高中数学数列解答题(含答案)

高中数学数列解答题(含答案)
高中数学数列解答题(含答案)

高中数学数列解答题(含答案) 数列解答题

1、设各项均为正数的等比数列设

(1)求数列的通项公式;

(2)若

(3)设,是否存在关于n的整式,使对一切不小于2的整数n都成立?若存在,求出,若不存在,说明理由。

2、设数列{an}的各项都是正数,且对任意nN*,都有a13+a23+a33+……+an3=sn2,其中sn为数列的前n项和. (Ⅰ)求证:an2=2sn―an;

(Ⅱ)求数列{an}的通项公式;

(Ⅲ)设bn=3n+(―1)n-12an(为非零整数,nN*),试确定的值,使得对任意的

nN*,都有bn+1bn成立.

解:(Ⅰ)由已知,当n=1时,a13=s12又∵a10a1=1 (1)

当n2时,a13+a23+a33+……+an3=sn2…………①

a13+a23+a33+……+

an-13=sn-12…………②………………2分

①―②得:an3=(sn―sn-1)(sn+sn-1)=an(sn+

sn-1)∵an0an2=sn+sn-1

又sn-1=sn―anan2=2sn―an…………3分

当n=1时,a1=1也适合上式an2=2sn―an…………4分(Ⅱ)由(1)知,an2=2sn―an………③当n2时,

an-12=2sn-1―an-1……④

③―④得:an2―an-12=2(sn―sn-1)+an-1―an=an+

an-1…………6分

∵an+an-10an―a n-1=1数列{an}是等差数列,

an=n…………8分

(Ⅲ)∵an=nbn=3n+(―1)n-12n.要使bn+1bn恒成立,则

bn+1―bn=3n+1+

(―1)n2n+1―3n―(―1)n-12n=23n―3(―1)n-10恒成立,即(―1)n-1(32)n-1恒成立…………9分,

(1)当n为奇数时,即(32)n-1恒成立,又(32)n-1的最小值为1,1;…………10分

(2)当n为偶数时,即―(32)n-1恒成立,又―(32)n-1的最大值为―32,―32……11分

即―321,又为非零整数,=―1能使得对任意的nN*,都有bn+1bn成立.…12分

3、已知各项均为正数的数列的首项,且,数列是等差数列,首项为,公差为2,其中.

(1)求数列的通项公式;

(2)求数列的前项和.

解:(1)由题可得:,数列是以1为首项,2为公比的等

比数列。

.……………………………………6分

(2)由题知:,

.…………12分

4、已知数列的前n项和为,点在曲线上且.

(Ⅰ)求数列的通项公式;

(Ⅱ)求证:.

解:(1)

,数列是等差数列,首项公差d=4

(2)

5、设数列的前项和为,对一切,点都在函数的图象上.

(Ⅰ)求的值,猜想的表达式,并用数学归纳法证明;(Ⅱ)将数列依次按1项、2项、3项、4项循环地分为(),(,),(,,),(,,,);(),(,),(,,),(,,,);(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;

思路点拨:(本题将函数与数列知识交汇在一起,考查了观察、归纳、猜想、用数学归纳法证明的方法,考查了等差数列、等差数列的求和公式,考查了同学们观察问题、解决问题的能力。(1)将点代入函数中,通过整理得到与的关

系,则可求;(2)通过观察发现是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80构成等差数列,利用等差数列求和公式可求.。解:(Ⅰ)因为点在函数的图象上,

故,所以.------------------------1分

令,得,所以;

令,得,所以;

令,得,所以.

由此猜想:.…………………………………………4分

用数学归纳法证明如下:

①当时,有上面的求解知,猜想成立.-------------5分

②假设时猜想成立,即成立,

则当时,注意到,

故,.

两式相减,得,所以.

由归纳假设得,,

故.

这说明时,猜想也成立.

由①②知,对一切,成立.……………………………………8分

(Ⅱ)因为(),所以数列依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);

(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以.又=22,所以=2019.………………14分

归纳总结:由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法。证明的关键是根据已知条件和假设寻找与或与间的关系,使命题得证。

6、已知数列满足,,且.(N*)

(I)求数列的通项公式;

(II)若= 试问数列中是否存在三项能按某种顺序构成等差数列?

若存在,求出满足条件的等差数列,若不存在;说明理由. 解:(I)由,知,

当为偶数时,;当为奇数时,;……………2分

由,得,即,

所以,

即数列是以为首项,为公比的等比数列

所以,,,

故(N*)…………………5分

(II)由(I)知,

则对于任意的, .………………7分

假设数列中存在三项()成等差数列,

则,即只能有成立,

所以,………………9分

所以,,

因为,所以,

所以是偶数,是奇数,而偶数与奇数不可能相等,因此数列中任意三项不可能成等差数列.…………………12分

7、已知数列满足:,,.

(Ⅰ)证明数列为等比数列,并求数列的通项公式;(Ⅱ)设,数列的前项和为,求证:;

(Ⅲ)设,求的最大值.

证明:(Ⅰ)∵,------------2分

又,等比数列,且公比为,----------3分

,解得;------------4分

(Ⅱ),------------5分

当时,------------6分

------------8分

(Ⅲ)----------9分

令------------10分

------------11分

------------12分

所以:

故.-------14分

8、已知等差数列的前项和为,a2=4,S5=35.

(Ⅰ)求数列的前项和;

(Ⅱ)若数列满足,求数列的前n项和

解:(Ⅰ)设数列的首项为a1,公差为d.

则,5分

前项和.7分

且b1=e.8分

当n2时,

为定值

数列构成首项为e,公比为e3的等比数列

.13分

数列的前n项的和是.

9、已知等差数列{an}的公差大于0,且是方程的两根,数列{ }的前n项和为,且

(1)求数列{ }、{ }的通项公式;

(2)记,求证:

方法二:数学归纳法

(1)当n=1时,左边=1,右边=1,不等式成立。7分(2)假设n=k结论成立,即:

8分

那么当n=k+1时,

所以当n=k+1时,结论成立。11分

综合以上(1)(2)不等式对于任意的成立。12分

(其它证法以例给分)

10、已知数列的前项和为,若, 。

(1)令,是否存在正整数,使得对一切正整数,总有,若存在,求出的最小值;若不存在,说明理由。

(2)令, 的前项和为,求证:。

解:(1)令,,即

即数列是以2为首项、为公差的等差数列,…………………2分

,解得n4,………………………………………………4分

最大,m ,m的最小值为4.……………………………6分(2)∵

………………9分. 3…………………………………………………………………

…12分.

另解

............9分. 3。 (12)

分.

11、已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n3),记

(n3).

(1)求证数列{bn}为等差数列,并求其通项公式;

(2)设,数列{ }的前n项和为Sn,求证:nn+1.

解:(1)方法一当n3时,因①,

故②.……………………………………2分

②-①,得bn-1-bn-2= = =1,为常数,

所以,数列{bn}为等差数列.…………………………………………………………5分因b1= =4,故bn=n+3.……………………………………8分方法二当n3时,a1a2…an=1+an+1,a1a2…anan+1=1+an+2,将上两式相除并变形,得.……………………………………2分

于是,当nN*时,

又a4=a1a2a3-1=7,故bn=n+3(nN*).

所以数列{bn}为等差数列,且

bn=n+3.………………………………………………8分(2)方法一因,…………………12分

故.

所以,………15分

即n<Sn<

n+1.………………………………………………………………………16分

方法二因,故1,.……………………10分

故,于是.……………………………………16分

12、已知数列是各项均不为的等差数列,公差为,为其前项和,且满足

,.数列满足,为数列的前n项和.

(Ⅰ)求、和;

(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围;(Ⅲ)是否存在正整数,使得,,成等比数列?若存在,求出所有的值;若不存在,请说明理由.

解:(Ⅰ)解法一:在中,令,,

得即……………………(2分)

解得,,…………(3分)

.……(5分)

解法二:是等差数列,

.……(2分)

由,得,

又,,则.……(3分)

( 求法同法一)

(Ⅱ)①当为偶数时,要使不等式恒成立,即需不等式恒成立.……(6分)

,等号在时取得.

此时需满足.……(7分)

②当为奇数时,要使不等式恒成立,即需不等式恒成立.……(8分)

是随的增大而增大,时取得最小值.

此时需满足.……(9分)

综合①、②可得的取值范围是.……(10分)

若成等比数列,则,即.…(11分)

(法一)由,可得,

即,……(12分)

.……(13分)

又,且,所以,此时.

因此,当且仅当,时,数列中的成等比数列.……(14分)

(法二)因为,故,即,

,(以下同上).……(13分)

13、已知各项均为正数的等比数列的公比为,且。

(1)在数列中是否存在三项,使其成等差数列?说明理由;(2)若,且对任意正整数,仍是该数列中的某一项。(ⅰ)求公比;

(ⅱ)若,,,试用表示.

⑴由条件知:,,,

所以数列是递减数列,若有,,成等差数列,

则中项不可能是(最大),也不可能是(最小), (2)

若,(*)

由, ,知(*)式不成立,

故,,不可能成等差数列.……………………………4分⑵(i)方法一:,…6分

由知,,

且…,…………………………8分

所以,即,

所以,…………………………………………………10分

方法二:设,则,……………6分

由知,即,………………8分

以下同方法一.……………………………………………………10分

(ii) , (12)

方法一:,

所以.………………………………16分

方法二:

所以,所以,

累加得,

所以

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。所以.………………………………………16分

一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其

实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。1、解:设数列的公比为q(q0)

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且

会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。

高中数学数列测试题附答案与解析

第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+… +f (5)+f (6)的值为 . 12.已知等比数列{a n }中,

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

人教版高中数学必修5《数列》练习题(有答案)

必修5数列 2.等差数列{}n a 中,()46810129111120,3 a a a a a a a ++++=-则的值为 A .14 B .15 C .16 D . 17 3.等差数列{}n a 中,12910S S a =>,,则前项的和最大. 解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>, ,又 4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为. 解:∵ ,,, ,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为10010=S , 6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,. ①求出公差d 的范围; ②指出1221S S S ,, , 中哪一个值最大,并说明理由. 解:①)(6)(610312112a a a a S + =+=36(27)0a d =+> ② 12671377666()013000 S a a S a a a S =+>=<∴<>∴, 最大。 1. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于() A .15 B .30 C .31 D .64 794121215a a a a a +=+∴= A 2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-==. 54

3. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则. 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+= 1 1 10201930 123050 21019502 n a d a a a a n a d d +==??==∴∴=+??+==??,解方程组 5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分 钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇?②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇? 故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(2 1 -++= n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列? ?? ?? ? +11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由. 12122(1)(1)() 2n n n n n n n a n a a a a a ++++∴+=++∴=+∴数列{}n a 为等差数列. ②1)1(311-+==+n n a n na a ,

(word完整版)高中数学等差数列练习题

一、 过关练习: 1、在等差数列{}n a 中,2,365-==a a ,则1054a a a Λ++= 2、已知数列{}n a 中,() *+∈+==N n a a a n n 3 111,111,则50a = 3、在等差数列{}n a 中,,0,019181=+>a a a 则{}n a 的前n 项和n S 中最大的是 4、设数列{}n a 的通项为()*∈-=N n n a n 72,则1521a a a +++Λ= 二、 典例赏析: 例1、在等差数列{}n a 中,前n 项和记为n S ,已知50,302010==a a (1)求通项n a ;(2)若242=n S ,求n 例2、在等差数列 {}n a 中, (1)941,0S S a =>,求n S 取最大值时,n 的值; (2)1241,15S S a ==,求n S 的最大值。 例3、已知数列{}n a 满足()22,21 2 1≥-==-n a a a a a a n n ,其中a 是不为零的常数,令a a b n n -=1 (1) 求证:数列{}n b 是等差数列 (2)求数列{}n a 的通项公式 三、强化训练: 1、等差数列{}n a 中,40,19552==+S a a ,则1a = 2、等差数列{}n a 的前m 项和为30,前2m 项和为100,则前3m 项和为 3、等差数列{}n a 中,,4,84111073=-=-+a a a a a 记n n a a a S +++=Λ21,则13S 等于 4、已知等差数列{}n a 的前n 项和为n S ,且10,10010010==S S ,则110S = 。 5、在ABC ?中,已知A 、B 、C 成等差数列,求2tan 2tan 32tan 2tan C A C A ++的值 作业 A 组: 1、 在a 和b 两个数之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为 2、 已知方程 ()()02222=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则n m -等于 B 组: 3、 已知一元二次方程()()()02=-+-+-b a c x a c b x c b a 有两个相等的实根, 求证: c b a 1,1,1成等差数列 4、 已知数列 {}n a 的通项公式是254-=n a n ,求数列{}n a 的前n 项和

高中数学《数列》测试题

11会计5班《数列》数学测试卷2012.4 一、选择题(2'1836'?=) 1.观察数列1,8,27,x ,125,216,… 则x 的值为( ) A .36 B .81 C .64 D .121 2.已知数列12a =,12n n a a +=+,则4a 的值为( ) A .12 B .6 C .10 D .8 3.数列1,3,7,15,… 的通项公式n a 等于( ) A .1 2 n - B .21n - C .2n D .21n + 4.等差数列{n a }中,16a =,418a =,则公差d 为( ) A .4 B .2 C .—3 D .3 5.128是数列2,4,8,16,… 的第( )项 A .8 B .5 C .7 D .6 6.等差数列{n a }中,12a =,327S =,则3a 的值为( ) A .16 B .20 C .11 D .7 7.在等差数列中,第100项是48,公差是 1 3 ,首项是( ) A .5 B .10 C .15 D .20 8.在等差数列{n a }中,1234525a a a a a ++++=,则3a 为( ) A .3 B .4 C .5 D .6 9.已知数列0,0,0,0,… 则它是( ) A .等差数列非等比数列 B .等比数列非等差数列 C .等差数列又等比数列 D .非等差数列也非等比数列 10.在等比数列{n a }中,4520a a ?=,则27a a ?为( ) A .10 B .15 C .20 D .25 班级 姓名 学号 11.等比数列1,2,4,… 的第5项到第11项的和等于( ) A .2030 B .2033 C .2032 D .2031 12.等差数列中,第1项是 —8,第20项是106,则第20项是( ) A .980 B .720 C .360 D .590 13.在等比数列中,12a =,3q =,则4S =( ) A .18 B .80 C .—18 D .—80 14.三个正数成等差数列,其和为9,它们依次加上1,3,13后成为等比数列,则这三个数为( ) A .6,3,0 B .1,3,5 C .5,3,1 D .0,3,6 15.在等比数列中,第5项是 —1,第8项是 — 1 8 ,第13项是( ) A .13 B .1256- C .78- D .1128 - 16.若a ,b , c 成等比数列,则函数2 ()f x ax bx c =++的图像与x 轴的交点个数为( ) A .2 B .0 C .1 D .不确定 17.某农场计划第一年产量为80万斤,以后每年比前一年多种20%,第五年产量约为( ) A .199万斤 B .595万斤 C .144万斤 D .166万斤 18.把若干个苹果放到8个箱子中,每个箱子不能不装,要使每个箱子中所装的苹果个数互不相同,至少需要苹果( ) A .35个 B .36个 C .37个 D .38个 二、填空题(3'824'?=) 19.数列1,32- ,54,78-,916 ,… 的通项公式是 20.数列2,7,14,23,( ),47,… 并写出数列的通项公式

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高二数学数列练习题(含答案)

高二《数列》专题 1.n S 与n a 的关系:1 1(1)(1) n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a = 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

(3)累乘法( n n n c a a =+1型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足?? ?≤≥+00 1 m m a a 的项数m使得m S 取最大值. (2)当 0,01>

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列测试题(免费下载)

数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

高中数学数列练习题及答案解析

高中数学数列练习题及答案解析 第二章数列 1.{an}是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n等于. A.667B.668C.669D.670 2.在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=. A.33B.7C.84D.189 3.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则. A.a1a8>a4a5B.a1a8<a4a5C.a1+a8<a4+a5D.a1a8=a4a5 4.已知方程=0的四个根组成一个首项为 |m-n|等于. A.1B.313C.D.8421的等差数列,则 5.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为. A.81 B.120 C.1D.192 6.若数列{an}是等差数列,首项a1>0,a003+a004>0,a003·a004<0,则使前n项和Sn>0成立的最大自然数n是. A.005B.006C.007D.008

7.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=. A.-4B.-6C.-8D.-10 8.设Sn是等差数列{an}的前n项和,若 A.1B.-1 C.2D.1 a2?a1的值是. b2a5S5=,则9=. a3S599.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则 A.11111B.-C.-或D.2222 210.在等差数列{an}中,an≠0,an-1-an+an+1=0,若S2n-1=38,则n=. 第 1 页共页 A.38B.20 C.10D.9 二、填空题 11.设f=1 2?x,利用课本中推导等差数列前n项和公式的方法,可求得f+f+…+f+…+ f+f的值为12.已知等比数列{an}中, 若a3·a4·a5=8,则a2·a3·a4·a5·a6=. 若a1+a2=324,a3+a4=36,则a5+a6=. 若S4=2,S8=6,则a17+a18+a19+a20=. 82713.在和之间插入三个数,使这五个数成等比数列,

精选高中数学数列分类典型试题及答案

【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1) 2 1231,314,3413a a a =∴=+==+=. (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++ ++= , 所以证得 31 2n n a -=. 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =, 又112233 ,,a b a b a b +++成等比数列,求 n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)21 12322...28n n a a a a n -++++=左边相当于是数列 {} 1 2n n a -前n 项和的形式, 可以联想到已知 n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.

(完整版)高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2 = 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 3 22111=== a S b , ∴ 21 2 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 212)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3n n n a (1)(2)n n =≥,1 2)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ΛΛ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n Λ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n Λ 例5.A 例6. 解:1324321-+++++=n n nx x x x S ΛΛ①()n n n nx x n x x x xS +-++++=-132132ΛΛ② ①-②()n n n nx x x x S x -++++=--1211ΛΛ, 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111∴()() 21111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++=ΛΛ 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+2732354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918=== a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列 ∴ b 1b 3=b 22,∴ b 23=81,∴ b 2=21,∴ 1312178 14 b b b b ? +=????=??,∴ 13218b b =???=??或 12182b b ?=?? ?=? ∴ 13212()24n n n b --== 或 1251 428n n n b --=?= ∵ 1 ()2n a n b =,∴ 12 log n n a b =,∴ a n =2n -3 或 a n =-2n +5 例20. 2392 n n +

高中数学必修5 数列基础题测试卷

高一数学必修五第二章 数列 测试题 一.选择题(每小题5分,共60分) 1、已知数列{n a }的通项公式)(43*2 N n n n a n ∈--=,则4a 等于 ( ). A 、1 B 、 2 C 、 0 D 、 3 2、在等比数列{n a }中,已知91 1=a ,95=a ,则=3a ( ) A 、1 B 、3 C 、1± D 、±3 3、等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A 、81 B 、120 C 、168 D 、192 4、数列1,3,6,10,…的一个通项公式是( ) A 、n a =n 2-(n-1) B 、n a =n 2 -1 C 、n a =2)1(+n n D 、n a =2) 1(-n n 5、已知等差数列{}n a 中,288a a +=,则该数列前9项和9S 等于( ) A 、18 B 、27 C 、36 D 、45 6、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a = ( ) A 、8 B 、7 C 、6 D 、5 7、已知数列3,3,15,…,)12(3-n ,那么9是数列的 ( ) A 、第12项 B 、第13项 C 、第14项 D 、第15项 8、等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和是( ) A 、130 B 、170 C 、210 D 、260 9、设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于( ) A、12 B、24 C、36 D、48 10、已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A 、5 B 、4 C 、3 D 、2 11、已知数列 2 、 6 、10 、14 、3 2 …那么7 2 是这个数列的第几项( ) A 、23 B 、24 C 、19 D 、25

高考数学数列解答题训练(LSLWKJ)

高考数学数列解答题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式;(2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列;(Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ?? ??-?? 是等差数列,并写出{}n a 的一个通项。 6.数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N (Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求数列{}n na 的前n 项和n T 7.22,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n .

高中数学数列试题精选以及详细答案

高中数学数列试题精选以及详细答案

高中数学数列试题精选 【例1】 求出下列各数列的一个通项公式 (1)14(2)23,,,,,…,,,,…38516732964418635863(3)(4)12--1318115124 2928252,,,,…,,,,… 【例2】 求出下列各数列的一个通项公式. (1)2,0,2,0,2,… (2)10000,,,,,,,, (131517) (3)7,77,777,7777,77777,…(4)0.2,0.22,0.222,0.2222,0.22222,… 【例3】 已知数列,,,,…则是这个数列的第25221125 几项. 【例4】 已知下面各数列{a n }的前n 项和S n 的公式,求数列的通项公式. (1)S n =2n 2-3n (2)S n =n 2+1

(3)S n =2n +3 (4)S n =(-1)n+1·n 【例5】 a =a 1n(n 1)(n 2)a 1n n 11已知+≥,=,-- (1)写出数列的前5项; (2)求a n . 【例6】 数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2.(1)求a 3+a 5;(2)256225 是此数列中的项吗? 【例7】 已知数a n =(a 2-1)(n 3-2n)(a=≠±1)是递增数列,试确定a 的取值范围. 高中数学数列试题精选以及详细答案 【例1】 求出下列各数列的一个通项公式 (1)14(2)23,,,,,…,,,,…38516732964418635863(3)(4)12--1318115124 2928252,,,,…,,,,… 解 (1)所给出数列前5项的分子组成

(word完整版)高中数学必修五数列测试题

必修五阶段测试二(第二章 数列) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·山西朔州期末)在等比数列{a n }中,公比q =-2,且a 3a 7=4a 4,则a 8等于( ) A .16 B .32 C .-16 D .-32 2.已知数列{a n }的通项公式a n =????? 3n +1(n 为奇数),2n -2(n 为偶数),则a 2·a 3等于( ) A .8 B .20 C .28 D .30 3.已知等差数列{a n }和等比数列{b n }满足a 3=b 3,2b 3-b 2b 4=0,则数列{a n }的前5项和S 5为( ) A .5 B .10 C .20 D .40 4.(2017·山西忻州一中期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .102 B.9658 C.9178 D .108 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 6.等差数列{a n }中,a 10<0, a 11>0, 且a 11>|a 10|, S n 是前n 项的和,则( ) A .S 1, S 2, S 3, …, S 10都小于零,S 11,S 12,S 13,…都大于零 B .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 C .S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D .S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4 D .不确定 8.(2017·莆田六中期末)设{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6和S 7均为S n 的最大值 9.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是前n 项和,则( ) A .S 4<S 5 B .S 6<S 5 C .S 4=S 5 D .S 6=S 5 10.(2017·西安庆安中学月考)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ∈N *,n ≥2),则a 6等于( )

高中数学数列解题方法总结

高中数学数列解题方法总结 类型一:)(1n f a a n n +=+()(n f 可以求和)???? →解决方法 累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列 的通项公式。 解析:121(2)n n a a n n --=-≥Q ∴213243113 521 n n a a a a a a a a n --=??-=?? -=???-=-??M 上述1n -个等式相加可得: 211n a a n -=- 2n a n ∴= 类型二:1()n n a f n a +=? (()f n 可以求积)???? →解决方法 累积法 例2、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。 解析:1232 112321 n n n n n n n a a a a a a a a a a a a -----= ????L 123211143n n n n n n --=????+-L 2 1 n = + 又1a Q 也满足上式;21 n a n ∴=+ * ()n N ∈ 类型三:1(n n a Aa B +=+≠其中A,B 为常数A 0,1)???? →解决方法 待定常数法 可将其转化为1()n n a t A a t ++=+,其中1 B t A =-,则数列{}n a t +为公比等于A 的等比数列,然后求n a 即可。 例3 在数列{}n a 中, 11a =,当2n ≥时,有132n n a a -=+,求数列{}n a 的通项公式。 解析:设()13n n a t a t -+=+,则132n n a a t -=+ 1t ∴=,于是()1131n n a a -+=+ {}1n a ∴+是以112a +=为首项,以3为公比的等比数列。 1231n n a -∴=?- 类型四:() 110n n n Aa Ba Ca +-++=??≠;其中A,B,C 为常数,且A B C 0 可将其转化为()()()112n n n n A a a a a n αβα+-+=+≥-----(*)的形式,列出方程组 A B C αββα?-=??-?=?,解出,;αβ还原到(*)式,则数列{}1n n a a α++是以21a a α+为首项, A β 为公比的等比数列,然后再结合其它方法,就可以求出n a 。 例4、 在数列{}n a 中, 12a =,24a =,且1132n n n a a a +-=-()2n ≥求数列{}n a 的通项公式。 解析:令11(),(2)n n n n a a a a n αβα+-+=+≥

相关文档
最新文档