运行。

捷达轿车发动机冷却系统的检修

捷达轿车发动机冷却系统的检修 目录 1绪论················错误!未定义书签。 2 冷却系统系统的结构和工作原理 (3) 2.1发动机冷却系统的功用和组成 (5) 2.2发动机冷却系统的类型 (6) 2.3捷达轿车冷却系统的组成 (4) 2.3.1散热器 (8) 2.3.2冷却风扇 (8) 2.3.3冷却水泵 (9) 2.3.4节温器 (9) 2.3.5冷却液介质 (10) 2.3.6冷却液温度传感器 (10) 2.4捷达轿车冷却系统工作原理11 3发动机冷却系统的故障分析及检修 (10) 3.1发动机过热. (10) 3.2发动机升温缓慢或工作温度过低 (13) 3.3冷却系主要部件故障检修 (11) 4捷达冷却系统的案例分析与维修 (14) 4.1实际案例分析与维修 (14)

4.2冷却系统的特点 (18) 5冷却系统的维护与保养 (16) 5.1使用防冻液注意事项 (17) 5.2冷却系统水垢形成原因与清除 (17) 结论 (19) 参考文献 (22) 致谢·················错误!未定义书签。 捷达轿车冷却系统常见故障检修 摘要:汽车冷却系统是发动机的重要组成部分,随着发动机采用更加紧凑的设计和具有更大的比功率,发动机产生的废热密度也随之明显增大。一些关键区域,如排气门周围散热问题需优先考虑,冷却系统即便出现小的故障也可能在这样的区域造成灾难性的后果。保证冷却系统的正常工作,能避免因冷却系的故障造成的车辆问题。为了人们能了解冷却系常见故障及检修知识,本文列举冷却系统一些常见故障及检修方法。 关键词:捷达轿车,冷却系统,工作过程,常见故障 1.绪论 发动机的冷却系统可以分为两大类,一类是水冷系统,另一类是风冷系统。车用发动机大多采用水冷系统进行冷却。水冷系大都是强制循环式水冷系,利用

发动机冷却系统设计规范..

发动机冷却系统设计规范..

号: 冷却系统设计规范 编制:万涛 校对: 审核: 批准: 第1页

第1页

水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。 四、主要部件的设计选型 1、散热器 散热器的散热量(Q)和散热器散热系数(K)、散热器散热面积(A)及气液温差(⊿T)有关: Q=K·A·⊿T 其中:Q---散热器的散热量(kcal/h) K---散热器散热系数(kcal/m2?h?oC) A---散热器散热面积(m2) ⊿T---气液温差:散热器进水温度和散热器进风温度之差(oC)散热器的散热系数是代表散热效率的重要指标,主要影响因素如下: ①冷却管内冷却液的流速---据试验结果,冷却液流速由0.2m/s提高到0.8m/s,散热效 率有较大提高,但超过0.8m/s后,效果不大; ②通过散热器芯部的空气流量---空气的导热系数很小,因此散热器的散热能力主要取决 于空气的流动,通过散热器芯部的风量起了决定性作用; ③散热器的材料和管带的厚度---国内散热器的材料目前基本上已标准化; ④制造质量---主要是冷却管和散热带之间的贴合性和焊接质量; 第1页

1.1 散热器是冷却系统中的重要部件,其主要作用是对发动机进行强制冷却,以保证发动机能始终处于最适宜的温度状态下工作,以获得最高的动力性、经济性和可靠性。 1.2 发动机最适宜的冷却液温度为85 ℃~95 ℃,测量位置在散热器的上水室。 1.3 散热器和风扇组合匹配效率是当散热器芯子未被气流扫过的面积最小时为最高,因此,最好采用接近正方形的散热器芯子。 1.4 散热器的总散热面积、芯子的迎风面积、结构形状和结构尺寸要通过发动机冷却系统所需最大散热量来计算确定,并应通过试验评价来最终确定。但一般可按散热器芯子的迎风面积来估算:0.31~0.38m2/100kW,载货车和前置客车通风良好时,可取下限值;后置客车通风欠佳时可取上限值;城市公交车长期低速运转可偏下限值;自卸车、牵引车、山区长途客运车等经常大负荷运行的车辆可偏上限值。 1.5 散热器进风口的实际面积不得小于散热器芯子迎风面积的80 %,以防止散热能力下降。后置客车散热器的进风通道要与发动机舱密封隔离,散热器周围要安装密封橡胶,以防止发动机舱的热风回流到进风通道,影响散热性能;进风通道的面积应不小于散热器芯子的迎风面积。 1.6 在灰尘多的脏环境下使用时,应选用直排或斜排冷却管,且管子间隔要大,以避免散热器芯子堵塞,影响散热效果。 1.7 散热器安装时,紧固必须牢靠,与车架的连接必须采用减振垫,采用减振垫的目的是为了隔离和吸收来自车架的部份振动和冲击,使散热器在车辆运行中,不致发生振裂、扭曲等非正常损坏,延长散热器寿命。 1.8 因为散热器与车架之间安装有隔振橡胶,因而形成了绝缘状态,通过冷却液介质,在散热器与车架之间产生了电位差,在冷却液中产生了微弱电流,使冷却系统的零部件发生电腐蚀。因此,一定要采取散热器负极接地等措施,消除电位差,防止电腐蚀。 2 冷却风扇 风扇选型主要考虑风扇的风量、噪声和功率消耗。 风扇风量(G)与风扇直径(D)、风扇转速(n)之间存在如下比例关系: G=K1?n?D3------其中K1为比例系数 而风扇噪声的声压级(SPL)和风扇直径(D)、风扇转速(n)之间存在如下比例关系: SPL= K2?n3?D2------其中K2为比例系数 根据上述比例关系可得:SPL= K3?Q?n2/D------其中K3为比例系数 第2页

发动机智能冷却系统的研究现状和发展趋势_高标_201406

发动机智能冷却系统的研究现状和发展趋势 Investigation and Development of Engine Intelligent Cooling System 高标,程伟 (东风汽车股份有限公司商品研发院,湖北武汉,430057) 摘要:汽车发动机冷却系统是保证车辆可靠运行必不可少的一个系统,同时冷却系统的性能与发动机燃油经济性、排放、噪声等方面也有着密切关系,智能化、电控化是汽车以及汽车零部件发展的趋势,汽车发动机智能冷却系统的研究是节能、减排和热管理领域内的重要前沿课题。收集、整理和分析了国内外智能冷却系统的文献和产品,总结了智能冷却系统在关键零部件、系统集成和新能源车型领域内的研究现状,为智能冷却系统的研发和产业化提供了参考。 Abstract: Vehicle engine cooling system is essential for the vehicle running, and the performance of cooling system has relations with the engine economic、emissions and noise,intelligence、electronic control are the trend of vehicle components development,vehicle engine intelligent cooling system(ICS) is the frontier research field of energy conservation 、emissions and thermal management. By collecting, classification and studying of the achievements on ICS research and its products, summarize the development of ICS on key components、system integration and new energy vehicle aspects, and offer some references for the ICS research and industrialization. 关键词:发动机智能冷却系统集成 Keywords:Engine; Intelligent; Cooling System ; Integration 0引言 汽车发动机在完成能量转换的过程中,约有1/3的燃料燃烧化学能需通过发动机冷却系统散出,机械部件的摩擦散热、电子部件的散热等也需要通过冷却系统进行冷却或温度调节,以保证零部件工作在合适的温度[1];发动机的排放、噪声等问题也与冷却系统有着密切关系,相关研究中指出发动机冷起动后前300s时间内的CO和HC排放占整排放测试阶段中的60%~80%[2]。同时在冷却系统运转过程中风扇、水泵等零部件消耗相当一部分功率,影响发动机的燃油经济性。冷却系统性能的好坏直接关系到汽车及发动机的性能,而上述问题的解决依赖于如何对发动机冷却系统进行稳定、快速和准确的控制,因此汽车发动机的智能冷却系统成为目前热管理领域内的重要研究前沿课题。 1发动机冷却系统的发展概述 早期的发动机由于功率密度低,结构简单,主要依靠空气自然对流进行冷却,随着发动机功率密度的不断提升导致发动机的散热量增加,由于冷却空气的比热容低,为了获得更好的冷却效果,出现了以发动机直接驱动的冷却风扇提供强制冷却的风量,发动机内部通过水泵驱动冷却液循环进行冷却,极大的提高了冷却系统冷却效率。由于发动机零部件需要在一定温度范围内工作,冷却系统要对冷却强度进行调节,之后,发动机冷却系统增加了节温器、挡风帘等温度调节装置。 但冷却风扇、水泵等零部件消耗大量发动机功率,自20世纪50年代博格华纳公司最早发明了硅油风扇离合器,一致以来都以较高的性价比和可靠性成为商用车发动机的重要冷却系统节能技术。[3]1981年3月美国的专利文件(US4257554)[4]最早提出了电动冷却风扇冷

水冷发动机冷却系统介绍

水冷发动机冷却系统介绍 为了保证发动机的工作可靠性,降低其热负荷,必须加强它的冷却散热。发动机 主要依靠其冷却系统来保证自身在工作过程中得到适度的冷却。发动机冷却系统的功 用就是把发动机传出来的热,及时散发到周围环境中去,使发动机具有可靠而有效的 热状态。现代完善的冷却系统,可以使发动机在各种不同环境温度和运转工况下具有 最佳的热状态,既不过热,也不过冷。发动机的冷却系统按照传热介质来分类可以分 为以水为传热介质的水冷型冷却系,以空气为传热介质的风冷型冷却系,以油(如机 油等)为传热介质的油冷型冷却系[z][23][32]。现代汽车发动机,尤其是轿车发动机普遍 采用的是水冷型的冷却系。在水冷型冷却系中,如果按照传热方式来分类,有单相传 热和两相传热两种方式,前者为人们通常所说的水冷型冷却系,后者称为蒸发式冷却 系。 汽车发动机的水冷系统均为强制水冷系统,即利用水泵提高冷却液的压力,强制 冷却液在发动机中循环流动。这种系统的组成主要包括:水泵、散热器、冷却风扇、 节温器、补偿水箱、发动机冷却水套以及附加装置等。 发动机冷却系统冷却液在冷却系统中的循环路径:冷却液经水泵增压后,进入发 动机缸体水套,冷却液从水套壁周围流过并吸热而升温。然后向上流入缸盖水套,从 缸盖水套壁吸热后经节温器(对于该型号发动机,当出水温度低于82℃时,进行小 循环,这时节温器将冷却液流向散热器的通道关闭,使冷却液经水泵入口直接流入缸 体或气缸盖水套,以便使冷却液能够迅速升温。当高于82’C时,水经过散热器而进 行的循环流动,从而使水温降低。)然后回到水泵,如此循环不止(如图2.1.1所示)。 冷却液随发动机的不同而不一样。冷却液用水最好是软水,否则将在发动机水套 中产生水垢,使传热受阻,易造成发动机过热。纯净水在O℃时结冰。如果发动机冷却系统中的水结冰,将使冷却水终止循环引起发动机过热。尤其严重的是水结冰时体 积膨胀,可能将缸体、气缸盖和散热器胀裂。为了适应冬季行车的需要,在水中加入 防冻剂制成冷却液以防止循环冷却水的冻结。最常用的防冻剂是乙二醇。冷却液中水 与乙二醇的比例不同,其冰点也不同。50%的水与50%的乙二醇混合而成的冷却液, 其冰点约为一35.5OC。本文中发动机所用的是复合型三防长效冷却液,沸点不低于107 ℃,冰点不高于一35℃。 因此,发动机冷却系统的设计要求是要保证对冷却液温度的要求,现代发动机的 冷却系统设计趋向于在实现高的冷却能力的同时,使整个冷却系统的结构更紧凑、消 耗功率小、减小系统阻力。

发动机冷却系统计算

发动机冷却系统计算 发动机冷却系统是汽车的重要组成部分之一,冷却系统的作用是使发动机在各种转速和各种行驶状态下都能有效的控制温度,其中水套是整个冷却系统的关键部分。本文为发动机冷却系设计计算分析,水套计算分析由AVL 公司的FIRE 软件完成。通过CFD 计算,可以得到水套整个流场(速度、压力、温度以及HTC 等)分布。通过速度场可以识别出滞止区、速度梯度大的区域,通过温度分布可以分析可能产生气泡的位置,通过换热系数的分布可以评估水套的冷却性能,通过压力分布可以显示出压力损失大的区域。本文针对功率点进行了计算。 1.散热量的计算 在设计或选用冷却系统的部件时,就是以散入冷却系统的热量Q W 为原始数据,计算冷却系统的循环水量、冷却空气量,以便设计或选用水泵和散热器。 1.1 冷却系统散走的热量 冷却系统散走的热量Q W ,受许多复杂因素的影响,很难精确计算, 因此在计算时,通常采用经验公式或参照类似发动机的实测数据进行估算。在采用经验公式估算时,Q W 估算公式为:)/(3600s kJ A h N g Q n e e W = (1) 式中:A —传给冷却系统的热量占燃料热能的百分比; g e —内燃机燃料消耗率( kg/kW ·h); N e —内燃机功率(kW); h n —燃料低热值(kJ/kg)。 根据表1CK14发动机总功率实验数据:6000rpm 时,N e =70.2kW, g e =340.8 g/kW ·h, 汽油机热量理论计算一般A=0.23~0.30,但随着发动机燃烧技术的提高,热效率也不断提高,根据同类型机型热平衡试验数据反运算,A 值一般在0.15左右。 汽油低热值h n =43100 kJ/kg, A 选取0.15,故对于CK14发动机标定功率下散热量: KW Q W 433600 431002.703408.015.0≈???=

毕业论文之汽车发动机冷却系统

题目:汽车发动机冷却系统维护所在院系:汽车系 专业班级: 汽车电子技术 学生姓名:万美玲 指导教师:李晗 2012 年03 月21 日

目录 摘要 (1) 第一章引言 1.1汽车发动机冷却系统在现在汽车行业的发展现状 (1) 1.2 汽车发动机冷却系统维修的重要意义 (2) 第二章课题的目的及现实意义 2.1 课题主要目的 (3) 2.2 课题的现实意 义 (3) 第三章汽车冷却系统的故障案例 3.1故障现象 (4) 3.2冷却系统的特点 (4) 第四章冷却系统的结构和工作原理 4.1发动机冷却系统的功用 (6) 4.2桑塔纳轿车冷却系统的组成 (6) 4.3桑塔纳轿车冷却系统工作原理 (9) 第五章冷却系统故障分析 (11) 5.1发动机过热 (11) 5.2发动机升温缓慢或工作温度过低 (11) 第六章实际故障检测与维修 6.1 故障一 (12) 6.2 故障二 (13) 第七章冷却系统的维护与保养 (14)

第八章结论 (17) 谢辞 (18) 参考文献 (22) 摘要 汽车现在已是大众的交通工具,它集机械与电子一体,是当前社会的高科技产品。随着汽车电子技术的快速发展,电子燃油喷射、安全气囊和ABS系统以及各种电控部件的应用技术都日趋成熟,电子智能系统几乎已经应用到汽车的各个领域。 这些高科技的应用使得汽车更趋近完善,但同时也使得在维修汽车上增加了许多难度。本论文针对汽车发动机冷却系统存在的各种典型故障,进行了仔细的故障分析和维修过程,解决发动机冷却系统存在的具体问题。目的就是为了对发动机冷却系统进行深刻透彻的分析,使得在实际维修中得到更好的经验和方法。从而使发动机冷却系统更出色的工作,提高汽车的动力性和经济性,提高汽车的使用寿命。 关键词:发动机发动机冷却系统智能化检测维修 Abstract Cars are now already is public transportation, it integrates mechanical and electrical integration, the present society of high-tech products. Along with the rapid development of automobile electronic technology, electronic fuel injection, airbag and ABS system and various electronic components application technology matures, electronic intelligence system has been applied to the car's almost every field. These high-tech application makes cars more intimate perfect, but also makes the maintenance bus increased a lot of difficulty. This thesis aims to automobile engine cooling system various existing typical fault, the careful fault analysis and maintenance process and resolve the engine cooling system exist specific problems. Purpose to the engine cooling system on deep thorough analysis, make in the actual repairs better experiences and methods. Thus make the engine cooling system more outstanding work, improve the performance and fuel economy car, improve the

论述汽车发动机冷却系统有几种形式,各有什么特点

题目:论述汽车发动机冷却系统有几种形式,各有什么特点 汽车冷却系统 冷却系统的功用是带走引擎因燃烧所产生的热量,使引擎维持在正常的运转温度范围内。引擎依照冷却的方式可分为风冷系及水冷系,风冷系是靠引擎带动风扇及车辆行驶时的气流来冷却引擎;水冷系则是靠冷却水在引擎中循环来冷却引擎。不论采何种方式冷却,正常的冷却系统必须确保引擎在各样行驶环境都不致过热。 水冷系 水冷系是以冷却液为冷却介质,通过冷却液将高温零件的热量带走,再以一定的方式散发到大气中去,使发动机的温度降低而进行冷却的一系列装置。通常,冷却液在水冷系内的循环流动路线有两条,一条为大循环,另一条是小循环,两者由冷却液是否流经散热器而进行区别,冷却强度也不同。小循环是指冷却水仅在引擎内循环,而大循环则是冷却水在引擎与热交换器 (水箱) 间循环。 冷却系统的循环汽车发动机的冷却系为强制循环水冷系,即利用水泵提高冷却液的压力,强制冷却液在发动机中循环流动。冷却系主要由水泵、散热器、冷却风扇、补偿水箱、节温器、发动机机体和气缸盖中的水套以及附属装置等组成。其工作过程为:水泵将冷却液由机外吸人并加压,使之经分水管流入发动机缸体水套。这样,冷却水从气缸壁吸收热量,温度升高;流到气缸盖水套,再次受热升温后,沿水管进入散热器内。经风扇的强力抽吸,空气流由前向后高速通过散热器。最终使受热后的冷却水在流经散热器的过程中,其热量不断地通过散热器,散发到大气中去。同时,使水本身得到冷却。冷却了的冷却液流到散热器的底部后,又在水泵的加压下,经水管再压入水套,如此不断地循环。从而使得发动机在高温条件下工作的零件不断地得到冷却,从而确保发动机的正常工作。因此水冷却形式具有冷却可靠、布置紧凑、噪声小、使用方便等优点。 风冷系 这种冷却方法不是在发动机中进行液体循环,而是通过发动机缸体表面附着的铝片对气缸进行散热。一个功率强大的风扇向这些铝片吹风,使其向空气中散热,从而达到冷却发动机的目的。 风冷系以空气为冷却介质,利用汽车行驶时的高速空气流,将高温零件表面的热量吹散到大气中去。风冷系的汽车发动机一般采用由传热性能较好的铝合金铸成的汽缸和汽缸盖,为了增大散热面积,各汽缸一般都分开制造,并且在汽缸和汽缸盖表面分布许多均匀的散热片,以增大散热面积。为了有效地利用空气流和保证各汽缸冷却均匀,有的发动机上装有导流罩及分流板等部件。风冷系具有结构简单、重量轻、故障少、无需特殊保养、维护简便、对地理环境和气候环境

冷却系统计算

冷却系统计算 一、 闭式强制冷却系统原始参数 都以散入冷却系统的热量 Q W 为原始数据,计算冷却系统的循环水量、冷却 空气量,以便设计或选用水泵、散热器、风扇 1.冷却系统散走的热量Q W 冷却系统散走的热量Q W ,受很多复杂因素的影响,很难精确计算,初估Q W ,可以用下列经验公式估算: 3600 h N g Q u e e W A (千焦/秒) (1-1) A ---传给冷却系统的热量占燃料热能的百分比,对汽油机A=0.23~0.30, 对柴油机A=0.18~0.25 g e ---内燃机燃料消耗率(千克/千瓦.小时) N e ---内燃机功率(千瓦) h u ---燃料低热值(千焦/千克) 如果内燃机还有机油散热器,而且是水油散热器,则传入冷却系统中的热量,也应将传入机油中的热量计算在冷却系统中,则按上式计算的热量Q W 值应增大5~10% 一般把最大功率(额定工况)作为冷却系统的计算工况,但应该对最大扭矩工况进行验算,因为当转速降低时可能形成蒸汽泡(由于气缸体水套中压力降低)和内燃机过热的现象。 具有一般指标的内燃机,在额定工况时,柴油机g e 可取0.21~0.27千克/千瓦.小时,汽油机g e 可取0.30~0.34千克/千瓦.小时,柴油和汽油的低热值可分别取41870千焦/千克和43100千焦/千克,将此值带入公式即得 汽油机Q W =(0.85~1.10)N e 柴油机Q W =(0.50~0.78)N e

车用柴油机可取Q W=(0.60~0.75)N e,直接喷射柴油机可取较小值,增压的直接喷射式柴油机由于扫气的冷却作用,加之单位功率的冷却面积小,可取Q =(0.50~0.60)N e,精确的Q W应通过样机的热平衡试验确定。 W 取Q W=0.60N e 考虑到机油散热器散走的热量,所以Q W在上式计算的基础上增大10% 额定功率: ∴对于420马力发动机Q W=0.6*309=185.4千焦/秒 增大10%后的Q W=203.94千焦/秒 ∴对于360马力发动机Q W=0.6*266=159.6千焦/秒 增大10%后的Q W=175.56千焦/秒 ∴对于310马力发动机Q W=0.6*225=135千焦/秒 增大10%后的Q W=148.5千焦/秒 最大扭矩: ∴对于420马力发动机Q W=0.6*250=150千焦/秒 增大10%后的Q W=165千焦/秒 ∴对于360马力发动机Q W=0.6*245=147千焦/秒 增大10%后的Q W=161.7千焦/秒 ∴对于310马力发动机Q W=0.6*180=108千焦/秒 增大10%后的Q W=118.8千焦/秒 2.冷却水的循环量 根据散入冷却系统中的热量,可以算出冷却水的循环量V W

汽车发动机冷却系统的发展与现状

汽车发动机冷却系统的发展与现状 发表时间:2017-10-20T14:00:13.917Z 来源:《防护工程》2017年第16期作者:刘洋[导读] 汽车水冷发动机冷却系统主要由发动机冷却水套、冷却水泵、节温器及冷却风扇等部件组成。 国家知识产权局专利局专利审查协作广东中心 摘要:早期的发动机冷却系统虽能满足汽车的基本使用要求,但在满载或者恶劣的环境中容易出现问题。在当今日益重视环境保护、提倡节能和舒适性的情况下,发动机的结构、性能和汽车整体性能都有很大的发展,冷却系统正朝着轻型化、紧凑化和智能化的方向发展。为此,重点介绍了国内外汽车发动机冷却系统的研究及发展情况,并做了简要分析。 关键词:冷却系统;冷却介质;冷却机理 1发动机冷却系统向智能化方向发展 发动机冷却系统是汽车的重要构件。汽车水冷发动机冷却系统主要由发动机冷却水套、冷却水泵、节温器及冷却风扇等部件组成。传统冷却系统采用的是冷却风扇或离合器式冷却风扇,两种风扇均由发动机曲轴通过皮带驱动,其冷却调节的灵敏度不高,功率损失也很大。为解决这个问题,就出现了自控电动冷却风扇。2冷却系统的冷却介质 目前,发动机广泛采用液态水作冷却液。水作为内燃机冷却系统的冷却介质具有很多优点:在性能方面,它性能稳定、热容量大、导热性好、沸点较高;在经济性能方面,它资源丰富、容易获取。但另一方面,水作为冷却介质也存在着两个较大的缺点:一是冰点高,在0℃时结冰,造成冬季使用困难;二是水具有一定的腐蚀性,对发动机冷却系统有损害作用。另外,水做冷却液的冷却系统,体积较庞大,不利于汽车内部结构的优化和整体质量的减少,增加了发动机功率的额外消耗。天然水中一般都含有部分矿物盐类(MgCl2、Ca(HCO3)2等),当水在发动机冷却系统内受热时,碳酸盐会在冷却系的壁上形成很难除去的水垢。导热性能很差。当水垢聚积过多时,会使发动机冷却性能恶化而导致过热。另外,溶解在水中的某些盐类(如MgCl2)在受热时产生水解作用,生成Mg(OH)2和HCl。其中HCl是一种腐蚀性很强的酸。因此,当水中含矿物盐类过多时,对发动机的冷却系统是很不利的。为了防止水垢的产生和水的腐蚀作用,在冷却水中加入了防腐蚀剂(重铬酸钾K2Cr2O7);为了解决水在0℃时结冰的问题,一般采用防冻液来作冷却液,常见的有丙稀二醇、甘醇、硅酸盐、有机酸等。3冷却系统向高效低能耗方向发展 发动机冷却系统效率的提高主要从两个方面来实现:其一,新材料的应用及部件结构的新设计;其二,部件的智能驱动方式。传统冷却系统中,风扇和水泵的效率普遍不高,造成大量能源的浪费。为提高冷却风扇的效率,用塑料翼形风扇取代圆弧型直叶片冷却风扇。从气体动力学的角度分析,翼形风扇能够改善风扇流场,提高风扇的效率和静压,使风扇高效区变宽;另外,塑料表面的光洁度较高。传统的冷却风扇由发动机驱动,装风扇的发动机与装有风罩的散热器必须分别用弹性支座固定在车架。为避免在汽车运行中因振动而引起风扇与风罩相碰,风扇叶轮与风罩的径向间隙的设计数值大于20mm,这必然大幅度降低风扇的容积效率。风扇的总效率取决于容积效率、机械效率和液力效率的乘积,即 η总 ??η机 ??η容 ??η液。传统风扇叶片采用薄钢板冲压而成,其液力效率 η液较低,又加上皮带传动存在打滑损失,其机械效率 η杨也不高,从而导致传统冷却风扇的总效率只有30%左右。采用电控风扇,由电机直接驱动风扇,与原来的皮带传动相比,机械效率 η机提高了。电控冷却风扇完全脱离发动机,与风罩、散热器安装为一体,保证了风扇与风罩的同心度,进一步减小了径向间隙,导致风扇容积效率 η容大幅度提高;另外,采用翼形端面塑料和流线型风罩,使风扇气流入口形成良好的流线型气流,可提高风扇的液力效率 η液,综合各项措施最终使电动风扇的效率达到78%。4冷却系统新的冷却机理 上世纪70年代,美国、日本和英国等国家提出了“绝热发动机”,其基本思路是对组成发动机燃烧室的零部件表面,喷涂耐高温的陶瓷覆层或使用陶瓷零部件,从而大大减少散热损失。经过20年的研制,绝热发动机在高温陶瓷零件(镶块或涂层)方面取得了较大的成功[7、8]。绝热发动机(无外部冷却装置)的整机热效率接近40%,复合式绝热发动机的整机热效率达到了40%以上[9]。这种以高度隔热层为主要手段的绝热发动机的有效热效率,较同类常规发动机(水冷或风冷)高出5%~15%。虽然绝热发动机提高了整机热效率和功率,同时降低了成本,但受材料和镶涂工艺的限制,还不能在普通车辆上使用,而且在高温条件下,发动机的润滑机油粘度降低,润滑效果变差,需要安装专门的散热装置;另外,气缸的充气效率会降低5%~10%。因此,还需要进一步研究新的冷却技术。 上世纪80年代,德国的Elsbett公司研制了一种新型车用发动机[10],它采用新的燃烧系统与新的冷却系统相结合的方式,以传热系数低的普通金属材料和巧妙的结构设计,大幅度减少了散热损失,取消了外部冷却装置。该机新的燃烧系统减少散热的原理是在球型燃烧室中有强烈的空气涡流,在离心力的作用下,沿燃烧室壁形成一层相对较冷的空气区,“旋流式喷油器”喷出一股雾化锥角很大、射程近、射速慢的空心涡流雾锥[11~13]。这股油雾随空气涡流旋转,不与燃烧室壁接触,在燃烧室中心混合燃烧,形成了热的燃烧中心—“热区”和周边温度较低的冷却空气层—“冷区” 这种燃烧系统。有“冷区”包围着“热区”,从而使燃烧室壁接受和传出的燃烧热量大为减少。Elsbett发动机在此基础上进行了进一步减少传热损失的设计[14],选用铸铁做活塞顶;将活塞环按内腔设置隔热槽,以截断热流通道,减少传向环槽的热量。上述3项措施使燃烧经活塞传到气缸壁的热量下降了一个数量级;加上以机油循环冷却气缸盖内腔和缸体上部的油道,用机油喷射冷却活塞内腔,实现了无水冷强制风冷的新的冷却机理。目前,还出现了发动机常规冷却机理中的强化冷却措施,如活塞的“内油冷”、排气门的“钠冷”以及喷油嘴的“内油冷”等内冷技术[15]。另外,采用的一些节油技术也具有内部冷却的功能[15],如乳化柴油、进气喷水、进气引汽、代用燃料冷却和过量空气冷却等。 5结论 (1)冷却系统实现智能化,工作协调性增强。

汽车发动机冷却系

汽车发动机冷却系

汽车发动机冷却系系统维护摘要:汽车的发动机是动力的来源,它的出现给汽车带来了强劲的动 力,它就像人的心脏一样那样重要,但是人不只是有心脏,还有别的器官,心脏在这些器官的辅助下,才能发挥它原本的能力。这器官就是冷却系。它让工作中的发动机得到适度的冷却,从而保持发动机在最适宜的温度范围内工作。本文论述了冷却系的作用、组成、主要结构、工作原理、日常维护、故障检测步骤和排除方法。 关键词:冷却系统;过热、过冷的危害;冷却系统维护; 如果一台发动机,冷却系统的维修率一直居高不下,往往会引起发动机其他构件损坏,特别是随着车辆行驶里程的增加,冷却系统的工作效率逐渐下降,对发动机的整体工作能力产生较大影响,冷却系统的重要性在于维护发动机常温下工作,尤如人体的皮肤汗腺,如果有一天,人体的汗腺不能正常工作,那么身体内的热量将无法散去,轻则产生中暑,重则休克。 一、冷却系的组成与作用 (一)作用 冷却系统的功用是带走引擎因燃烧所产生的热量,使引擎维持在正常的运转温度范围内。引擎依照冷却的方式可分为气冷式引擎及水冷式引擎,气冷式引擎是靠引擎带动风扇及车辆行驶时的气流来冷却引擎;水冷式引擎则是靠冷却水在引擎中循环来冷却引擎。不论采何种方式冷却,正常的冷却系统必须确保引擎在各样行驶环境都不致过热。 (二)组成 水冷却系统一般由散热器、节温器、水泵、水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器又分为横流式和垂直流动两种,空调冷凝器通常与其装在一起。 1.水泵和节温器 发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,推动冷却液在整个系统内循环。目前最先进的水泵是宝马新一代直六发动机上采用的电动水泵,它能精确的控制水泵的转速,并有效的减少了对输出功率的损耗。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。可以将节温器看作一个阀门,其原理是利用可随温度伸缩的材料(石蜡或乙醚之类的材料)做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液

发动机冷却系统设计规范

编号:
冷却系统设计规范
编制: 万 涛
校对: 审核: 批准:
厦门金龙联合汽车工业有限公司技术中心 年月日

一、概述 要使发动机正常工作,必须使其得到适度的冷却,冷却不足或冷却过度均会带来严重
的影响。 冷却不足,发动机过热,会破坏各运动机件原来正常的配合间隙,导致摩擦阻力增加,
磨损加剧,特别是活塞环和气缸壁之间的运动,严重时会发生烧蚀、卡滞,使发动机停转 或者发生“拉缸”现象,刮伤活塞或气缸,更严重时还会发生连杆打烂气缸体现象。也会 使润滑油变稀,运动机件间的油膜破坏,造成干摩擦或半干摩擦,加速磨损。同时会降低 发动机充气量,使发动机功率下降。
发动机过度冷却时,由于冷却水带走太多热量,使发动机功率下降、动力性能变差。 发动机过冷,气缸磨损加剧。同时,由于过冷,混合气形成的液体,容易进入曲轴箱使润 滑油变稀,影响润滑作用。
由此可见,使发动机工作温度保持在最适宜范围内的冷却系,是何其重要。一般地, 发动机最适宜的工作温度是其气缸盖处冷却水温度保持在 80℃~90℃,此时发动机的动力 性、经济性最好。 二、冷却系统设计的总体要求
a)具有足够的冷却能力,保证在所有工况下发动机出水温度低于所要求的许用值(一 般为 55°); b) 冷却系统的设计应保证散热器上水室的温度不超过 99 ℃。 c) 采用 105 kPa 压力盖,在不连续工况运行下,最高水温允许到 110 ℃,但一年中
水温达到和超过 99 ℃的时间不应超过 50 h。 d) 冷却液的膨胀容积应等于整个系统冷却液容量的 6 %。 e) 冷却系统必须用不低于 19 L/min 的速度加注冷却液,直至达到应有的冷却液平面,
以保证所有工作条件下气缸体水套内冷却液能保持正常的压力。 三、冷却系统的构成
液体冷却系主要由以下部件组成:散热器、风扇、风扇护风罩、皮带轮、风扇离合器、 水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。

轮船发动机冷却系统的介绍

汽车发动机冷却系统介绍 冷却系统的作用是及时散发发动机受热零件吸收的部分热量,保证发动机在最适宜的温度状态下工作。 发动机的冷却系有风冷和水冷之分。冷却液为冷却介质的称水冷系统,新上市轿车几乎都用水冷系统。 冷却系统的循环 在冷却系统中,有两个散热循环:一个是冷却发动机的主循环,另一个是车内暖风循环。 1、发动机冷却主循环: 主循环中包括了两种工作循环,即冷车循环和正常循环。发动机起动后,逐渐升温,冷却液的温度还无法打开节温器,此时冷却液只经过水泵在发动机内进行冷车循环,使发动机尽快地达到正常工作温度。随着发动机冷却液温度升到了节温器的开启温度,冷却循环开始正常循环。此时,冷却液从发动机流出,经过散热器散热后,再经水泵流回发动机。 2、暖风循环: 暖风循环同样是发动机的一个冷却循环。冷却液经过暖风加热芯,将冷却液的热量传入车内,然后流回发动机。暖风循环不受节温器的控制,只要打开暖气,该循环就开始工作。冷却系统零部件 在冷却系统中,冷却介质是冷却液,主要零部件有节温器、水泵、水泵皮带、散热器、散热风扇、水温感应塞、水温传感器、储液罐、暖风加热芯等。 1、冷却液 冷却液又称防冻液,是由防冻添加剂及防止金属产生锈蚀的添加剂和水组成的液体。它需要具有防冻性,防蚀性,热传导性和不变质的性能。现在经常使用乙二醇为主要成分,加有防腐蚀添加及水的防冻液。 2、水泵 水泵给冷却液加压,保证冷却液在冷却系中循环流动。水泵的故障通常为水封的损坏造成漏液,轴承毛病使转动不正常或出声。 3、散热器 发动机工作时,冷却液在散热器芯内流动,空气在散热器芯外流过,热冷却液由于向空气散热而变冷。散热器上还有一个重要的小零件,就是散热器盖,随着温度变化,冷却液会热胀冷缩,散热器器因冷却液的膨胀而内压增大,内压到一定时,散热器盖开启,冷却液流到储液罐;当温度降低,冷却液回流入散热器。 4、节温器 节温器在80℃后开启,95℃时开度最大。节温器不关闭,会使循环从开始就进入正常循环,这样就造成发动机不能尽快达到正常温度。节温器不能开启或开启不灵活,会使冷却液无法经过散热器循环,造成温度过高,或时高时正常。 5、散热风扇 正常行驶中,高速气流已足以散热,风扇一般不会在这时候工作;但在慢速和原地运行时,风扇就可能转动来助散热器散热。风扇的起动由水温感应器控制。 6、水温感应塞 水温感应器是一个温度开关,当发动机冷却液温度超出90℃以上,水温感应器将接通风扇电路。循环正常时,温度升高,如果风扇不转,就需要检查水温感应塞和风扇。

汽车发动机冷却系统的发展与现状

第2期 汽车发动机冷却系统的发展与现状 卢广峰,郭新民,孙运柱,尹克荣,牟晓玉 (1.山东农业大学机械电子工程学院,山东泰安271018;2.东营市公路局,山东东营257091; 3.山东农业大学林学院,山东泰安271018) [摘要]早期的发动机冷却系统虽能满足汽车的基本使用要求,但在满载或者恶劣的环境中容易出现问 题。在当今日益重视环境保护、提倡节能和舒适性的情况下,发动机的结构、性能和汽车整体性能都有很 大的发展,冷却系统正朝着轻型化、紧凑化和智能化的方向发展。为此,重点介绍了国内外汽车发动机冷 却系统的研究及发展情况,并做了简要分析。 [关键词]冷却系统;冷却介质;冷却机理 [中图分类号]U464.138[文献标识码]A[文章编号]1003─188X(2002)02─0129─03 1发动机冷却系统向智能化方向发展 发动机冷却系统是汽车的重要构件。汽车水冷发动机冷却系统主要由发动机冷却水套、冷却水泵、节温器及冷却风扇等部件组成,如图1所示。传统冷却系统采用的是冷却风扇或离合器式冷却风扇,两种风扇均由发动机曲轴通过皮带驱动,其冷却调节的灵敏度不高,功率损失也很大。为解决这个问题,就出现了自控电动冷却风扇。 最早的汽车电动冷却风扇出现在1981年3 月的美国专利文件中(专利号US4257554)。该专利首1985年,德国大众汽车公司在中国申请发明利(专利号CN851095/A)。该项专利在汽车散热 器,前方设置空气吸入口和辅助通口,加快了散热器的冷却速度,减少了电动风扇的电能消耗。但辅助通风口从下向上吸入冷却空气,很容易将道路上的尘土、杂物吸入,造成散热器脏污和堵塞,使散热器的散热效率降低。 1985年,德国大众汽车公司在中国申请发明专利(专利号CN851095/A)。该项专利在汽车散热器前,方设置空气吸入口和辅助通口,加快了散热器的冷却速度,减少了电动风扇的电能消耗。但辅助通风口从下向上吸入冷却空气,很容易将道路上的尘土、杂物吸入,造成散热器脏污和堵塞,使散热器 1989年,美国发明专利(专利号US4875521)的散热效率降低。次在载重汽车上采用电动单冷却风扇,风扇布置在散热器中部,叶片直径较大,驱动功率也较大。1992年,美国发明专利“机动车发动机的通风系统”(专利号US5269264)[4]将电动冷却风扇布置在散热器前方,根据发动机温度的高低,冷热气阀可以交替开闭。 韩国现代汽车公司生产的奏鸣曲(SONATA)牌轿车,用两个相对独立而又相互联系的电子控制的冷 却风扇—散热器冷却风扇和冷凝器冷却风扇,对冷却液温度和空调冷凝器温度进行多级联合控制。该系统可以根据冷却水温度和空调系统的工作状态,综合调节冷却能力[5],减少了在低温时发动机的传热损失、功率损失和过度磨损,抑制了发动机过热 的发生,降低了燃油消耗率。冷却风扇由传统控制方式转化为智能控制方式,散热风扇的冷却能力随着发动机散热的需要而自动精确地调节,提高了发动机的预热速度,使其始终保持最佳工作温度,而且避免了能源的大量浪费,其中减少风扇功率消耗90%,节省燃油10%。 1999年,法雷奥(Valeo)公司提出了在发动机上配置名为Themis(智能热调节系统)的新型电子调节系统,来改善发动机的冷却性能。它实现了水泵和缸体的分离,泵的流量和通风装置都通过发动机的ECU 来进行调 整和控制,便于水泵的安装,而且远离缸体这一热源后,水泵可以用塑料制成,既降低了成本,又减轻了水泵的重量,达到了水泵 的转速随水温的变化而变化,进一步降低传热损失和机械损失,降低了污染和油耗的目的。 1994年,台湾裕隆汽车公司申请专利(专利号94119819),提出了在冷却系统中装置可调转速电动水泵的设计。以反馈控制水泵冷却液流量,其主要是根据水温、节气门位置、车速等的传感器所传给ECU(微处理器)的信号,以反馈控制的方式,调整电动水泵的转速,使得引擎水套中流动的冷却液流量能随着不同的驾驶状况而作调整,保持发动 机的正常温度,以减少HC污染的排放。 [收稿日期]2001-12-17 [指导教师]山东农业大学郭新民教授 [作者简介]卢广锋(1977-),男,山东济南人,山东农业大学机械电子工程学院99级研究生,研究方向为内燃机冷却系统的智能控制。

发动机冷却系统

第9章发动机冷却系统 本章重点: 1、冷却系的功用、分类、组成 2、冷却系主要机件的结构和工作原理 本章难点: 1、强制循环式水冷系统中冷却液的循环路径 2、通过改变流经散热器的冷却液流量和改变空气流量来调节冷却系统冷却强度的方法 本章基本要求: 1、掌握冷却系的功用、分类、组成 2、掌握冷却系主要机件的结构和工作原理 3、了解通过改变流经散热器的冷却液流量和改变空气流量来调节冷却系统冷却强度的方法。 9.1 概述 一、冷却系统的功用与分类 发动机冷却系统的功用是使发动机在所有工况下都保持在适当的温度范围内。对水冷式发动机,气缸体水套中适宜的温度为80~90℃;对风冷式发动机,气缸壁适宜的温度为150~180℃。 发动机所采用的冷却方式分为水冷式和风冷式两种。以冷却液为冷却介质冷却发动机的高温零件,然后再将热量传给空气的冷却系统称为水冷系统;以空气为冷却介质的冷却系统称风冷系统。 二、强制循环式水冷却系统的组成及水循环路径 目前在汽车发动机上应用最普遍的强制循环式水冷却系统是利用水泵提高冷却液的压力,强制冷却液在冷却系统中循环流动。强制循环式水冷却系统的组成及水循环路径如图9.1所示。 通常,冷却液在冷却系统内的循环流动路线有两条,一条为小循环,另一条为大循环。所谓大循环是水温高时,冷却液全部经过散热器而进行的循环流动;而小循环就是水温低时,冷却液不经过散 热器而进行的循环流动,从而使水温很快升高。冷却液是进行大循环还是小循环,由节温器来控制。

在水冷系统中,不设水泵,仅利用冷却液的密度随温度而变化的性质,产生自然对流来实现冷却液循环的水冷却系统,称为自然循环式水冷系统。这种水冷却系统的循环强度小,不易保证发动机有足够的冷却强度,因而目前只有少数小排量的汽车发动机在使用。

发动机冷却液的循环路线.

汽车运用与维修专业教案 2015 /2016 第二学期 课程名称:发动机构造与拆装(一) 班级:交通运输103班组员:甘天祥马怀霞潘园园题目:第十章发动机冷却系 A :冷却系组成与冷却过程 第十一周 本讲教学目标: 知识点 ·冷却系的功用与分类 ·水冷系的组成 ·水冷系的冷却过程 能力点: ·正确理解冷却系的功用与分类·正确掌握水冷系的冷却过程本讲主要内容: ·冷却系的功用 ·冷却系的类型 ·水冷系的组成与水路循环 ·冷却液 本讲教学要求及适合专业: ·启发分析冷却系的功用 ·对比分析冷却系的类型 ·重点讲解水冷系的组成与水路循环 教学重点:·水冷系的组成与水路循环 教学难点:·水冷系的组成与水路循环 教学方法及手段:导入、启发分析、简要分析、对比分析、重点介绍、归纳小结、多媒体 上一讲回主页下一讲 本讲教学内容: 由发动机总体构造导入 发动机冷却系统 启发分析: 一、冷却系的功用与类型

简要分析: ·要求学生理解发动机过热、过冷的危害及发动机冷却系的功用1.冷却系的功用 (1)发动机过热、过冷的危害 1)发动机过热的危害 ·充气效率低,早燃和爆燃易发生,发动机功率下降 ·运动机件易损坏 ·润滑油粘度减小、润滑油膜易破裂加剧零件磨损 2)发动机过冷的危害 ·燃烧困难,功率低及油耗高 ·润滑油粘度增大,零件磨损 ·燃油凝结而流入曲轴箱,增加油耗,且机油变稀,从而导致功率下降,磨损增加 (2)冷却系功用 ·使发动机得到适度冷却,防止发动机过冷、过热 ·以保证发动机在正常的温度范围内工作 对比分析: ·要求学生理解风冷却系统组成、原理及特点 图10-1:风冷却系统2.冷却系的分类 (1)风冷却系统(图10-1) ·冷却介质是空气,利用气流使散热片的热量散到大气中 ·组成:风扇、导流罩、散热片、气缸导流罩、分流板。 ·工作情况:缸体、缸盖均布置了散热片,气缸、缸盖都是单独铸造,然后组装到一起,缸盖最热,采用铝合金铸造,且散热片比较长,为了加强冷却,保证冷却均匀,装有导流罩、分流板 ·分类:采用一个风扇时,装在发动机前方中间位置;采用两个风扇时,分别装在左右两列汽缸前端。 ·特点:结构简单、质量较小、升温较快、经济性好。难以调节,消耗功率大、工作燥声大。

相关文档
最新文档