高考文科数学不等式选讲考点精细选

高考文科数学不等式选讲考点精细选
高考文科数学不等式选讲考点精细选

不等式选讲考点精细选

一、知识点整合:

1. 含有绝对值的不等式的解法

(1)|f (x )|>a (a >0)?f (x )>a 或f (x )<-a ; (2)|f (x )|0)?-a

2. 含有绝对值的不等式的性质

|a |-|b |≤|a ±b |≤|a |+|b |. 3. 柯西不等式

(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号

成立.

(2)若a i ,b i (i ∈N *

)为实数,则(∑n

i =1a 2

i )(∑n

i =1b 2

i )≥(∑n

i =1

a i

b i )2

,当且仅当a 1b 1=a 2

b 2=…=a n b n

(当某b j =0时,认为a j =0,j =1,2,…,n )时等号成立.

(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量共线时等号成立. 4. 不等式的证明方法

证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等.

练习精细选

1.若关于实数x 的不等式|x -5|+|x +3|

答案 (-∞,8]

解析 ∵|x -5|+|x +3|=|5-x |+|x +3| ≥|5-x +x +3|=8,

∴(|x -5|+|x +3|)min =8,

要使|x -5|+|x +3|

2. (2013·江西)在实数范围内,不等式||x -2|-1|≤1的解集为________.

答案 [0,4]

解析 由||x -2|-1|≤1得-1≤|x -2|-1≤1,

解?????

|x -2|≥0|x -2|≤2

得0≤x ≤4.

∴不等式的解集为[0,4].

3.已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值

为________. 答案 2

解析 由柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时“=”成立,得

(am +bn )(bm +an )≥(am ·an +bm bn )2=mn (a +b )2=2.

4.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________.

答案 2

解析 ∵|kx -4|≤2,∴-2≤kx -4≤2,∴2≤kx ≤6. ∵不等式的解集为{x |1≤x ≤3},∴k =2.

5.设x ,y ∈R,且xy ≠0,则?

????x 2+1y 2·? ??

??1x

2+4y 2

的最小值为________.

答案 9

解析 ? ????x 2+1y 2? ??

??1x 2+4y 2

=5+1x 2y 2+4x 2y 2

≥5+2

1

x 2y

2

·4x 2y 2=9,

当且仅当x 2

y 2

=1

2

时“=”成立.

三、典型题型分析

题型一 含绝对值的不等式的解法

例1 已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )

(2)设a >-1,且当x ∈????

??

-a 2,12时,f (x )≤g (x ),求a 的取值范围.

审题破题 (1)可以通过分段讨论去绝对值;(2)在x ∈????

??

-a 2,12时去绝对值,利

用函数最值求a 的范围.

解 (1)当a =-2时,不等式f (x )

则y =??

??

?

-5x ,x <1

2

-x -2,12

≤x ≤1,3x -6,x >1,

其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解

集是

{x |0

(2)∵a >-1,则-a 2<1

2

∴f (x )=|2x -1|+|2x +a |

当x ∈????

??

-a 2,12时,f (x )=a +1,

即a +1≤x +3在x ∈????

??

-a 2,12上恒成立.

∴a +1≤-a

2+3,即a ≤4

3

∴a 的取值范围为?

????

-1,43.

点评: 这类不等式的解法是高考的热点. (1)用零点分段法解绝对值不等式的步骤:

①求零点;②划区间、去绝对值;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.

(2)用图象法,数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法. 变式训练1 已知函数f (x )=|x +1|+|x -2|-m .

(1)当m =5时,求f (x )>0的解集;

(2)若关于x 的不等式f (x )≥2的解集是R ,求m 的取值范围. 解 (1)由题设知|x +1|+|x -2|>5,

不等式的解集是以下三个不等式组解集的并集:

?????

x ≥2,x +1+x -2>5

或?????

-1≤x <2,

x +1-x +2>5

或?????

x <-1,

-x -1-x +2>5,

解得函数f (x )的定义域为(-∞,-2)∪(3,+∞).

(2)不等式f (x )≥2即|x +1|+|x -2|>m +2,

∵x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 不等式|x +1|+|x -2|≥m +2解集是R , ∴m +2≤3,m 的取值范围是(-∞,1]. 题型二 不等式的证明

例2 已知函数f (x )=m -|x -2|,m ∈R,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值;

(2)若a ,b ,c ∈R +

,且1a +12b +13c

=m ,求证:a +2b +3c ≥9.

审题破题 (1)从解不等式f (x +2)≥0出发,将解集和[-1,1]对照求m ;(2)利用柯西不等式证明.

(1)解 因为f (x +2)=m -|x |, f (x +2)≥0等价于|x |≤m .

由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }. 又f (x +2)≥0的解集为[-1,1],故m =1.

(2)证明 由(1)知1a +12b +1

3c

=1,

又a ,b ,c ∈R +,由柯西不等式得

a +2

b +3

c =(a +2b +3c )? ??

??

1a +12b +13c

≥? ??

???a ·1a +2b ·12b +3c ·13c 2=9. 点评:不等式证明的基本方法是比较法、综合法、分析法、反证法、放

缩法和数学归纳法,其中以比较法和综合法最为基础,使用综合法证明不等式的关键就是通过适当的变换后使用重要不等式,证明过程注意从重要不等式的形式入手达到证明的目的.

变式训练2 已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M .

(1)求M ;

(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. (1)解 f (x )=|x +1|+|x -1|

=????

?

-2x ,x <-1,2,-1≤x ≤1,2x ,x >1.

当x <-1时,由-2x <4,得-21时,由2x <4,得1

(2)证明 a ,b ∈M ,即-2

∴2|a +b |<|4+ab |. 题型三 不等式的综合应用

例3 已知f (x )=|ax +1|(a ∈R),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;

(2)若?

???

??

f

x

-2f ? ????x 2≤k 恒成立,求k 的取值范围.

审题破题 (1)|ax +1|≤3的解集为[-2,1],对照即可;(2)可通过函数最值解决恒成立

问题.

解 (1)由|ax +1|≤3得-4≤ax ≤2. 又f (x )≤3的解集为{x |-2≤x ≤1}, 所以当a ≤0时,不合题意.

当a >0时,-4a ≤x ≤2

a

,得a =2.

(2)记h (x )=f (x )-2f ? ??

??

x 2,

则h (x )=???

??

1,x ≤-1,

-4x -3,-1

-1,x ≥-12

所以|h (x )|≤1,因此k ≥1.

点评:不等式f (a )≥g (x )恒成立时,要看是对哪一个变量恒成立,如果对于?a ∈R 恒成立,则f (a )的最小值大于等于g (x ),再解关于x 的不等式求x 的取值范围;如果对于?x ∈R 不等式恒成立,则g (x )的最大值小于等于f (a ),再解关于a 的不等式求a 的取值范围.

变式训练3 已知函数f (x )=log 2(|x -1|+|x -5|-a ).

(1)当a =2时,求函数f (x )的最小值;

(2)当函数f (x )的定义域为R 时,求实数a 的取值范围. 解 (1)函数的定义域满足:|x -1|+|x -5|-a >0, 即|x -1|+|x -5|>a =2. 设g (x )=|x -1|+|x -5|,

则g (x )=|x -1|+|x -5|=????

?

2x -6,x ≥5,4,1

6-2x ,x ≤1,

g (x )min =4>a =2,f (x )min =log 2(4-2)=1.

(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4, |x -1|+|x -5|-a >0,

∴a <4,∴a 的取值范围是(-∞,4).

四、阅卷评析

典例 (10分)设f (x )=|x |+2|x -a |(a >0). (1)当a =1时,解不等式f (x )≤8;

(2)若f (x )≥6恒成立,求正实数a 的取值范围. 规范解答 解

(1)f (x )=|x |+2|x -1|=????

?

2-3x ,x <0,2-x ,0≤x ≤1,

3x -2,x >1.

当x <0时,由2-3x ≤8,得-2≤x <0;

当0≤x ≤1时,由2-x ≤8,得0≤x ≤1;

当x >1时,由3x -2≤8,解得1

3.

综上,不等式f (x )≤8的解集为??????

-2,103.[5分]

(2)因为f (x )=|x |+2|x -a |=????

?

2a -3x ,x <0,2a -x ,0≤x ≤a ,

3x -2a ,x >a .

可见f (x )在(-∞,a )上单调递减,在(a ,+∞)上单调递增,

所以当x =a 时,f (x )取最小值a ,所以a 的取值范围是[6,+∞).[10分] 评分细则 (1)f (x )去绝对值得分段函数给2分;三种情况下的解集错一种扣1分,没有最后结论扣1分;(2)求出f (x )的单调性给至8分.

阅卷老师提醒 (1)含有绝对值式子的函数,实质上就是一个分段函数,根据解析式中每个绝对值取零时的自变量的值将定义域分成几段,分段去掉绝对值符号即可.

(2)分段讨论时要注意不重不漏,讨论后要有最后总结性结论. 五、小题冲关

1.不等式|2x +1|-2|x -1|>0的解集为________.

答案 ??????

???

?x ???

x >

14

解析 原不等式等价于|2x +1|>2|x -1|?(2x +1)2

>4(x -1)2

?x >1

4

.

2.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz

=20,则a +b +c

x +y +z =________.

答案 12

解析 通过等式找出a +b +c 与x +y +z 的关系. 由题意可得x 2+y 2+z 2=2ax +2by +2cz ,① ①与a 2+b 2+c 2=10相加可得

(x -a )2+(y -b )2+(z -c )2=10,

所以不妨令????

?

x -a =a ,y -b =b ,

z -c =c

? ??

???或??

???

x -a =b ,

y -b =c ,z -c =z

, 则x +y +z =2(a +b +c ),即a +b +c x +y +z =1

2

.

3. 若a ,b ,c ∈(0,+∞),且a +b +c =1,则a +b +c 的最大值为________.

答案 3

解析 (a +b +c )2=(1×a +1×b +1×c )2 ≤(12+12+12)(a +b +c )=3.

当且仅当a =b =c =1

3

时,等号成立.

∴(a +b +c )2≤3.故a +b +c 的最大值为 3.

4. 不等式|x +1|

|x +2|≥1的实数解为__________.

答案 ????

??x |x ≤-3

2且x ≠-2.

解析 ∵|x +1|

|x +2|

≥1,∴|x +1|≥|x +2|.

∴x 2+2x +1≥x 2+4x +4,∴2x +3≤0.

∴x ≤-3

2

且x ≠-2.

5. 若不等式x +|x -1|≤a 有解,则实数a 的取值范围是______.

答案 [1,+∞)

解析 设f (x )=x +|x -1|,则f (x )=?

??

??

2x -1

x ≥1,

1 x <1.

f (x )的最小值为1.所以当a ≥1时,f (x )≤a 有解.

6. 对于任意的实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥M ·|a |恒成立,记实数

M 的最大值

是m ,则m 的值为________.

答案 2

解析 不等式|a +b |+|a -b |≥M ·|a |恒成立,

即M ≤|a +b |+|a -b ||a |

对于任意的实数a (a ≠0)和b 恒成立,

只要左边恒小于或等于右边的最小值.

因为|a +b |+|a -b |≥|(a +b )+(a -b )|=2|a |,当且仅当(a -b )(a +b )≥0时

等号成立,即|a |≥|b |时,|a +b |+|a -b ||a |≥2成立,也就是|a +b |+|a -b |

|a |

最小值是2.

六、专题限时规范训练 一、填空题

1. 不等式|x +3|-|x -2|≥3的解集为________.

答案 {x |x ≥1}

解析 原不等式可化为:

?????

x ≤-3,-x -3+x -2≥3

或?????

-3

x +3+x -2≥3

或?????

x ≥2,

x +3-x +2≥3,

∴x ∈?或1≤x <2或x ≥2.∴不等式的解集为{x |x ≥1}.

2. 设x >0,y >0,M =x +y 2+x +y ,N =x 2+x +y

2+y

,则M 、N 的大小关系为__________.

答案 M

解析 N =x 2+x +y 2+y >x 2+x +y +y 2+x +y =x +y

2+x +y

=M .

3. 对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________.

答案 5

解析 ∵|x -1|≤1,∴-1≤x -1≤1,∴0≤x ≤2. 又∵|y -2|≤1,∴-1≤y -2≤1,∴1≤y ≤3, 从而-6≤-2y ≤-2.

由同向不等式的可加性可得-6≤x -2y ≤0,

∴-5≤x -2y +1≤1,∴|x -2y +1|的最大值为5.

4. 若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是________.

答案 (-∞,-3]∪[3,+∞)

解析

∵f (x )=|x +1|+|x -2|=????

?

-2x +1 x ≤-1,

3 -1

2x -1 x ≥2,

∴f (x )≥3.要使|a |≥|x +1|+|x -2|有解,

需满足|a |≥3,即a ≤-3或a ≥3. 二、解答题

5. 设不等式|2x -1|<1的解集为M .

(1)求集合M ;

(2)若a ,b ∈M ,试比较ab +1与a +b 的大小. 解 (1)由|2x -1|<1得-1<2x -1<1,解得0

(2)由(1)和a ,b ∈M 可知00, 故ab +1>a +b .

6. 若不等式?

???

??

x +1x >|a -2|+1对于一切非零实数x 均成立,求实数a 的取值范围.

解 ∵?

?????

x +1x ≥2,∴|a -2|+1<2,

∴1

7.已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<5

18

.

证明 因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |,

由题设知|x +y |<13,|2x -y |<1

6,

从而3|y |<23+16=56,所以|y |<5

18

.

8. 已知函数f (x )=|x -a |.

(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;

(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.

解 方法一 (1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3. 又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},

所以?

??

??

a -3=-1,a +3=5,解得a =2.

(2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5),

于是g (x )=|x -2|+|x +3|=????

?

-2x -1,x <-3,5,-3≤x ≤2,

2x +1,x >2.

所以当x <-3时,g (x )>5;

当-3≤x ≤2时,g (x )=5; 当x >2时,g (x )>5.

综上可得,g (x )的最小值为5.

从而若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为

(-∞,5].

方法二 (1)同方法一.

(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5).

由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.

从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为

(-∞,5].

9. 已知函数f (x )=|2x +1|+|2x -3|.

(1)求不等式f (x )≤6的解集;

(2)若关于x 的不等式f (x )<|a -1|的解集非空,求实数a 的取值范围. 解 (1)原不等式等价于

?????

x >32,2x +1

+2x -3≤6

或?????

-12≤x ≤32,

2x +1-

2x -3≤6

或?????

x <-12,

-2x +1

-2x -3≤6.

解之得32

.

即不等式的解集为{x |-1≤x ≤2}.

(2)∵f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4. ∴|a -1|>4,解此不等式得a <-3或a >5.

10.设a ,b ,c 为正实数,求证:1a 3+1b

3+1

c

3+abc ≥2 3.

证明因为a,b,c是正实数,由算术—几何平均不等式可得1

a3

1

b3

1

c3

≥3

31

a3·

1

b3

·

1

c3

即1

a3

1

b3

1

c3

3

abc

.

所以1

a3

1

b3

1

c3

+abc≥

3

abc

+abc.

3

abc

+abc≥2

3

abc

·abc=23,

当且仅当a=b=c且abc=3时,取等号.

所以1

a3

1

b3

1

c3

+abc≥2 3.

2019高考试题文科数学汇编:不等式

2019高考试题文科数学汇编:不等式 1.【2018高考山东文6】设变量,x y 满足约束条件22,24,41,x y x y x y +≥?? +≤??-≥-? 那么目标函数3z x y =-的取 值范围是 (A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3 [6,]2 - 【答案】A 2.【2018高考安徽文8】假设x ,y 满足约束条件 02323x x y x y ≥?? +≥??+≤? ,那么y x z -=的最 小值是 〔A 〕-3 〔B 〕0 〔C 〕 3 2 〔D 〕3 【答案】A 3.【2018高考新课标文5】正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,假设点〔x ,y 〕在△ABC 内部,那么z=-x+y 的取值范围是 〔A 〕(1-3,2) 〔B 〕(0,2) 〔C 〕(3-1,2) 〔D 〕(0,1+3) 【答案】A 4.【2018高考重庆文2】不等式 1 02 x x -<+ 的解集是为 〔A 〕(1,)+∞ 〔B 〕 (,2)-∞- 〔C 〕〔-2,1〕〔D 〕(,2)-∞-∪(1,)+∞ 【答案】C 5.【2018高考浙江文9】假设正数x ,y 满足x+3y=5xy ,那么3x+4y 的最小值是 A. 245 B. 285 C.5 D.6 【答案】C 6.【2018高考四川文8】假设变量,x y 满足约束条件3, 212,21200 x y x y x y x y -≥-??+≤?? +≤??≥?≥??,那么34z x y =+的最 大值是〔 〕 A 、12 B 、26 C 、28 D 、33 【答案】C 7.【2018高考天津文科2】设变量x,y 满足约束条件?? ? ??≤-≥+-≥-+01042022x y x y x ,那么目标函数z=3x-2y 的最小值为

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

2020年高考文科数学《不等式》题型归纳与训练

A. a a>b>0,由不等式性质知:->->0,所以< >- 7 2 ∵x-x=4a-(-2a)=6a=15,∴a=15 62 2020年高考文科数学《不等式》题型归纳与训练 【题型归纳】 题型一一元二次不等式解法及其应用 例1若a>b>0,cB.D.< c d c d d c d c 【答案】D 【解析】由c0,又 d c a b a b d c d c 例2关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x,x),且x-x=15,则a=() 1221 A.515 B.C.D.24 15 2 【答案】A 【解析】∵由x2-2ax-8a2<0(a>0),得(x-4a)(x+2a)<0,即-2a0的解集是___________. 【答案】(-3,2)?(3,+∞) 【解析】不等式可化为(x+3)(x-2)(x-3)>0采用穿针引线法解不等式即可. 例4已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是. 【答案】(-2 2 ,0) 【解析】由题意可得f(x)<0对于x∈[m,m+1]上恒成立,

?f(m+1)=2m2+3m<0 ,则函数y=4x-2+1的最大值. x<,∴5-4x>0,∴y=4x-2+=- 5-4x+?+3≤-2+3=1 1 【解析】因为y=x(8-2x)= 1 . 【答案】9,+∞) ?f(m)=2m2-1<02 即?,解得-0,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2x+(8-2x)=8为定值,故只需将y=x(8-2x)凑上一个系数即可. 例3函数y= x2+7x+10 x+1 (x>-1)的值域为。 [ 【解析】 当x>-1,即x+1>0时,y≥2(x+1)? 4 +5=9(当且仅当x=1时取“=”号). x+1 2

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

2016年高考文科数学真题分类汇编:不等式

2016年高考数学文试题分类汇编 不等式 一、选择题 1、(2016年山东高考)若变量x ,y 满足2,239,0,x y x y x +≤??-≤??≥? 则x 2+y 2的最大值是 (A )4(B )9(C )10(D )12 【答案】C 2、(2016年浙江高考)若平面区域30,230,230x y x y x y +-≥??--≤??-+≥? 夹在两条斜率为1的平行直线之间,则这 两条平行直线间的距离的最小值是( ) 【答案】B 3、(2016年浙江高考)已知a ,b >0,且a ≠1,b ≠1,若4log >1b ,则( ) A.(1)(1)0a b --< B. (1)()0a a b --> C. (1)()0b b a --< D. (1)()0b b a --> 【答案】D 二、填空题 1、(2016年北京高考)函数()(2)1 x f x x x = ≥-的最大值为_________. 【答案】2 2、(2016江苏省高考) 已知实数x ,y 满足240220330x y x y x y -+≥??+-≥??--≤? ,则x 2+y 2的取值范围是 ▲ . 【答案】4[,13]5 3、(2016年上海高考)设x ∈R ,则不等式31x -<的解集为_______. 【答案】)4,2(

4、(2016上海高考)若,x y 满足0,0,1,x y y x ≥??≥??≥+? 则2x y -的最大值为_______. 【答案】2- 5、(2016全国I 卷高考)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元。该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000 6、(2016全国II 卷高考)若x ,y 满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则2z x y =-的最小值为 __________ 【答案】5- 7、(2016全国III 卷高考)若,x y 满足约束条件210,210,1,x y x y x -+≥??--≤??≤? 则235z x y =+-的最大 值为_____________. 【答案】10- 11、(2016江苏省高考)函数y 的定义域是 ▲ . 【答案】[]3,1- 三、解答题 1、(2016年天津高考)某化肥厂生产甲、乙两种混合肥料,需要A,B,C 三种主要原料.生产1 车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

高考文科数学不等式选讲考点精细选

不等式选讲考点精细选 一、知识点整合: 1.含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)?f(x)>a或f(x)<-a; (2)|f(x)|<a(a>0)?-a

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

高三数学不等式选讲 知识点和练习

不等式选讲 一、绝对值不等式 1.绝对值三角不等式 定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立。 注:(1)绝对值三角不等式的向量形式及几何意义:当a,b不共线时,|a+b|≤|a|+|b|,它的几何意义就是三角形的两边之和大于第三边。 (2)不等式|a|-|b|≤|a±b|≤|a|+|b|中“=”成立的条件分别是:不等式|a|-|b|≤|a+b|≤|a|+|b|,在侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|。 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立。 2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a的解集 注:|x|以及|x-a|±|x-b|表示的几何意义(|x|表示数轴上的点x到原点O的距离;| x-a |±|x-b|)表示数轴上的点x到点a,b的距离之和(差) (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法 ①|ax+b|≤c?-c≤ax+b≤c; ②| ax+b|≥c? ax+b≥c或ax+b≤-c. (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 方法二:利用“零点分段法”求解,体现了分类讨论的思想; 方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

2018年全国2卷省份高考模拟文科数学分类---选考不等式

2018年全国2卷省份高考模拟文科数学分类---选考不等式 1.(2018陕西汉中模拟)已知,不等式的解集是. (Ⅰ)求a 的值; (II )若存在实数解,求实数的取值范围. 解:(Ⅰ)由, 得,即. 当时,. ………2分 因为不等式的解集是 所以 解得 当时,. …………4分 因为不等式的解集是 所以无解. 所以………5分 (II )因为 所以要使存在实数解,只需. ……8分 解得或. 所以实数的取值范围是. ……10分 2.(2018呼和浩特模拟)已知函数()1f x x =-.

(Ⅰ)解不等式()()246f x f x ++≥; (Ⅱ)若,a b R ∈,1a <,1b <,证明:()()1f ab f a b >-+. (Ⅰ)不等式()()246f x f x ++≥即为2136x x -++≥ 当3x ≤-时,1236x x ---≥解得3x ≤- 当132 x -<< ,1236x x -++≥解得32x -<≤- 当12x ≥时,2136x x -++≥解得43x ≥ 综上,(]4,2,3x ??∈-∞-+∞???? ; (Ⅱ)等价于证明1ab a b ->- 因为,1a b < ,所以1,1a b -<<,1ab <,11ab ab -=- 若a b =,命题成立; 下面不妨设a b >,则原命题等价于证明1ab a b ->- 事实上,由()()()1110ab a b b a ---=+-> 可得1ab a b ->- 综上,1ab a b ->- 3.(2018东北育才中学模拟)定义在R 上的函数x k x x f 22+-=.?∈N k .存在实数0x 使()20m ,2 1>n 且求证()()10=+n f m f ,求证31619≥+n m . .解: 存在实数0x 使()20m ,2 1>n ,

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

高考数学试题分类汇编不等式含文科理科及详细解析

2017年高考数学试题分类汇编:不等式 1(2017北京文)已知,,且x +y =1,则的取值范围是__________. 【考点】3W :二次函数的性质. 【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质及应用. 【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可. 【解答】解:x ≥0,y ≥0,且x +y=1,则x 2+y 2=x 2+(1﹣x )2=2x 2﹣2x +1,x ∈[0,1], 则令f (x )=2x 2﹣2x +1,x ∈[0,1],函数的对称轴为:x=,开口向上, 所以函数的最小值为:f ()= =. 最大值为:f (1)=2﹣2+1=1. 则x 2+y 2的取值范围是:[,1]. 故答案为:[,1]. 【点评】本题考查二次函数的简单性质的应用,考查转化思想以及计算能力. 2(2017浙江)已知a R ,函数在区间[1,4]上的最大值是5,则的取值范围是___________. 【考点】3H :函数的最值及其几何意义. 【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质及应用. 【分析】通过转化可知|x +﹣a |+a ≤5且a ≤5,进而解绝对值不等式可知2a ﹣5≤x +≤5,进而计算可得结论. 0x ≥0y ≥22x y +∈4()||f x x a a x =+ -+a

【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5, 又因为|x+﹣a|≤5﹣a, 所以a﹣5≤x+﹣a≤5﹣a, 所以2a﹣5≤x+≤5, 又因为1≤x≤4,4≤x+≤5, 所以2a﹣5≤4,解得a≤, 故答案为:(﹣∞,]. 【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题. 3(2017新课标Ⅲ文数)[选修4—5:不等式选讲](10分) f x=│x+1│–│x–2│. 已知函数() f x≥1的解集; (1)求不等式() f x≥x2–x +m的解集非空,求实数m的取值范围. (2)若不等式() 【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法. 【专题】32 :分类讨论;33 :函数思想;4C :分类法;4R:转化法;51 :函数的性质及应用;5T :不等式. 【分析】(1)由于f(x)=|x+1|﹣|x﹣2|=,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

高三数学不等式题型总结全

不等式的解题归纳第一部分含参数不等式的解法 例1解关于x的不等式2x2? kx _ k岂0 例2 .解关于x的不等式:(x-x2+12)(x+a)<0. 2x2+2k x +k 例3、若不等式2x 2 2kx 1 :::1对于x取任何实数均成立,求k的取值范围. 4x +6x +3 例4若不等式ax2+bx+1>0的解集为{x | -3 (x- 1)2对一切实数x都成立,a的取值范围是____________________ 2 .如果对于任何实数x,不等式kx2—kx+ 1>0 (k>0)都成立,那么k的取值范围是 3.对于任意实数x,代数式(5 —4a—a2)x2—2(a —1)x—3的值恒为负值,求a的取值范围+ 2 2 口 2 4 .设a、B是关于方程x —2(k —1)x + k+仁0的两个实根,求y=> + ■关于k的解析式,并求y 的取值范围. 第二部分绝对值不等式

1. (2010年高考福建卷)已知函数f(x) = |x —a|. (1)若不等式f(x)w 3的解集为{x|—K x< 5},求实数a的值; ⑵在(1)的条件下,若f(x) + f(x+ 5)> m对一切实数x恒成立,求实数m的取值范围. 2. 设函数f (x) =|x-1| |x-a|, (1 )若a = -1,解不等式f(x)_3 ;(2)如果- x R , f(x) —2,求a的取值范围 3. 设有关于x的不等式lg(j x + 3+|x-7?a

不等式-高考数学解题方法归纳总结专题训练

专题20 不等式训练 【训练目标】 1、掌握不等式的性质,能利用不等式的性质,特殊值法等判断不等式的正误; 2、熟练的解一元二次不等式,分式不等式,绝对值不等式,对数不等式,指数不等式,含根式的不等式; 3、掌握分类讨论的思想解含参数的不等式; 4、掌握恒成立问题,存在性问题; 5、掌握利用基本不等式求最值的方法; 6、掌握线性规划解决最优化问题; 7、掌握利用线性规划,基本不等式解决实际问题。 【温馨小提示】 在高考中,不等式无处不在,不论是不等式解法还是线性规划,基本不等式,一般单独出现的是线性规划或基本不等式,而不等式的解法则与集合、函数、数列相结合。 【名校试题荟萃】 1、若实数且,则下列不等式恒成立的是() A. B. C. D. 【答案】C 【解析】根据函数的图象与不等式的性质可知:当时,为正确选项,故选C. 2、已知,,则() A. B. C. D. 【答案】A 3、,设,则下列判断中正确的是() A. B. C. D. 【答案】B 【解析】令,则,故选B

4、若,且,则下列不等式成立的是() A. B. C. D. 【答案】B 【解析】 . 5、袋子里有大小、形状相同的红球个,黑球个().从中任取个球是红球的概率记为.若将红球、黑球个数各增加个,此时从中任取个球是红球的概率记为;若将红球、黑球个数各减少个,此时从中任取个球是红球的概率记为,则() A. B. C. D. 【答案】D 6、若,,则下列不等式错误的是() A. B. C. D. 【答案】C 【解析】 因为,,所以,,故A、B正确;由已知得, ,所以,所以C错误;由,得,,所以 成立,所以D正确.故选C.

高三数学(理科)二轮复习-不等式

2014届高三数学第二轮复习 第3讲 不等式 一、本章知识结构: 实数的性质 二、高考要求 (1)理解不等式的性质及其证明。 (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。 (3)分析法、综合法、比较法证明简单的不等式。 (4)掌握某些简单不等式的解法。 (5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。 三、热点分析 1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注. 2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点. 3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点. 4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识. 不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。高考试题中有以下几个明显的特点: (1)不等式与函数、数列、几何、导数,实际应用等有关内容综合在一起的综合试题多,单独考查不等式的试题题量很少。

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

相关文档
最新文档