无限大导体表面孔缝耦合电磁能量分析

实验一-交叉耦合滤波器设计与仿真

实验一交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S参数 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N)表示各谐振腔的回路电流,Mij表示第i个谐振腔与第k个谐振腔之间的互耦合系数(i,j=1,2,…,N,且i≠j)。在这里取ω0=1,即各谐振回路的电感L和电容C均取单位值。Mkk(k=1,2,3,…,N)表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示:

e R 2 这个电路的回路方程可以写为 ?? ? ??? ? ??? ? ??????????????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,3231321,22312 11,11312110000M Λ ΛM M ΛM M M ΛΛΛM 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j 其中,??? ? ? -=+ =ωωωω11j j j s 一般来讲,频率都归一成1,即ω≈ω0=1,则 ij ij ij M j M j jM 0ωω≈≈ 其中E 为电压矩阵,I 为电流矩阵,Z 为阻抗矩阵, R M U Z ++=00j s U0是N ×N 阶单位矩阵。M 是耦合矩阵,它是一个N ×N 阶方阵,形式如下:

基于车路耦合系统下的路面结构行为仿真分析.pdf

基于车路耦合系统下的沥青路面结构行为仿真分析 1 研究背景及意义 研究目的: 建立车路耦合系统力学分析模型,从车路整体系统来研究沥青路面结构在行车荷载作用下 的力学行为响应,为路面结构各设计参数优化设计和路面材料设计提供理论指导。 基本概念解释: 车路耦合系统动力学研究的基本思想是:将车辆系统和道路系统视为一个相互影响、相互作用、相互耦合的整体大系统,将轮胎与路面相互作用关系作为连接两个子系统的纽带, 综合考虑车辆在阻尼道路结构上的动态运行行为、车轮与路面的动态相互作用特性和车辆 对路面结构的动力作用规律,在此基础上,系统研究路面结构在运动荷载下的力学响应情况。 轮胎对路面的作用关系是车路耦合系统的核心问题! 车辆系统和道路系统之间的动态反馈作用均由轮胎与路面作用关系的动态变化来实现,具体是通过轮胎与路面的振动变形进而引起轮胎与路面的接触变形及接触几何状态变化而 产生作用的。 两个关键问题: (1)建立初步的车路耦合系统力学分析模型【研究平台和基本工具】 (2)沥青路面结构行为仿真分析的研究思路【分析目的、分析参数、分析内容】 研究出发点: 1 由于车辆自身的振动作用以及路面平整度的不规则变化,当车辆行驶时,车轮实际上会以一定的频率和振幅在路面上振动,而这种振动与路面平整度及行车参数有一定关系,而且反过来又会影响对路面施加的作用力,从而在道路和车辆之间产生耦合作用,也就是说,在车辆行驶过程中,车辆外加荷载与路面结构参数之间是相互影响和相互作用的。 2 室内研究所采用的静力加载模式和简单的动力加载模式与车辆行驶过程中对路面结构 的实际作用力之间的差异非常大,由行车荷载动力特性所造成的路面疲劳开裂现象难以用 静力学模式和简单的动力学模式去描述,归根到底是因为对车辆动荷载的模拟明显不能考 虑路面特征(结构及材料参数、平整度等)对行车的影响 3 公路领域对车路耦合系统下路面结构动力学问题的分析研究较少,行业内很少从车路整体系统的角度来考虑路面各个设计参数(路面结构形式、路面材料特性、路面平整度等表 面性状等)对车辆行驶特性的影响,以及路面结构在随机变化的行车荷载作用下的力学响 应特征

多物理场耦合技术的研究进展与发展趋势10页

多物理场耦合技术的研究进展与发展趋势 一、数值计算概述 现代科学技术问题通常有三种研究方法:理论推导、科学实验和科学计算。科学技术可以帮助科学家揭示用物质实验手段尚不能表现的科学奥秘和 科学规律,同时,它也是工程科学家的研究成果——理论、方法和科学数据的归总,成为推动工程和社会进步的最新生产力。数值计算方法则是科学计算核心。 数值计算技术诞生于上个世纪五十年代初,Bruce, G. H.和Peaceman, D. W.模拟了一维气相不稳定径向和线形流。受当时计算机能力及解法限制,数值计算技术只是初步应用于求解一维问题。随着计算机技术和计算方法的发展,复杂的工程问题也可以采用离散化的数值计算方法并借助计算机得到满足工程要求的数值解。 数值计算可理解为用计算机来做实验,比如某一特定LED(发光二极管)工作过程中内部电流密度、温度及热应力问题,通过计算并显示其计算结果。我们可以看到LED 内部电流密度是否存在拥挤现象,内部温度分布的各个细节,以及由于温度的变化引起的应力集中是否存在,它的位置、大小及其随时间的变化等。 我们可以将数值计算分为以下几个步骤:

首先要建立反映问题本质的数学模型。具体说就是要建立反映问题中各物理量之间的偏微分方程及其相应的定解条件,这是数值计算的出发点。比如牛顿型流体流动的数学模型就是著名的纳维—斯托克斯方程及其相应的定解条件。 数学模型建立之后,接下来就是求解这个模型。需要寻求高效、高准确度的计算方法。求解科学问题就是求解偏微分方程。 在确定了计算方法后,就可以开始编制程序并进行计算。实践表明这一部分工作是整个工作的主体,会占据整个工程的绝大部分时间。随着软件技术的发展,出现了应用于各领域的商业软件,运用这些软件使得这部分工作得到大大简化,缩短了模拟过程的周期。这样,科研人员能够将自己的时间和精力更多的投入到自己研究的问题上,而不是编写计算代码。 通过上述描述,用数值计算方法解决科学计算问题的一般过程可以用如下流程来形象地描述: 实际问题→数学模型→计算方法→计算程序→计算机计算→结果分析 在计算工作完成后,需要处理大量的计算结果数据。计算结果的图形后处理也是一项十分重要的工作。现在很多模拟工具已经能将图形编辑成连贯动画进行播放。 数值计算具有很多优点,但是它也有自己的局限性:

adams和simulink联合仿真的案例分析

相信大家在联合仿真ADAMS和SIMULINK时都会遇到很多的问题:ADAMS/contro中的例子ball_beam通过联合仿真,更容易理解adams和simulink的联合仿真精髓。小球在一脉冲力的作用下沿着横梁滚动,此时梁的两端受力不平衡,梁的一段倾斜,为了使得小球不掉下横梁,在横梁上施加一个绕Z轴的力矩,横梁达到一定的角度之后逆向转动,然后小球就在这个作用力矩的控制下来回滚动而不掉下横梁!其中控制力矩在整个过程中是个动态变化的,力矩Torque_In是通过位移Position 和横梁转角Beam_Angle确定,这个是在simulink中通过框图完成的。 首先我申明一下我用的是adams2003和matlab6.5 以下我说明一下我的操作步骤: 1、把control中的ball_beam文件copy到另外一个文件夹下,同时设置adams和matlab的默认路径即为ball_beam文件夹,这样可以省略很多不必要的麻烦! 2、用aview打开ball_beam.cmd文件,先试试仿真一下,可以看到小球会在脉冲的作用下滚动,仿真时间最好大于8s 3、载入control模块,点击tools|plugin manager在control框选定。 4、点击control|plant export在file prefix下输入你的文件名,这个可以随便的,我输入的是myball,在plant input点击右键点

击guess选定tmp_MDI_PINPUT,在tmp_MDI_PINPUT中就是输入力矩Torque_In,只有一个输入参数;同样在plant output 中点击右键guess选定tmp_MDI_POUTPUT,这是模型的输出变量横梁转角Beam_Angle和小球与横梁中心轴的距离position。control package选择matlab,type是non_linear,初始化分析选择no,然后按ok!此时m文件已经生成了! 5、打开matalb,设置你的工作路径在ball_beam文件夹上,键入myball,马上有 %%% INFO : ADAMS plant actuators names : 1 Torque_In %%% INFO : ADAMS plant sensors names : 1 Beam_Angle 2 Position 出现 6、再键入adams_sys,弹出一个控制框图,这时可以新建一个mdl文件,将adams_sub拖入你新建的mdl框图中,其实再这里有一个偷懒的办法,就是在matlab中打开ball_beam.mdl文件,然后把他的那个adams_sub用你的刚产生的这个代替,然后另存为my_ball.mdl!

电磁波对金属屏蔽体的孔缝耦合研究

xxxx硕士生课程论文 高等电磁场理论 电磁波对金属屏蔽体的孔缝耦合研究(2014—2015学年上学期) 姓名:xxx 学号: xxx 所在单位: xxx 专业:检测技术与自动化装置

摘要 在当今日益复杂的电磁环境下,为了电磁兼容性的需要以及防护电子设备可能受到的微波毁伤,屏蔽技术广泛应用。 电磁脉冲主要通过传导耦合、辐射耦合作用于屏蔽机箱。其耦合途径主要包括“前门耦合”与“后门耦合”。“前门耦合”是指电磁脉冲通过目标上的天线及传输线等耦合进系统内,以干扰或毁伤其前端电子设备;“后门耦合”是指电磁脉冲通过目标上的缝隙或孔洞耦合进系统,干扰或毁伤电子设备中的微电子器件和集成电路。 通过“前门”耦合的能量有可能被系统的保护器件阻隔,而不会对系统产生干扰或毁伤。而屏蔽机箱上各种功用的孔缝是必不可少的,电磁脉冲通过“后门”耦合进入屏蔽机箱,并对其内的电子元器件进行干扰或毁伤则是不可避免的,也是电磁脉冲进入屏蔽机箱的重要途径之一。 本文研究了在电磁兼容设计中,电磁干扰的产生以及电磁屏蔽的基本原理,讨论了应用时域有限差分法对孔缝耦合电磁场数值的计算方法,并研究了金属屏蔽中孔缝微波耦合的特性。 关键字:电磁兼容、孔缝耦合、屏蔽效能、时域差分法

1 绪论 1.1背景与意义 随着用电设备的增加,空间电磁能量逐年增加,人类生存环境具有浓厚的电磁环境内涵。在这种复杂的电磁环境中,如何减少相互间的电磁干扰,使各种设备正常运转,是一个亟待解决的问题;另外,恶略的电磁环境还会对人类及生态产生不良影响。电磁兼容正是为解决这类问题而迅速发展起来的学科。可以说电磁兼容是人类社会文明发展产生的无法避免的“副产品”。 研究金属屏蔽腔体的孔缝微波耦合问题,一方面是由于电子设备要满足电磁兼容性的要求,一般都要加装金属外壳以防护外界可能的电磁干扰,另一方面由于电子战技术的发展,各种微波武器的研制开发,使得电子设备在战争环境下极易受到高能电磁波的攻击,而由于通风、散热、各种输入输出接口的需要,金属外壳上不可避免地要开有各种孔缝,因此研究微波对孔缝的耦合规律能够在一定程度上对如何进行电磁防护起到指导作用,具有一定的研究价值。 而在军事装备方面,由于现代战争呈现出了许多与传统战争不同的特点。信息在战争中的作用被无线放大,由此得来的信息战以及电子战就在现代战争中被大量的使用,此外核武器和各种电子炸弹在战争中的使用,使电磁环境更加复杂,使电子设备受到更加严重的威胁。核爆炸在空间产生的瞬变电磁场就是核电磁脉冲。核电磁脉冲比雷电的电磁场强度要大几百倍。频率宽,几乎包括所有长短波,危害范围广,覆盖半径可达数百到上千公里,对无线通信等有着巨大的威胁。 电磁干扰以及电磁攻击对设备产生影响主要有两种耦合方式:“前门耦合”,是指能量通过目标上的天线、传输线等媒质线性耦合到其接受和发射系统内,以破坏其前端电子设备;“后门耦合”,是指通过目标上的缝隙或孔洞耦合进入系统,干扰其电子设备,使其不能正常工作或烧毁电子设备中的微电子器件和电路。对于电子设备而言,电磁脉冲对半导体器件的伤害非常大,因此我们需要采取必要的措施来减小甚至消除电磁脉冲对电子信息设备的干扰。 抑制电磁骚扰的方法有很多,比如在空间上使电子设备远离骚扰源、在骚扰强时关闭易损设备、使用和骚扰源频率不同的波段、在电路中加入电容等滤波器件、对电子线路合理布局布线等,而屏蔽是其中操作简单但是效果显著的方法,因此在实际使用中,常常把电子设备安装在金属外壳之中,切断电磁骚扰的传输途径,以达到电磁兼容的要求。然而金属外壳内的电子系统总要和外界进行交流,比如用于接收和发射信息的天线,用于接入电源和传输数据的电缆,辐射而来的

某电机多物理场耦合分析

某电机多物理场耦合分析 1、概述 为了验证ANSYS耦合场分析功能在电机设计中的应用,采用ANSYS的多物理场耦合分析功能,对某机车牵引电机(包括定子、转子)的耦合场分析作了如下工作: 1建立起电机用于电磁、流体、热、结构分析的统一的几何模型和有限元计算模型; 2首先进行电机磁场分析,计算获取了电机设计中所关心的磁场和磁密分布、矩角特性、电感等参数,并获得电机的电磁发热、电磁力和电磁力矩分布; 3利用电机磁场分析得到的热生成,进行电机的流体-热耦合分析,考核电机的通风冷却性能,得到电机的温度分布; 4使用电机磁场分析得到的电磁力和电磁力矩分布、以及温度分布,进行结构分析,得到考虑温度和电磁影响下的电机的应力和变形情况。同时对电机定子、以及定转子耦合情况进行振动模态分析。 所有分析相互间的载荷和边界条件的传递均由程序自动完成。 2、引言 众所周知,在电机设计与研究中,要涉及到电磁、绝缘、发热、通风冷却和力学等多种多样的问题,是一个典型的综合性研究学科,各学科之间是相互关联、相互影响的,是典型的多场耦合问题学科。由于多场耦合问题的研究十分复杂和困难,传统的电机分析研究方法,是把这些相互关联的问题分离,按各学科分类进行独立的研究。ANSYS是世界上唯一真正能够在同一个界面下,使用统一的数据库进行完善的电磁场、流场、温度场、结构(应力场)耦合分析的商业软件。应用ANSYS的这种多场耦合能力可以很方便地研究电机的多场耦合问题。 为了实际考核ANSYS的电磁、热、流体(通风冷却)、结构这些多物理场及其耦合分析在电机设计和研究中的应用能力,ANSYS公司成都办事处对某牵引电机进行了多物理场耦合研究分析。研究分析的内容为: 运用ANSYS软件建立起电机(包括定子和转子)用于电磁、流体、热、结构分析的统一的几何模型和有限元计算模型;首先进行电机磁场分析,计算获取电机设计中所关心的磁场和磁密分布、矩角特性、电感等参数,并获得电机的电

功能强大的多物理场耦合分析软件

功能强大的多物理场耦合分析软件 COMSOL Multiphysics(原FEMLAB) COMSOL Multiphysics是一个专业有限元数值分析软件包,是对基于偏微分方程的多物理场模型进行建模和仿真计算的交互式开发环境系统。它为所有科学和工程领域内物理过程的建模和仿真提供了一种崭新的技术! COMSOL Multiphysics的多物理场问题一次轻松解决,让您一次就能轻松拥有超强功能、超低价格的CAE 软件。 COMSOL Multiphysics是专为描述和模拟各种物理现象而开发的基于有限元分析的软件包,它使得建立各种物理现象的数学模型并进行数值模拟计算变得更为容易和可能。在使用COMSOL Multiphysics软件的过程中,您可以自己建立普通的偏微分方程形式,也可以使用COMSOL Multiphysics提供的特定的物理应用模型。这些特定的物理应用模型包括预先设定好的模块和在一些特殊应用领域内已经通过微分方程和变量建立起来的用 户界面。此外,COMSOL Multiphysics软件通过把任意数目的这种物理应用模块整合成对一个单一问题的描述,使得建立耦合问题变得更为容易。

模型库是整个COMSOL Multiphysics软件包的最特色部分,它囊括了各种工程领域内的所有模型。每一个模型都包含了非常完善的相关文档如工程技术背景、结果讨论和一步一步建立模型的每个过程描述。由于这些模型文件都已经包括了网格划分和运行计算的信息,所以您可以自己打开这些文件并试着进行相应的各种后处理操作和显示。另外,您可以应用、扩充或者修改这些工程模型使它们符合您的个人需求。因此,进入这些模型库就给您提供了建立自己模型的基础和起点。而事实上,这些模型库也会给您建立自己的模型提供宝贵的参考。 能够独立于MATLAB运算的COMSOL Multiphysics软件系统为进一步改进软件提供了一个很好的基础和平台。COMSOL Multiphysics提供了与市场上主流的CAD软件进行接口的直接界面。在已有的三角形、四面体网格划分模型基础上,又新增加了四边形、六面体和棱柱体网格模型。为了更好地进行自动求解运算,COMSOL Multiphysics还提供了强大的运算求解能力。 COMSOL Multiphysics软件系统具备了在Linux、Solaris和HP-UX等系统下的64位处理能力,尤其是可以在AMD64/Linux平台上进行64位计算。在一个系统上加入64位处理能力意味着COMSOL Multiphysics所能处理问题的规模比原来提高了至少10到100倍。 ?通过COMSOL Multiphysics的多物理场功能,您可以选择不同的模块,同时模拟任意物理场组合进行耦合分析; ?通过使用相应模块直接定义物理参数创建模型; ?使用基于偏微分方程的模型可以自由定义用户自己的方程; COMSOL Multiphysics 的特点在于: 可以针对超大型的工程问题进行高效的求解并快速产生精确的结果。通过简便的图形用户界面,用户可以选择不同的方式来描述他们的问题。COMSOL Multiphysics 软件一个特殊的功能在于它的偏微分方程建模求解,这也正是它为何可以连接并求解任意物理场耦合方程的原因。所有上述特征和许多其它的特征使得COMSOL Multiphysics 对于科学研究、产品开发和教学成为一个强大的建模求解环境。 1、COMSOL Multiphysics应用领域: 声学;生物科学;化学反应;弥散;电磁学;流体动力学;燃料电池;地球科学;热传导;微电机系统;微波工程;光学;光子学;多孔介质;量子力学;无线电频率部件;半导体设备;结构力学;传动现象;波的传播等。 2、COMSOL Multiphysics应用模块:

刚柔耦合仿真分析流程及要点

本文主要介绍使用SolidWorks、HyperMesh、ANSYS和ADAMS软件进行刚柔耦合动力学分析的主要步骤。 一、几何建模 在SolidWorks中建立几何模型,将模型调整到合适的姿态,保存。此模型的姿态不要改动,否则以后的MNF文件导入到ADAMS中装配起来麻烦。 二、ADAMS动力学仿真分析 将模型导入到ADAMS中进行动力学仿真分析。 为了方便三维模型的建立,SolidWorks中是将每个零件单独进行建模然后在装配模块中进行装配。这一特点导致三维模型导入到ADAMS软件后,每一个零件都是一个独立的part,由于工作装置三维模型比较复杂,因此part数目也就相应的比较多,这样就对仿真分析的进行产生不利影响。下面总结一下从三维建模软件SolidWorks导入到ADAMS中进行机构动力学仿真的要点。(1)首先在SolidWorks中得到装配体。(2)分析该装配体中,到底有几个构件。(3)分别隐藏其他构件而只保留一个构件,并把该构件导出为*.x_t 格式文件。(4)在ADAMS中依次导入各个*.x_t 文件,并注意是用part的形式导入的。(5)对各个构件重命名,并给定颜色,设置其质量属性。(6)对于产生相对运动的地方,建议先在此处创建一个marker,以方便后面的操作。否则,三维模型进入ADAMS后,线条繁多,在创建运动副的时候很难找到对应的点。 部件的导入如下图1所示: 图1 文件输入 File Type选择Parasolid; File To Read 找到相应的模型; 将Model Name 切换到Part Name,然后在输入框中右击,一次单击part →create 然后在弹出的新窗口中设置相应的Part Name,然后单击OK →OK 。将一个部件导入,重复以上步骤将部件依次导入。这里输入的技巧是将部件名称按顺序排列,如zpt_1、zpt_2、zpt_3. ,然后在图1中只需将zpt_1改为zpt_2、将PART_1改为PART_2即可。

有限元的未来是多物理场耦合分析

有限元的未来是多物理场耦合分析 早期的有限元主要关注于某个专业领域,比如应力或疲劳,这与当时计算机的计算能力相对应。但是,一般来说,物理现象都不是单独存在的。例如,只要运动就会产生热,而热反过来又影响一些材料属性,如电导率、化学反应速率、流体的粘性等等。这种物理系统的耦合就是我们所说的多物理场,分析起来比我们单独去分析一个物理场要复杂得多。常见的耦合问题有流-固耦合、电-热耦合、热-结构耦合、热-电-结构耦合、声-结构耦合、流体-反应耦合、流体-热耦合等。使用基于单元库的模拟软件,对上述各种耦合问题进行模拟,必须推导出相对应的耦合方程,其难度将是巨大的。 物理系统中每增加一个耦合的物理场,意味着数值计算的时候增加一个或多个未知的物理变量,同样的离散条件下,计算的自由度数将会扩大。在上个世纪90年代以前,由于计算机资源的缺乏,多物理场模拟仅仅停留在理论阶段,有限元建模也局限于对单个物理场的模拟,最常见的也就是对力学、传热、流体以及电磁场的模拟。看起来有限元仿真的命运好像也就是对单个物理场的模拟。 现在这种情况已经开始改变。经过数十年的努力,计算科学的发展为我们提供了更灵巧、更简洁而又更快速的算法,强劲的硬件配置,使得对多物理场的有限元模拟成为可能。新兴的有限元方法为多物理场分析提供了一个新的机遇,满足了工程师对真实物理系统的求解需要。 以流-固耦合来说,它是流体力学与固体力学两者之间相互作用产生的,其研究对象是固体在流场作用下的各种行为以及固体变形或运动对流场的影响。流-固耦合的重

要特征是两相介质之间的相互作用:固体在流体动载荷的作用下产生变形或运动,而固体的变形或运动反过来又会影响到流场,从而改变流场的分布。 压电扩音器(Piezoacoustic transducer)可以将电流转换为声学压力场,或者反过来将声场转换为电场,这里涉及三个不同的物理场:结构场、电场和流体中的声场。这种装置一般用在空气或者液体中的声源装置上,比如相控阵麦克风、超声生物成像仪、声纳传感器和声学生物治疗仪等,也可用于一些机械装置比如喷墨机和压电马达等。 科学家已经证明采用偏微分方程组(PDEs)的方法可以求解多物理场现象。这些偏微分方程可以描述热量传递、电磁场和结构力学等各种物理过程。可以这样认定,多物理场的本质是偏微分方程组。随着计算机和计算技术的迅速发展,使得工程师可以轻松地用偏微分方程组描述现实中的多物理场问题。如果有一种算法或者软件能直接对这些偏微分方程组进行求解,对科学研究与工程计算进程的推进将是巨大的。 而多物理场问题的求解,其难度也是巨大的。在实际求解多物理场耦合问题时,需要考虑不同的耦合关系。根据耦合的相互作用关系,可以把耦合关系分为双向耦合和单向耦合。物理场A通过边界条件或源项对物理场B产生作用,而物理场B对A不产生作用,或其影响可被忽略,称这种耦合是单向耦合。比如在热应力问题中,温度场会产生明显的热应力,但是由于变形而导致的温度场的性质变化并不显著,这种问题可以简化为单向耦合问题。 如果物理场B也对A产生影响,则称这种耦合为双向耦合。比如电阻应变片上当电流改变时会产生热量,热量导致电阻率的改变,从而影响了电流的改变。

多轴联动系统耦合控制的分析与仿真

多轴联动系统耦合控制的分析与仿真 发表时间:2018-07-03T10:36:17.270Z 来源:《电力设备》2018年第9期作者:李仁伟 [导读] 摘要:建立了多轴联动系统的同步误差模型,将交叉耦合结构等效为一种带敏感函数的模型,并用以分析耦合控制器对交叉耦合系统性能的影响。 (国网北京顺义供电公司北京顺义 101300) 摘要:建立了多轴联动系统的同步误差模型,将交叉耦合结构等效为一种带敏感函数的模型,并用以分析耦合控制器对交叉耦合系统性能的影响。在Matlab/Simulink环境下对双轴和三轴交叉耦合系统进行仿真,验证了本文的分析结论。 关键词:多轴联动;交叉耦合;同步误差 1 引言 多轴联动系统广泛应用于各类精密机械加工、编织、缠绕及轧钢等机电一体化设备。随着自动化水平及生产工艺要求的不断提高,现有控制方式已不能完全适应现代化生产的需要。因此,研究开发高性能的多轴协调控制策略具有普遍的现实意义和广泛的应用前景。 现今的多轴联动系统存在两种较为典型的结构,一种是非耦合结构,另一种是交叉耦合结构[1]。前者各个单轴控制系统独立运行,相互之间的控制没有任何电气上的连接,每台电机各自跟踪给定的位置信号,这种结构较为简单,但是当各轴的位置输出出现不同步时,仅能依靠单轴控制器来矫正误差,这种情况下同步误差较大,不能满足一些对同步性能要求较高的应用场合;交叉耦合控制结构是将各台电机输出的位置信号进行比较,从而得到一个同步误差补偿信号,再经过耦合控制器进行放大后分别前馈到单轴系统的输入端,各轴都修正本轴的状态以与其它轴实现快速同步,系统能够很好地抑制因某一台电机输出受到扰动而出现的同步误差,从而获得良好的同步控制精度[2-4]。然而耦合结构中耦合控制器的增益受系统稳定性的限制不能设计得过大,否则会急剧恶化稳定性,因而设计耦合控制器时需要严格控制增益大小。 本文对双轴和三轴驱动系统进行了研究,根据工程实际定义了两种情况下同步误差的概念,然后推导了耦合环节引入前后同步误差的关系模型。由这一关系模型分析了耦合控制器所起的作用,并探究了过大的增益对系统稳定性的具体影响。最后,通过Matlab/Simulink环境下的仿真结果验证分析结论。 2双轴系统 2.1 双轴同步误差模型 在两电机联动实现位置轨迹控制的场合,X轴和Y轴的位移分别由两套电机系统执行,输出为两台电机转子位置角度,两台电机通过十字滑台或其他机械部件相连,将转子位置角度转换为X轴和Y轴的位移,共同实现被控制对象的二维运动轨迹。 设T为被控对象期望达到的参考位置,P=[P1 P2]T为被控对象的实际位置,为目标位置轨迹的角度。 图1 双轴系统同步误差模型 理想情况下目标会沿着两台电机联动输出的位置信号运动,其路线为给定轨迹,然而实际情况中会由于各种扰动和控制精度的限制,实际运动的轨迹通常与给定轨迹存在偏差,由图1定义单轴跟踪误差e和双轴同步误差分别为 (1) (2) 式中L=[-sinθ cosθ]为变换矩阵。由式(2)可知,双轴同步误差是由单轴跟踪误e1,e2和轨迹角度θ共同决定的。 2.2 交叉耦合控制系统 双轴交叉耦合系统中,X轴和Y轴系统的跟踪误差被转换为同步误差后经过耦合控制器前馈到系统输入端,通过双轴之间的耦合提升系统的同步性能,其结构如图2(a)所示。 图2 双轴交叉耦合控制系统 图2中分别为X轴和Y轴电机调速系统的输入和输出转速信号,c为同步误差。C为耦合控制器,通常采用比例(P)控制,即C=kc;Gp1(s),F1(s),Gp2(s)和F2(s)分别为X轴和Y轴系统的位置环控制器和前馈控制器。交叉耦合系统中的X轴和Y轴均为带前馈的典型伺服系统,由调速系统,位置环控制器和前馈控制器组成。 引入交叉耦合环节前后,双轴系统的简化结构框图如图3所示,图3(a)为双轴并联运行的非耦合结构,图3(b)为交叉耦合结构。图中M=diag(M1,M2),o为非耦合结构下的同步误差。

Maxwell与Simplorer联合仿真分析

三相鼠笼式异步电动机的协同仿真模型实验分析 本文所采用的电机是参照《Ansoft 12在工程电磁场中的应用》一书所给的使用RMxprt输入机械参数所生成的三相鼠笼式异步电动机,并且由RMxprt的电机模型直接导出2D模型。由于个人需要,对电机的参数有一定的修改,但是使用Y160M--4的电机并不影响联合仿真的过程与结果。 1.1 Maxwell与Simplorer联合仿真的设置 1.1.1Maxwell端的设置 在Maxwell 2D模型中进行一下几步设置: 第一步,设置Maxwell和Simplorer端口连接功能。右键单击Model项,选择Set Symmetry Multiplier项,如图1.1所示,单击后弹出图1.2的对话框。 图1.1 查找过程示意图

图1.2 设计设置对话框 在对话框中,选择Advanced Product Coupling项,勾选其下的Enable tr-tr link with Sim 。至此,完成第一步操作。 第二步,2D模型的激励源设置。单击Excitation项的加号,显示Phase A、Phase B、Phase C各项。双击Phase A项,弹出如图1.3所示的对话框。 图1.3 A相激励源设置 在上图的对话框中,将激励源的Type项设置为External,并勾选其后的Strander,并且设置初始电流Initial Current项为0。Number of parallel branch项按照电机的设置要求,其值为1。参数设置完成后,点击确定退出。 需要说明的一点是,建议在设置Maxwell与Simplorer连接功能即第一步之前,记录电压激励源下的电阻和电感。事实上,这里的电组和电感就是Maxwell 2D计算出的电机的定子电阻与定子电感。这两个数据在外电路的连接中会使用到,在后面会详细说明。 至此,Maxwell端的设置完毕。 1.1.2 Simplorer端的设置 Simplorer端的设置,主要是对电机外电路的设置,具体的电路会在空载实验和额定负载实验中详细给出,这里不再赘述。

微波孔缝线性耦合函数研究

第15卷 第11期 强激光与粒子束Vol.15,No.11 2003年11月HIGH POWER LASER AND PAR TICL E B EAMS Nov.,2003 文章编号: 100124322(2003)1121093207 微波孔缝线性耦合函数研究 Ξ 王建国1,2, 刘国治1, 周金山1(1.西北核技术研究所,陕西西安710024;2.西安电子科技大学物理系,陕西西安710071) 摘 要: 讨论了微波脉冲通过孔缝线性耦合进入腔体内的研究方法。给出了线性耦合的物理基础,定义 了耦合函数,并导出了耦合函数随入射电场极化方向变化的公式。简要描述了数值求解孔缝线性耦合的时域 有限差分方法以及修正算法。给出了以矢量网络分析仪HP8510C 为主要设备测量耦合函数的实验方法。通 过耦合函数的研究,观察到了共振效应和增强效应等现象,给出了微波孔缝耦合发生共振的普适公式。分析了 测量探头对耦合函数测量的影响,验证了耦合函数随入射电场方向变化的公式。理论、数值和实验结果符合得 较好。 关键词: 微波脉冲; 线性耦合; 耦合函数; 时域有限差分; 孔缝; 共振效应; 增强效应 中图分类号: TN822.8;TN813 文献标识码: A 目前,瞬态电磁脉冲源发展很快,例如快上升沿电磁脉冲(FREMP )发生器、超宽带(UWB )微波源、相对论微波器件等,因此,微波孔缝瞬态耦合研究在许多微波工程和电磁兼容等方面有着重要的意义。 微波脉冲孔缝耦合的理论基础是麦克斯韦方程组。如果微波强度低于孔缝所处环境大气的击穿阈值,则可以不考虑麦克斯韦方程组中的电流项,在这种情况下,因为麦克斯韦方程组是线性的,所以定义微波孔缝耦合过程为线性耦合[1~5]。反之,当微波强度高于孔缝所处环境大气的击穿阈值时,由于大气电离产生电流,则必须考虑麦克斯韦方程组中的电流项,在这种情况下,因为大气电离过程是电场的函数,即电流项是电场的函数,因而麦克斯韦方程组是非线性的,所以,定义微波孔缝耦合过程为非线性耦合[3,6,7]。过去,在微波孔缝线性和非线性耦合方面已做了大量的理论、数值和实验研究[1~8]。在理论方面,主要应用电磁场麦克斯韦方程组和电子流体方程组途径[2,5~7]。在数值模拟方面,由于被研究的问题是瞬态电磁场问题,因此,通常选用时域有限差分(FD TD )方法[2,3]。当孔缝的宽度很窄时,由于受计算机内存的限制,采用面阻抗概念修正传统FD TD 算法,使之在不增加计算机内存的条件下能模拟孔缝宽度比一个FD TD 网格小得多的耦合过程[3]。另外,实验研究也验证了理论和数值模拟结果[3]。通过研究,得出了微波孔缝耦合的共振效应、增强效应、场分布等许多规律。但是,仔细地分析会发现:在这些规律中,只有共振效应能表征耦合孔的特征,虽然其它规律也在不同程度上反映了耦合孔和腔体的性质,但是,它们并不能明确表征耦合孔和腔体的特性。换句话说,增强效应和场分布等规律依赖于入射场。为了便于工程应用,必须找到一种对入射场归一化的物理量,即这是一个表征耦合孔和腔体的特征量,与入射场无关。本文定义这个物理量为耦合函数,并用理论、数值和实验三种方Fig.1 Schematic diagram of the sizes of cylindrical cavity and slot 图1 圆柱腔体和孔缝尺寸示意图 法研究孔缝耦合函数。 1 孔缝耦合的理论基础 如图1所示,为不失一般性,假设在圆柱腔体(对 任意腔体,均可同样讨论)的某一面上存在一个或多个 孔缝。孔缝可以是矩形、圆形、椭圆形或三角形等任意 形状。对于矩形孔,假设孔长为l ,宽为w ,厚度为 d 。本文采用直角坐标系,坐标原点位于圆柱底面的 中心,y 轴与圆柱对称轴重合。 假设有一微波脉冲入射到带孔缝的腔体上,当它 传播到腔体壁和孔缝附近时,会发生电磁散射和穿透Ξ收稿日期:2003205209; 修订日期:2003208204基金项目:国家863计划项目资助课题 作者简介:王建国(19652),男,江苏人,博士,研究员,主要从事瞬态电磁场理论和高功率微波技术的研究工作;西安市69215信箱。

耦合场分析

ANSYS非线形分析指南基本过程 第四章耦合场分析 耦合场分析的定义 耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科(物理场)的交叉作用和相互影响(耦合)。例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。 耦合场分析的类型 耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。 序贯耦合解法 序贯耦合解法是按照顺序进行两次或更多次的相关场分析。它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的。例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。 直接耦合解法 直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。 何时运用直接耦合解法或序贯耦合解法 对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。 直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁场耦合分析。求解这类耦合场相互作用问题都有专门的单元供直接选用。 第1页

练习二 创建柔性体并进行刚柔耦合仿真分析

练习二创建柔性体并进行刚柔耦合仿真 本示例将练习使用FlexPrep工具创建汽车下控制臂柔性体模型,通过替换汽车前悬架模型中刚性控制臂完成汽车前悬架的刚柔耦合仿真。练习中使用的下控制臂模型如图1所示。图2显示了汽车前悬架模型。 图1 下控制臂模型图2 汽车前悬架模型 创建柔性控制臂模型(MV-2010) 第1步:使用FlexPrep工具 练习中使用的模型均位于\tutorials\mv_hv_hg\mbd_modeling\flexbodies文件夹下。 1. 启动MotionView 2. 在Flex Tools下拉菜单中选择FlexProp,弹出FlexBodyProp对话框 图3 选择FlexProp工具 3. 激活OptiStruct Flexbody Generation,在下拉列表中选择Create OS prp(preparation) file and generate the h3d flexbody 4. 点击Select Bulk Data File右侧的文件浏览按钮选择sla_flex_left.fem 注:在这里可以使用任何OptiStruct(fem)和Nastran(nas,dat,bdf)文件 5. 在Save the *.h3d file as栏中输入输出H3D文件的文件名:sla_flex_left.h3d 6. 在组件模态综合类型(Component Mode Synthesis Type)栏中选择Craig-Bampton方法 7. 在指定界面节点栏中(Specify Interface Node List)输入:4927+4979+4984

COMSOL与SPICE场路耦合

Inductor in an Amplifier Circuit This model studies a finite element model of an inductor inserted into an electrical amplifier circuit. Introduction Modern electronic systems are very complex and depend heavily on computer aided design in the development and manufacturing process. Common tools for such calculations are based on the SPICE format originally developed at Berkeley University (Ref. 1). The SPICE format consists of a standardized set of models for describing electrical devices—especially semiconductor devices such as transistors, diodes, and thyristors. SPICE also includes a simple, easy-to-read text format for circuit netlists and model parameter specifications. Although the netlist format is essentially the same as it was from the beginning, the set of models and model parameters constantly changes, with new models being added according to the latest achievements in semiconductor device development. When the devices are scaled down, new effects appear that have to be properly modeled. The new models are the result of ongoing research in device modeling. When an engineer is designing a new electronic component, like a capacitor or an inductor, the SPICE parameters for that device are not known. They are either extracted from finite element tools such as COMSOL Multiphysics or from measurements on a prototype. To speed up the design process it can be convenient to include the finite element model in the SPICE circuit simulation, calculating the device behavior in an actual circuit. This model takes a simple amplifier circuit and exchanges one of its components with a finite element model of an inductor with a magnetic core. COMSOL Multiphysics calculates the transient behavior of the entire system. Importing a SPICE circuit netlist brings in the circuit elements along with their model parameters and location in the circuit. All elements can be edited in COMSOL Multiphysics, and any pair of nodes can connect to the finite element model. Model Definition The inductor model uses the Magnetic Fields physics of the AC/DC Module, solving for the magnetic potential A:

相关文档
最新文档