高中数学数列专题练习(精编版)

高中数学数列专题练习(精编版)
高中数学数列专题练习(精编版)

高中数学数列专题练习(精编版)

1. 已知数列{}()n a n N *∈是等比数列,且130,2,8.n a a a >==

(1)求数列{}n a 的通项公式; (2)求证:

11111321<++++n

a a a a ; (3)设1log 22+=n n a

b ,求数列{}n b 的前100项和.

2.数列{a n }中,18a =,42a =,且满足21n n a a ++-=常数C (1)求常数C 和数列的通项公式; (2)设201220||||||T a a a =+++, (3) 12||||||n n T a a a =+++,n N +∈

3. 已知数列n n 2,n a =2n 1,n ???为奇数;

-为偶数; , 求2n S

4 .已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且

11=a .

(1) 求证: 数列?

??

????-n n a 231是等比数列;

(2) 求数列{}n b 的前n 项和n S .

5.某种汽车购车费用10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,…,各年的维修费平均数组成等差数列,问这种汽车使用多少年报废最合算(即使用多少年时,年平均费用最少)?

6. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少5

1,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加4

1.

(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;

(2)至少经过几年,旅游业的总收入才能超过总投入?

7. 在等比数列{a n }(n ∈N*)中,已知a 1>1,q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0.

(1)求数列{a n }、{b n }的通项公式a n 、b n ;

(2)若数列{b n }的前n 项和为S n ,试比较S n 与a n 的大小.

8. 已知数列{a n }的前n 项和为S n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1, 点P (b n ,b n+1)在直线x -y +2=0上。 (1)求a 1和a 2的值;

(2)求数列{a n },{b n }的通项a n 和b n ;

(3)设c n =a n ·b n ,求数列{c n }的前n 项和T n 。

9. 已知数列{}n a 的前n 项和为11,4n S a =且111

2

n n n S S a --=++,数列{}n b 满足

1119

4b =-且13n n b b n --=(2)n n N *≥∈且. (1)求{}n a 的通项公式;

(2)求证:数列{}n n b a -为等比数列; (3)求{}n b 前n 项和的最小值.

10. 已知等差数列{}a n 的前9项和为153.

(1)求5a ;

(2)若,82=a ,从数列{}a n 中,依次取出第二项、第四项、第八项,……,第2n 项,按原来的顺序组成一个新的数列{}c n ,求数列{}c n 的前n 项和S n .

11.已知曲线C :x y e =(其中e 为自然对数的底数)在点()1,P e 处的切线与x 轴交于点1Q ,过点1Q 作x 轴的垂线交曲线C 于点1P ,曲线C 在点1P 处的切线与x 轴交于点2Q ,过点2Q 作x 轴的垂线交曲线C 于点2P ,……,依次下去得到一系列点1P 、2P 、……、n P ,设点n P 的坐标为(),n n x y (*n ∈N ).

(Ⅰ)分别求n x 与n y 的表达式; (Ⅱ)求1n

i i i x y =∑.

12. 在数列{}

)0,(2)2(,2111>∈-++==*++λλλλN n a a ,a a n n n n n 中 (1) 求证:数列2

{

()}n n

n

a λλ

-是等差数列;

(2) 求数列{}n a 的前n 项和n S ;

13. 在等差数列{}n a 中,公差d 0≠,且56a =, (1)求46a a +的值.

(2)当33a =时,在数列{}n a 中是否存在一项m a (m 正整数),使得 3a ,

5a ,m a 成等比数列,若存在,求m 的值;若不存在,说明理由.

(3)若自然数123t n , n , n , , n , , ??????(t 为正整数)满足5< 1n <2n < ??? <

t n

14. 已知二次函数2()f x ax bx =+满足条件:①(0)(1)f f =; ②()f x 的最小值为18

-. (Ⅰ)求函数()f x 的解析式;

(Ⅱ)设数列{}n a 的前n 项积为n T , 且()

45f n n T ??

= ???

, 求数列{}n a 的通项公式;

(Ⅲ) 在(Ⅱ)的条件下, 若5()n f a 是n b 与n a 的等差中项, 试问数列{}n b 中第几项的

值最小? 求出这个最小值.

15. 已知函数f (x )=x 2-4,设曲线y =f (x )在点(x n ,f (x n ))处的切线与x 轴的交点为(x n+1, 0)(n ∈N +), (Ⅰ)用x n 表示x n+1;

(Ⅱ)若x 1=4,记a n =lg

2

2

n n x x +-,证明数列{n a }成等比数列,并求数列{n x }的通项公式;

(Ⅲ)若x 1=4,b n =x n -2,T n 是数列{b n }的前n 项和,证明T n <3.

数列专题练习参考答案

1. 解:(1)设等比数列{}n a 的公比为q .

则由等比数列的通项公式11n n a a q -=得3131a a q -=,28

4,2

q ∴== 又()0,22n a q >∴=L L 分

∴数列{}n a 的通项公式是()12223n n n a -=?=分L L .

()

123231111211111112221222212

n

n n a a a a ++++-?

=++++=

-L L

()1

1,2

n =-

6分L L ()1

1,117,2n

n ≥∴-<分Q L L ()1231111

18.n

a a a a ∴

++++<分L L L ()()()(){}()2132log 21219,212112,,

n n n n n b n b b n n b -=+=+-=+--+=????∴由分又常数数列是首项为3,公差为2的等差数列11分L L Q L L

∴数列{}n b 的前100项和是()10010099

1003210200122

S ?=?+

?=分L L

2.解:(1)C 2102n a n ==-,-

125612567

12512567

20520(2)|||||||

|| =(+a )

=2()(++a ) =2S S =260

n n n T a a a a a a a a a a a a a a a a a a =+++++++

+++++++

++|---

(3)2

2

9 , 5

409, 5

n n n n T n n n ?≤?=?+>??--

12321352124621

3

5

2-1

2

()()2(14)(-1 2222)(3711)34

142

2(41)

23

n n n n n n n S a a a a a a a a a a a a n n n n n =+++???=+++???++++???=???++++???=++?=++-3.解:-)

(+++--

4 .解:证法1: ∵1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,

∴??

?==+++.

,

211n n n n n n a a b a a

由n n n a a 21=++,得???

???--=?-++n n n n a a 23123111,

故数列?

??

????-n n a 231是首项为31321=-a ,公比为1-的等比数列.

证法2: ∵1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,

∴??

?==+++.

,

211n n n n n n a a b a a

∵n

n n n n

n n n n a a a a 2

3

12

312231231111?-?--=?-?-+++1231231-=?-??? ???--=n n n n a a , 故数列?

??

????-n n a 231是首项为31321=-a ,公比为1-的等比数列.

(2)解: 由(1)得()1131231--?=?-n n n a , 即()[]

n

n n a 1231--=.

∴()[]()[]

1

1112129

1+++--?--==n n n n n n n a a b

()[]

1229

112---=

+n

n . ∴n n a a a a S ++++= 321 ()()()()[]{}

n

n 11122223

1232-++-+--++++=

()??

?

???----=+21122311n n .

2220.20.40.60.2(1) 0.20.10.1 (42)

100.90.10.1 100.1.........................................6 n

n n

n n n n n n n +++??????++=?

=+++=++5.解:维修费总费用=分=+分210 100.1 10

0.11

21 3............................................9 .............................10n n n n n n

=++=++≥+=平均费用当时,汽车报废最合算=分分

6. 解:(1)第1年投入为800万元,第2年投入为800×(1-5

1)万元,… 第n 年投入为800×(1-5

1

)n -1万元,所以,n 年内的总投入为

a n =800+800×(1-51)+…+800×(1-51)n -1=∑

=n k 1

800×(1-51

)k -1

=4000×[1-(5

4)n ]

第1年旅游业收入为400万元,第2年旅游业收入为400×(1+4

1),…,第

n 年旅游业收入400×(1+4

1

)n -1万元.所以,n 年内的旅游业总收入为

b n =400+400×(1+41)+…+400×(1+41)k -1=∑

=n k 1

400×(45

)k -1.

=1600×[(4

5)n

-1]

(2)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即: 1600×[(4

5)n -1]-4000×[1-(5

4)n ]>0,令x =(5

4)n ,

代入上式得:5x 2

-7x +2>0.解此不等式,得x <52

,或x >1(舍去).即(5

4)n

<5

2,

由此得n ≥5.

∴至少经过5年,旅游业的总收入才能超过总投入.

7.

111213515561355132131323322522111(1),,1,0,{}, log , 01,1,0.

60,6,log 6,264,1 64,8.81,. 16.

2

n n n n n n n a a q a q a b a b b b a a b b b b b b b a a a a a a a a q q q a a q a a a q --=>>∴==>==++==+==∴===∴=∴===∴===∴=7.解∶由题设有数列是单调数列又及知必有即由及得即即由得1152141

16()2log 5. (6)

2

()(9)

(2)(1),5,.22

9,0,0,;

12,47;168,;

111

345678,91010974,421,248

n n n n n n n n n n n n n n n n n b a n n b b n n b n S n S a a S n S a a S n S a a S --====-+-=-==>∴>===∴>===∴<;分由知当≥时≤当或时或或当时、、、、、、、、、、、、、、、.

,129,; 345678,.(13)

n n n n n n n a S n a S =>=<综上所述当或或≥时有当时有分、、、、、

8. 解:(1)∵a n 是S n 与2的等差中项 ∴S n =2a n -2 ∴a 1=S 1=2a 1-2,解得a 1=2 a 1+a 2=S 2=2a 2-2,解得a 2=4 (3)

(2)∵S n =2a n -2,S n -1=2a n -1-2, 又S n —S n -1=a n ,*),2(N n n ∈≥ ∴a n =2a n -2a n -1, ∵a n ≠0,

*),2(21

N n n a a n n

∈≥=-,即数列{a n }是等比树立∵a 1=2,∴a n =2n ∵点P (b n ,b n +1)在直线x-y+2=0上,∴b n -b n +1+2=0,

∴b n +1-b n =2,即数列{b n }是等差数列,又b 1=1,∴b n =2n-1, ···8分

(3)∵c n =(2n -1)2n ∴T n =a 1b 1+ a 2b 2+····a n b n =1×2+3×22+5×23+····+(2n -1)2n , ∴2T n =1×22+3×23+····+(2n -3)2n +(2n -1)2n +1 因此:-T n =1×2+(2×22+2×23+···+2×2n )-(2n -1)2n +1,

即:-T n =1×2+(23+24+····+2n +1)-(2n -1)2n +1, ∴T n =(2n -3)2n +1+6 ··14

9. 解: (1)由112221n n n S S a --=++得1221n n a a -=+, 11

2

n n a a --=

……2分 ∴111

(1)24

n a a n d n =+-=

- ……………………………………4分 (2)∵13n n b b n --=,∴111

33n n b b n -=+,

∴1111111111113()3

3

2

4

3

6

4

3

2

4

n n n n n b a b n n b n b n ----=+-+=-+=-+;

11111113

(1)2424

n n n n b a b n b n -----=--+=-+

∴由上面两式得11

13

n n n n b a b a ---=-,又111191304

4

b a -=--=-

∴数列{}n n b a -是以-30为首项,1

3

为公比的等比数列.…………………8分

(3)由(2)得1130()3n n n b a --=-?,∴111111

30()30()3243

n n n n b a n --=-?=--?

121111111

30()(1)30()243243

n n n n b b n n ----=

--?--++? =221111130()(1)20()02

3

3

2

3

n n --+?-=+?> ,∴{}n b 是递增数列 ………11分

当n =1时, 11194b =-

<0;当n =2时, 23104b =-<0;当n =3时, 3510

43b =-<0;当n =4时, 4710

49

b =->0,所以,从第4项起的各项均大于0,故前3项之和

最小.

且31101(135)3010414

3

12

S =++---=-…………………………13分

10. 解:(1)15392292)(955

919==?=+=a a a a S

175=∴a (5)

(2)设数列 {}a n 的公差为d ,则???==∴??

?=+==+=3

517

48

11512d a d a a d a a 23+=∴n a n ………9分

S a a a a n n n n n =++++=+++++=++2482132482232.......()26n - (12)

11.解:(Ⅰ)∵x y e '=,

∴曲线C :x y e =在点()1,P e 处的切线方程为()1y e e x -=-,即y ex =. 此切线与x 轴的交点1Q 的坐标为()0,0,

∴点1P 的坐标为()0,1. ……2分

∵点n P 的坐标为(),n n x y (*n ∈N ),

∴曲线C :x y e =在点n P (),n n x y 处的切线方程为()n n x x n y e e x x -=-, ……4分

令0y =,得点1n Q +的横坐标为11n n x x +=-.

∴数列{}n x 是以0为首项,1-为公差的等差数列.

∴1n x n =-,1n n y e -=.(*n ∈N ) ……8分

(Ⅱ)∴1122331......... n

i i n n i x y x y x y x y x y ==++++∑

1234101232122112

234 ........(1) (1)234 ........(1) (2)

(1)(2)(1)1........(1)1(1) [1](1)(1n n n n n

n S e e e e n e eS e e e e n e e S e e e n e e n e S e e ==∴=++++∴=------------------------------得到:--------)

e ……14分

12. 解:(1)由1*1(2)2,(,0)n n n n a a n N λλλλ++=++-∈>,可得

11

1

22

()()1n n n n n n

a a λλ

λλ

+++-=-+

所以2

{

()}n n

n

a λλ

-是首项为0,公差为1的等差数列.

(2)解:因为

2

()1n n

n

a n λλ

-=-即*(1)2,()n n n a n n N λ=-+∈

设2312(2)(1)n n n T n n λλλλ-=++???+-+-……①

3412(2)(1)n n n T n n λλλλλ+=++???+-+-……② 当

1λ≠时,①-②得

2341(1)(1)n n n T n λλλλλλ+-=+++???+--

211(1)(1)1n n n λλλλ

-+-=---

211212

22

(1)(1)(1)1(1)n n n n n n n n T λλλλλλλλλ++++----+=-=---

13. 解:(1)在等差数列{}n a 中,公差d 0≠,且56a =,

则546462a a a , a a 12=+∴+= …………………… 3分 (2)在等差数列{}n a 中,公差d 0≠,且56a =,33a =

则()11233

014621n a d 3 d= , a ,a n a d 2+=??=∴=-?+=? n N *∈

又 235m a a a = 则 ()3631m 3

a , 12=m , m=9

2

=∴-∴……… 7分

(3)在等差数列{}n a 中,公差d 0≠,且56a =,3a 2=

则1124461n a d 2 d=2 , a 2 ,a 2n ,n N a d *+=??=-∴=-∈?+=?

又因为公比536

32

a q , a =

==首项32a =,123t t n a +∴=? 又因为 112442332t t t n t t t a n , 2n , n ++=-∴-=?=+ n N *∈………… 12分

14.解: (1) 由题知: 200148a b a b a ?

?+=??>???-=-

??

, 解得1212a b ?=????=-?? , 故211

()22

f x x x =-. ………2分

(2) 22

12

45n n n n T a a a -??

== ?

??

,

2(1)(1)

2

112

14(2)5n n n n T a a a n -----??==≥ ?

??

,

1

14(2)5n n n n T a n T --??

∴==≥ ?

??

,

又111a T ==满足上式. 所以1

4()5n n a n N -*??

=∈ ?

??

……………7分

(3) 若5()n f a 是n b 与n a 的等差中项, 则25()n n n f a b a ?=+,

从而21110()22n n n n a a b a -=+, 得2239

565()55

n n n n b a a a =-=--.

因为1

4()5n n a n N -*??=∈ ?

??是n 的减函数, 所以

当3

5n a ≥

, 即3()n n N *≤∈时, n b 随n 的增大而减小, 此时最小值为3b ; 当3

5n a <, 即4()n n N *≥∈时, n b 随n 的增大而增大, 此时最小值为4b .

又3433

55

a a -

<-, 所以34b b <, 即数列{}n b 中3b 最小, 且2

22

3442245655125b ??????

=-=-?? ? ?????????

. …………12分

15. 解:(Ⅰ)由题可得'()2f x x =.

所以曲线()y f x =在点(,())n n x f x 处的切线方程是:()'()()n n n y f x f x x x -=-. 即2

(4)2()n

n n y x x x x --=-. 令0y =,得2

1(4)2()n n n n x x x x +--=-. 即2

142n

n n x x x ++=. 显然0n x ≠,∴12

2n n n

x x x +=

+. (Ⅱ)由122n n n x x x +=+,知21(2)22222n n n n n x x x x x +++=++=,同理2

1(2)22n n n

x x x +--=.

故21122()22n n n n x x x x ++++=--.从而1122

lg 2lg 22

n n n n x x x x ++++=--,即12n n a a +=.所以,

数列{}n a 成等比数列.故111111222lg 2lg 32n n n n x a a x ---+===-.即1

2l g 2l g 32

n n n x x -+=-. 从而

1

22

32n n n x x -+=-所以1

1222(31)31

n n n x --+=- (Ⅲ)由(Ⅱ)知1

1

222(31)3

1

n n n x --+=

-,

∴1242031n n n b x -=-=>-∴1

11112122223111113313133

n n n n n n b b ----+-==<≤=-+

当1n =时,显然1123T b ==<.当1n >时,21121111

()()333

n n n n b b b b ---<<<<

∴12n n T b b b =++

+11111

1()3

3n b b b -<++

+11[1()]

3113

n b -=-133()33n =-?<.

综上,3n T <(*)n N ∈.

高中数学专题-集合的概念及其基本运算

高中数学专题-集合的概念及其基本运算 【考纲考点剖析】 考 点 考纲内容 5年统计 分析预测 1.集合间的 基本关系 1.了解集合、元素的含义及其关系。 2.理解全集、空集、子集的含义, 及集合之间的包含、相等关系。 3.掌握集合的表示法 (列举法、描述法、Venn 图)。 1.集合交、并、补的运算是考查的热点; 2.集合间的基本关系 很少涉及; 3.题型:选择题 4.备考重点: (1) 集合的交并补的混合运算; (2) 以其他知识为载体考查集合之间的关系; (3) 简单不等式的解法. 2.集合的基 本运算 1.会求简单集合的并集、交集。 2.理解补集的含义,且会求补集。 【知识清单】 1.元素与集合 (1)集合元素的特性:确定性、互异性、无序性. (2)集合与元素的关系:若a 属于集合A ,记作a A ∈;若b 不属于集合A ,记作b A ?. (3)集合的表示方法:列举法、描述法、图示法. (4)常见数集及其符号表示 数集 自然数 集 正整数 集 整数集 有理数 集 实数集 符号 N N *或 N + Z Q R 2.集合间的基本关系 (1)子集:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合

A 包含于集合 B ,或集合B 包含集合A ,也说集合A 是集合B 的子集。记为A B ?或B A ?. (2)真子集:对于两个集合A 与B ,如果A B ?,且集合B 中至少有一个元素不属于集合A ,则称集合A 是集合B 的真子集。记为A B ?≠. (3)空集是任何集合的子集, 空集是任何非空集合的真子集. (4)若一个集合含有n 个元素,则子集个数为2n 个,真子集个数为21n -. 3.集合的运算 (1)三种基本运算的概念及表示 名称 交集 并集 补集 数学 语言 A∩B={x|x ∈A,且x ∈B} A ∪B={x|x ∈A,或x ∈B} C U A={x|x ∈ U,且x ?A} 图形 语言 (2)三种运算的常见性质 A A A =I , A ?=?I , A B B A =I I , A A A =U , A A ?=U , A B B A =U U . (C A)A U U C =,U C U =?,U C U ?=. A B A A B =??I , A B A B A =??U , ()U U U C A B C A C B =U I , ()U U U C A B C A C B =I U . 【重点难点突破】 考点1 集合的概念 【1-1】【全国卷II 理】已知集合,则中元素的 个数为 A. 9 B. 8 C. 5 D. 4 【答案】A

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

新高中数学《集合》专项测试 (1145)

高中数学《集合》测试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为 (A)3 (B)4 (C)5 (D)6(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对)) 2.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A (A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4](2006年高考浙江理) 3.设集合{1,2}A =,则满足{1,2,3}A B ?=的集合B 的个数是( ) (A)1 (B)3 (C)4 (D)8(2006辽宁理) 4.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于( ) A.{x |x <-2} B.{x |x >3} C.{x |-1<x <2} D.{x |2<x <3}(2004全国Ⅱ1) 5.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为 ( ) A .5 B .4 C .3 D .2(2012江西理) C 6.设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )= A .(1,4) B .(3,4) C.(1,3) D .(1,2)∪(3,4) 7.若关于x 的一元二次不等式20ax bx c ++<的解集为实数集R ,则a 、b 、c 应满足的条件为-----------------------------------------------------------------------( ) (A ) a >0,b 2―4ac >0 (B ) a >0,b 2 ―4ac <0 (C ) a <0,b 2―4ac >0 (D ) a <0,b 2―4ac <0 二、填空题 8.已知全集U ={1,2,3,4,5,6,7,8,9,10},集合{}321,,a a a A =,则满足

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高一数学集合练习题及答案(人教版)

一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤

9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题(每题3分,共18分) 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|2 0x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人. 三、解答题(每题10分,共40分) 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式

高一数学必修一《集合》专题复习

高一数学必修一《集合》专题复习 一.集合基本概念及运算 1.集合{}1,2,3的真子集的个数为( ) A .5 B .6 C .7 D .8 2.已知{}{}1,2,3,2,4A B ==,定义{}|A B x x A x B -=∈?且,则A B -= A. {}1,2,3 B. {}2,4 C. {}1,3 D. {}2 3.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=, 那么集合N M ?为 ( ) A. 3,1x y ==- B. {}(,)|31x y x y ==-或 C. (3,1)- D. {(3,1)}- 4.已知集合2{|2,}M y y x x ==-+∈R ,集合}{|2,02x N y y x ==≤≤,则 ()M N =R e( ) A .[]1,2 B .(]2,4 C .[)1,2 D .[)2,4 5.已知{}{}222,21x A y y x x B y y ==-++==-,则A B = _________。 6、已知R x ∈ ,集合{}{}11231322+--=+-=x ,x ,x B ,x ,x ,A 如果{}3A ?B =-,求x 的值和集合A?B . 7. 已知{}23,(5,)A x a x a B =≤≤+=+∞,若,A B =? 则实数a 的取值范围为 ▲ . 8.已知集合,,且,求实数 的取值范围。 9.设U R =,集合{}2|320A x x x =++=,{} 2|(1)0B x x m x m =+++=; 若A B ?,求m 的值。 10.已知集合{}{}{}|28,|16,|A x x B x x C x x a =≤≤=<<=>,U R =. (I)求A B , U C A B ;(II)若A C ≠? ,求实数a 的取值范围.

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高一数学集合练习题专题训练(含答案)

高一数学集合练习题专题训练 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(共__小题) 1.下列写法: (1){0}∈{1,2,3};(2)??{0};(3){0,1,2}?{1,2,0};(4)0∈? 其中错误写法的个数为() A.1B.2C.3D.4 2.已知集合M={a|a=+,k∈Z},N={a|a=+,k∈Z},则() A.M=N B.M?N C.N?M D.M∩N=? 3.下列各式正确的是() A.2?{x|x≤10}B.{2}?{x|x≤10}

C.?∈{x|x≤10}D.??{x|x≤10} 4.下列各式:①1∈{0,1,2};②??{0,1,2};③{1}∈{0,1,2004};④{0,1,2}?{0,1,2};⑤{0,1,2}={2,0,1},其中错误的个数是() A.1个B.2个C.3个D.4个 5.设A、B是两个集合,对于A?B,下列说法正确的是() A.存在x0∈A,使x0∈B B.B?A一定不成立 C.B不可能为空集D.x0∈A是x0∈B的充分条件 6.设U为全集,集合M、N?U,若M∪N=N,则() A.?U M?(?U N)B.M?(?U N)C.(?U M)?(?U N)D.M?(?U N) 7.设集合A={(x,y)|-=1},B={(x,y)|y=},则A∩B的子集的个数是()A.8B.4C.2D.1 8.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}的子集个数是() A.5B.8C.16D.32 9.下列四个集合中,是空集的是() A.{0}B.{x|x>8,且x<5} C.{x∈N|x2-1=0}D.{x|x>4} 10.已知集合A={x|<-1},B={x|-1<x<0},则() A.A B B.B A C.A=B D.A∩B=? 11.已知集合A={1,2,3},则B={x-y|x∈A,y∈A}中的元素个数为()

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

高中数学专题-集合间的关系与基本运算

1.1集合间的关系与基本运算 命题角度1集合的表示、集合之间的关系 高考真题体验·对方向 1.(全国Ⅰ·1)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为 () A.5 B.4 C.3 D.2 答案 D 解析由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14.所以A∩B={8,14}.故选D. 2.(全国Ⅰ·1)已知集合A={x|x2-x-2<0},B={x|-10},N=,则() A.M?N B.N?M C.M=N D.M∪N=R 答案 C 解析集合M={x|x2-x>0}={x|x>1或x<0},N=,两个集合相等.故选C. 3.(山东济宁一模)已知集合A={x∈Z|x2+3x<0},则满足条件B?A的集合B的个数为() A.2 B.3 C.4 D.8 答案 C 解析由集合A={x∈Z|x2+3x<0}={-1,-2},由B?A,所以集合B的个数为22=4,故选C. 4.(2018河北衡水中学七调)设集合A={x||x|<2},B={x|x>a},全集U=R,若A?(?U B),则有() A.a=0 B.a≤2 C.a≥2 D.a<2

高中数学数列求和

第四节数列求和 [备考方向要明了] 考什么怎么考 熟练掌握等差、等比数 列的前n项和公式. 1.以选择题或填空题的形式考查可转化为等差或等比数列的数列 求和问题,如2012年新课标全国T16等. 2.以解答题的形式考查利用错位相减法、裂项相消法或分组求和法 等求数列的前n项和,如2012年江西T16,湖北T18等. [归纳·知识整合] 数列求和的常用方法 1.公式法 直接利用等差数列、等比数列的前n项和公式求和 (1)等差数列的前n项和公式: S n= n(a1+a n) 2=na1+ n(n-1) 2d; (2)等比数列的前n项和公式: S n= ?? ? ??na1,q=1, a1-a n q 1-q = a1(1-q n) 1-q ,q≠1. 2.倒序相加法 如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[探究] 1.应用裂项相消法求和的前提条件是什么? 提示:应用裂项相消法求和的前提条件是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后抵消. 2.利用裂项相消法求和时应注意哪些问题?

提示:(1)在把通项裂开后,是否恰好等于相应的两项之差; (2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项. 5.分组求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [自测·牛刀小试] 1. 11×4+14×7+17×10+…+1 (3n -2)(3n +1) 等于( ) A.n 3n +1 B.3n 3n +1 C .1-1 n +1 D .3-1 3n +1 解析:选A ∵1(3n -2)(3n +1)=13????1 3n -2-13n +1, ∴ 11×4+14×7+17×10+…+1 (3n -2)(3n +1) =13?? ? ???1-14+????14-17+???? 17-110+…+ ??????13n -2-13n +1=13????1-13n +1=n 3n +1 . 2.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =321 64,则项数n 等于( ) A .13 B .10 C .9 D .6 解析:选D ∵a n =2n -12n =1-1 2n , ∴S n =????1-12+????1-122+…+????1-1 2n =n -????12+12 2+ (12)

高中数学专项训练(集合真题版本)

2019年专项训练 (集合真题版本)(含答案) 一、选择题(本大题共17小题,共85分) 1.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=() A. B. C. D. 2.已知集合A={1,2,3},B={x|x2<9},则A∩B=() A. 0,1,2, B. 0,1, C. 2, D. 3.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B等于() A. B. C. 1,2, D. 0,1,2, 4.已知集合A={x|x<1},B={x|3x<1},则() A. B. C. D. 5.设集合A={0,2,4,6,8,10},B={4,8},则?A B=() A. B. C. 6, D. 4,6,8, 6.设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=() A. B. C. D. 7.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=() A. B. C. D. 8.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(?U P) ∪Q=() A. B. C. 2,4, D. 2,3,4, 9.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=() A. B. C. D. 10.设函数的定义域为A,函数的定义域为B,则 A. B. C. D. 11.设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则?U(A∪B)= () A. B. C. 3,4, D. 2,4, 12.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=() A. B. 或 C. D. 或 13.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(?R Q)=()

相关文档
最新文档