输电塔的风振系数计算与程序设计

输电塔的风振系数计算与程序设计
输电塔的风振系数计算与程序设计

万方数据

万方数据

特种结构2010年第3期

课题组编制的风振系数计算程序的可行性和正确性。

3.1时程法计算风振系数及程序验证

时程分析法可以较为准确地反映结构的风振情况。根据模拟风荷载下结构的时程响应结果对szT2的风振系数进行了计算,主要处理过程及相应的计算结果如下。

基于Matlab,采用线性滤波法中的自回归(Auto.Regressive,A11)模型对风荷载进行模拟,风速谱采用Davenpoa谱,自相关函数采用Shiotami

布置立面(单位:m)行风振响应分析。故本文的时程计算中取20%的湍流度和0.02的结构阻尼比。

图3为模拟所得的塔顶高度处的风速时程曲线及风速谱。可以看出,模拟所得的风速谱与Davenpoa谱吻合良好,平均风速与理论值一致。脉动风速为零均值平稳高斯过程,在10m高度处其均方差为5.457,对应的湍流度为20.4%,基本符合目标值20%。因此,可以认为模拟所得的脉动风速谱能够模拟真实风场。

将模拟的风速时程转化为输电塔模型上的结点力,通过在时间域内直接求解运动微分方程求得结构的响应[7|,图4给出了SZl2塔上导线横担高度处塔身位移及加速度时程曲线。

在已经进行风振时程响应分析的基础上,风振系数直接根据其定义进行计算,其中峰值保证因子取2.2。SZl2塔时程计算求得的最终的风振系数值情况见图4。沿塔身高度,风振系数加权一6——值日=∑Bhi/Shi=1.433,由于该结果为风荷载的动力时程分析计算所得,其值代表风振动力的实际情况,故不对其加权值进行调整。此外,图5中也给出了自编风振系数计算程序和荷载规范的计算结果(加权值调整到1.6)。

时间(s)

频率(Hz)

图3塔顶高度处的模拟风速时程曲线及风速谱

图48Z'I'2塔上导线横担高度处塔身位移

及加速度时程曲线

图5风振系数计算值沿高度变化曲线可以看出:风振系数曲线在上、中、下三个导线横担处出现明显的突变。这是由输电塔结构特殊的结构外形特点造成的,其在横担处的质量和挡风面积的突变使其高度所在处的风振系数明显大于普通沿高度截面均匀变化的高耸结构相应高度的

SPF_EIALSTRL『Cn珉l=sNo.320103

籁帕鞲匠

万方数据

万方数据

万方数据

输电塔的风振系数计算与程序设计

作者:邓洪洲, 司瑞娟, 吴昀, Deng Hongzhou, Si Ruijuan, WuJun

作者单位:邓洪洲,司瑞娟,Deng Hongzhou,Si Ruijuan(同济大学建筑工程系,上海,200092), 吴昀,WuJun(福建省电力勘测设计院,福州,350003)

刊名:

特种结构

英文刊名:SPECIAL STRUCTURES

年,卷(期):2010,27(3)

参考文献(7条)

1.钱锡汇输电钢管塔风振响应理论及实验研究 2009

2.邓洪洲;张永飞输电塔风振响应研究[期刊论文]-特种结构 2008(02)

3.吴昀输电高塔风振系数研究 2007

4.张相庭结构顺风向风振的规范表达式及有关问题的分析[期刊论文]-建筑结构 2004(07)

5.DL/T 5154-2002,架空送电线路杆塔结构技术规定

6.GB 50009-2001,建筑结构荷载规范 2001

7.邓洪洲;司瑞娟特高压大跨越输电塔动力特性和风振响应分析[期刊论文]-建筑科学与工程学报 2008(04)

本文链接:https://www.360docs.net/doc/726231584.html,/Periodical_tzjg201003002.aspx

结构阻尼比对单管塔风荷载计算的影响分析

结构阻尼比对单管塔风荷载计算的影响分析 结构阻尼比对单管塔风荷载计算的影响分析结构阻尼比对单管塔风荷载计算的影响分析屠海明1张帆2 (1.同济大学建筑设计研究院(集团)有限公司上海200092;2.中国铁塔股份有限公司北京100142)摘要:为了分析结构阻尼比对单管塔风荷载计算的影响,本文进行了阻尼比不同取值时风振系数的计算对比。结果表明风振系数随着结构阻尼比的增加而显著下降。然后根据上海某单管塔实测得到的阻尼比与规范规定的阻尼比取值,分别对该单管塔风荷载进行了计算对比。实测的阻尼比大于规范规定的取值,相应计算得到的风荷载也明显降低。这给单管塔的优化设计提供了参考依据。关键词:阻尼比单管塔风荷载引言近年来随着通信基站建设的发展,对通信塔的专业化、标准化提出了更高的要求。对于单管塔的设计和制作而言,起控制作用的荷载是风荷载,得到相对准确的风荷载设计值,对于每年数万座标准化生产的单管塔而言,具有很重要的经济意义。本文作者[1]根据2012年调整前后的荷载规范,对高耸结构的风荷载进行了分析与对比,并提出了《高耸结构设计规范》(GB 50135-2006)中风荷载部分条文的修改意见。但是以上分析没有专门涉及结构阻尼比对于风荷载计算的影响分析。同济大学何敏娟[2]等采用激振法对336m黑龙江电

视塔进行了模态参数的实测和分析,实测结构一阶阻尼比为0.028,大于规范规定值0.02。同济大学闫祥梅等[3]对位于河北的辛安-衡水500kV线路工程的几座直线输电塔转角塔进行了环境脉动下的动力测试。同济大学设计院梁峰[4]对上海新国际博览中心展馆两侧的30m高钢结构灯杆进行 了微风振动下的动力测试,得到了灯杆的自振频率和阻尼比。本文作者对上海移动两座单管塔进行了微风振动下的动力测试,并根据实测结果,与规范规定值对比,探讨结构阻尼比对单管塔风荷载计算的影响。 1 阻尼比对风荷载计算的影响结构阻尼比用于表达结构阻尼的大小,是描述结构在振动过程中能量耗散的术语。引起结构能量耗散的因素很多,主要有:材料阻尼,周围介质对振动的阻尼,节点、支座连接处的阻尼等。结构阻尼对结构效应的影响体现在结构的风致振动中,对于高耸结构的风振分析,比较准确的是采用频率域和时间域的动力分析方法。实际工程中,为了方便应用,按照荷载规范计算等效风荷载,用静力分析方法计算结构风效应。因此,结构阻尼比对风荷载计算的影响,主要体现在风振系数的计算上。《建筑结构荷载规范》(GB 50009-2012)中风振系数的表达式为:其中:g为峰值因子;I10为10m高名义湍流强度;Bz为背景分量因子;共振分量因子R表示与频率有关的积分项,可按下列公式计算:其中:ζ1为结构阻尼比;f1为结构第1阶自振频率;kw为

阵风系数和风振系数

风速包括两部分,10分钟平均风速+脉动风速;相应风压也包括两部分,平均风压+脉动风压。 如果结构较柔,应考虑结构共振,即乘以风振系数。对于刚度较大的结构(T<0.25s),荷载规范规定可以不考虑风振影响 问题: 1、结构刚度较大,可不考虑共振,取风振系数=1。即只考虑平均风压,而不考虑瞬间风压增大,是否正确? 2、阵风系数,是考虑瞬间风速增大时风压相应增大,对平均风压值的放大系数,和结构振动周期无关。如果结构刚度较大不考虑共振,风压应为平均风压乘以阵风系数;如刚度较小,应考虑共振,风压应为平均风压乘以风振系数。风振系数应是阵风系数基础上考虑了共振影响,应比阵风系数更大的一个值。这个说法对不对? A: 结构刚度较大,可不考虑风荷载作用在结构上引起的动力放大,取风振系数=1。此时不需要再考虑瞬间风压增大。考虑瞬间风压体现在阵风系数上,用于围护结构的设计。考虑瞬间风压是由于玻璃幕墙等围护结构是脆性材料,因而将风速的时距由10分钟变为3秒(瞬时),具体就是将平均风压乘阵风系数。若结构刚度较小,要考虑风荷载作用在结构上引起的动力放大,即将平均风压乘风振系数,风振系数是通过结构随机振动计算得到的等效风荷载相对于平均风压的放大,与阵风系数无关。 B:(1)《建筑结构荷载规范》关于风荷载部分的第一条就规定,风振系数是用于结构整体设计;阵风系数是用于围护结构设计(如玻璃幕墙,膜结构等)。 (2)阵风系数与结构的动力特性无关,仅与风压时程的统计特性有关,也不能简单的认为是10分钟平均换算到3秒平均,应该是在统计的基础上、在一定失效概率的基础上的统计值,滦贵汉的硕士论文应该就是做了这个方面的工作(峰值因子的选取)。在规范中,简单的将阵风系数仅与高度有关,不能考虑建筑的干扰作用。最佳的做法应该是在风洞试验的基础上再通过统计的方法确定。 (3)结构刚度无穷大,也不能取风振系数=1。风振系数是随时间变化的风压对结构作用引起的结构响应的放大,一般认为包括三个部分:1)风压自身的脉动值对响应的放大;2)结构动力特性对响应的放大;3)气弹效应对结构的放大。结构刚度无穷大,只能认为第二项可以忽略不计(此时第3项当然也没有),脉动风压的影响还在,因此不能

输电线路风荷载的全方位计算

输电线路风荷载的全方位计算 摘要:在高压架空送电线路设计中,最不利风向时的风荷载常决定着杆塔内力大小或基础作用力的大小。本文将通过几个工程实例详细说明在高压架空送电线路设计中,如何确定几种特殊情况下最不利风向时的风荷载计算,以确保高压架空送电线路的安全运行。 关键词:全方位;基础作用力;运行情况;不平衡张力;风荷载 Abstract: In the project design of overhead transmission lines, the most unfavorable wind direction, wind load often determines the internal force of tower or base force size. This article will through several engineering examples in detail in the overhead transmission line design, how to determine some special situations the most unfavorable wind direction wind load calculation, to ensure the high voltage overhead power transmission line safe operation. Key words: all-around; base forces; operation; unbalanced tension; wind load 1 引言 在高压架空送电线路设计中,杆塔荷载的计算应执行《110~750kV架空输电线路设计规范》(以下简称《规程》)中第10条“杆塔荷载及材料”。其中正常运行情况下,应计算的荷载组合是: 1 基本风速、无冰、未断线; 2 设计覆冰、相应风速及气温、未断线 3 最低气温、无冰、无风、未断线(适用于终端和转角杆塔) 本文主要针对上述第一种情况,在正常运行大风情况下计算铁塔内力或基础作用力时可能出现的漏洞。《电力工程高压送电线路设计手册》(第二版)第六章第二节也对这种组合也提出了更详细的规定,提出“在杆塔设计中,应取最不利的风向来计算杆塔的内力”。在一般情况下,按照这些规定计算杆塔荷载,能满足线路工程施工投产后的安全运行要求。但伴随着室温效应的影响,几年来极端气候更加频繁地出现,内地表现为超常量的下雪和降雨、沿海地区表现为强热带风暴风力的逐级增加和风球的更加飘忽不定。在这些情况下,有必要对杆塔荷载更加严谨的计算,以保证高压送电线路的安全运行。在线路设计中,不能主观臆测最不利的风向,应通过严谨的计算来确定。因此我们可利用计算机技术,模拟自然风对杆塔所有方向的冲击,全方位计算杆塔风荷载,才使计算结果正确可靠。下面就列举几个设计工程中常碰到的案例。

风荷载标准值

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:(-1) 式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的 值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μs 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 书P55页表4.2给出了各类地区风压沿高度变化系数。位于山峰和山坡地的高层建筑,其风压高系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μz 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。几种常用结构形式的风载体型系数如下图

输电塔风荷载计算

输电塔架风荷载计算 1.输电塔基本信息 本输电塔架的塔身为干字型方形塔架,总高53.5m,地处B类地区,离地10m高处的风速为33m/s,整个塔身沿高度方向分为11个风荷载计算段。 图1 塔身立面图

2.风荷载计算 2.1投影面积的计算 不考虑塔身迎风面的倾斜度,将塔身分段投影到迎风面计算净面积,根据所给角钢以及圆钢管的尺寸,计算投影面积,并计算出塔身轮廓所围的面积,以便计算每一段的挡风系数。 2.2基本风压 基本风压是以当地比较空旷平坦的地面上离地 10m 高统计所得的50年一遇 10min 平均最大风速为标准,近似计算如下: 22 2 00330.68/16001600v w kN m === 2.3 体形系数的计算 塔架体型系数s μ如下计算 ?? ? ??+++=角钢、钢管混合 钢管 角钢)1(1.1) 1(8.0)1(3.1s ηηημ η——背风面风荷载降低系数。 故各塔架段的体形系数按上式计算可得表1 表1 体型系数的计算 2.4 顺风向风振系数 由于塔形为干字型,而且高度小于75m ,故干字型塔架一阶自振周期: 10.0390.657T s ===

故塔架的第一阶自振频率1f 为: 11 1 1.52f Hz T == 塔架一阶振型系数如下计算: 44 3221346)(H z H z H z z +-= φ 对于一般竖向悬臂型结构,例如高层建筑和构架、塔架、烟囱等高耸结构,均可仅考虑结构第一振型的影响。z 高度处的风振系数z β可按下式计算 210121R B gI z z ++=β 式中g 为峰值因子,可取2.5;10I 为10m 高名义湍流强度,对应B 类地面粗糙度,可取0.14;R 为脉动风荷载的共振分量因子;z B 为脉动风荷载的背景分量因子。 R = 11305 f x x = > w k 地面粗糙度对B 类地面粗糙度分别取1.0;1ζ结构阻尼比,对钢结构可取0.01。 11()()x z a z z H z B k z ρρφμ= z ρ——脉动风荷载竖直方向相关系数; 0.795z ρ== x ρ——脉动风荷载水平方向相关系数,本算例此相关系数可取1x ρ=。 其中k=0.910,a1=0.218。

风振系数及其计算取值

风振系数及其计算取值 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

风振系数及其计算取值 科技名词定义 中文名称:风振系数英文名称:wind vibration coefficient 定义:脉动风压引起高耸建筑物的动力作用。此时风压应再乘以风振系数βz。风振系数βz与风速、脉动结构的尺度、结构固有频率、振型、结构组织以及地面粗糙度等有关。应用学科:资源科技(一级学科);气候资源学(二级学科)风振系数是指风对建筑物的作用是不规则的,风压随风速、风向的紊乱变化而不停地改变。通常把风作用的平均值看成稳定风压或平均风压,实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在该侧移附近左右振动。对于高度较大,刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,在设计中必须考虑。目前采用加大风荷载的办法来考虑这个动力效应,在风压值上乘以风振系数。当房屋高度大于30m、高宽比大于时,以及对于构架、塔架、烟囱等高耸结构,均考虑风振。( PS:对于30m以下且高宽比小于的房屋建筑,可以不考虑脉动风压影响,此时风振系数取β(z)=。对于低矮、刚度比较大的结构,脉动风压引起的结构振动效应比较小,一般不需要考虑脉动风振作用,而仅考虑平均风压作用。但是为了考虑脉动风压的影响,还是引入一个与风振系数不同的参数:阵风系数。阵风系数考虑的是脉动风压的瞬间增大系数,即脉动风压的变异效应。门式钢架也只需要考虑阵风系数。但是门式钢架规程中没有采用阵风系数。而参照美国的规范弄的,这个规范里的体型系数也是参考美国的,规程中解释已经考虑了阵风系数。这与荷载规范GB5009中的体型系数不一样。) 《建筑结构荷载规范》(GB5009-2001)在计算风荷载时提到了这两个系数,但是在结合实际工程使用中,结构上的风荷载可分为两种成分:平均风和脉动风。对应地,风对结构的作用也有静力的平均风作用和动力的脉动风作用。平均风的作用可用静力方法计算,而脉动风是随机荷载,它引起结构的振动,一般采用随机振动理论对其振动进行分析。风振系数是指结构总响应与平均风压引起的结构响应的比值。 阵风系数是考虑到瞬时风较平均风大而乘的系数,一般是阵风风速与时距10min的平均风速之间的比值。 风荷载影响较大的结构一般都要考虑风振系数,具体如何取值只能参考以往的相关类似工程。对于屋盖结构(如大跨度的看台)不应当成“围护结构”而只考虑阵风系数。 对于风振系数βz,中国建筑科学研究院建筑结构研究所规范室的意见是:高度小于30m的单层工业厂房仍可按以往实践经验不考虑风振系数,即取βz=1。 对于阵风系数βgz,中国建筑科学研究院建筑结构研究所规范室的意见是:现行规范提供的阵风系数主要是对高层建筑的玻璃幕墙结构参考国外规范

25m单管塔风荷载计算

25m灯管塔计算书 概况: 本计算书为云南联通25m灯管塔标准塔,设1个平台,分别在23m高度处,平台设计板状天线6付(迎风面积按0.45m2/付计);塔体采用圆形杆体,连接方式采用法兰连接,塔底用Q235预埋锚栓进行连接。 设计依据: 1. 设计依据: (1) 钢结构设计规范(GB 50017-2003) (2) 高耸结构设计规范(GBJ135-2006) (3) 建筑结构荷载规范(GB 5009-2001)(2006年版) (4) 移动通信工程钢塔桅结构设计规范(YD/T 5131-2005) 2. 设计荷载: 根据建设单位提出的要求确定设计荷载。 塔架设计基本风压0.45kN/m2,设计地震烈度6度。 荷载计算: 按《移动通信工程钢塔桅结构设计规范》第3.2.5条第3点,钢塔桅结构的抗震设防烈度为8度及以下时可不进行截面抗震验算,因此只验算风荷载作用下截面承载力。 华信设计建筑设计研究院(https://www.360docs.net/doc/726231584.html,) 第1 页共6 页

以下统计风荷载: 按搬运条件、制作工艺等要求,将塔段从下至上分为8000,8000,11000共3段,每段厚度分别为10mm、8mm、6mm. 对杆体,移动通信工程钢塔桅结构设计规范(YD/T 5131-2005),本塔体为折边型,体型系数取Us=1.0; 华信设计建筑设计研究院(https://www.360docs.net/doc/726231584.html,) 第2 页共6 页

内力计算: 内力计算采用ANSYS通用有限元程序,选用Beam44变截面梁单元,荷载作用简图及计算结果(位移、弯矩、剪力)如下: 华信设计建筑设计研究院(https://www.360docs.net/doc/726231584.html,) 第3 页共6 页

结构力学输电塔赛题

附件1:重庆文理学院第二届结构设计大赛题目 《山地输电塔模型设计与制作》 1 命题背景 我国是世界最大的能源消费国,能源供应能力的提升在我国主要受到能源资源分布不平衡以及各地区经济发展不平衡的制约,尤其是近年来我国能源开发加速向西部和北部转移,更使能源基地与负荷中心的距离越来越远。因此,为满足我国能源大规模、远距离输送和大范围优化配置的迫切需要,发展特高压输电通道已成必然。 输电塔(如图1所示)作为输电通道最重要的基本单元,是输电线路的直接支撑结构,为高耸构筑物。由于输电塔所处环境、地形复杂,承受包括风荷载、冰荷载、导地线荷载等多种荷载作用,其安全性和可靠性长期以来受到广大学者及设计人员的密切关注。特别是随着近年来我国土地资源紧缺以及环保要求的提高,特高压输电通道所采用的输电塔正逐步趋于大型化,出现了众多有趣的结构形式。 图1 输电塔 2 模型概述 要求设计并制作一个山地输电塔模型(以下简称“模型”),模型柱脚用自攻螺钉固定于400mm×400mm×15mm(长×宽×厚)的竹制底板上,模型底面尺寸限制在底板中央250mm×250mm的正方形区域内,如图2a所示,底板中心点为o点。 模型上须设置“低挂点”2个、“高挂点”1个用于悬挂导线,“高挂点”同时兼作“水平加载点”用于施加侧向水平荷载。低挂点应为模型最远外伸(悬臂)点,距离底板表面高度应在1000mm~1100mm范围内,2个低挂点在底板面上的投影应分别位于如图2a所示的上、下扇形圆环阴影区域内;高挂点距离底板表面高度应在1200mm~1400mm范围内,其在底板

面上的投影距离o 点不得大于350mm ,且高挂点应为模型的最高点。模型低挂点、高挂点(兼水平加载点)的竖向位置要求如图2b 所示。 (a) 俯视图 (b) 三维简图(构型仅参考) 图2 输电塔模型几何尺寸要求(mm ) 3 加载概述 山地输电塔模型的加载装置主要由承台板、下坡门架、上坡门架和侧向加载架组成,如图3所示。下坡和上坡门架均设有“低挂点”2个、“高挂点”1个,导线悬挂在下坡门架、模型和上坡门架的对应挂点上(对低挂点,门架与模型之间仅能在同侧挂点悬挂导线,如可在上(下)坡门架低挂点1ˊ(1ˊˊ)和模型低挂点1之间悬挂,禁止异侧悬挂),如图4所示。 上坡门架位置固定,下坡门架可绕o 点水平旋转,旋转角度有0°、15°、30°、45°供选择(图3和图4均以旋转30°为例)。比赛时,旋转的具体角度各参赛队相同,在模型制作前统一抽签确定。 加载前,将底板卡扣在承台板上,挂上3根导线(各参赛队相同,在模型制作前统一抽签确定)、加载盘和侧向加载引导线,此时为“空载”阶段,并在承台板上放置3个激光测距仪用于测量3根导线跨中加载盘底面至承台板面之间的净空距离。荷载施加分三级,一、二级加载均为挂线荷载,分别在指定导线的加载盘上放置砝码,三级加载是通过侧向加载引导线施加侧向水平荷载。 (400×400×15)导

风压高度变化系数

风荷载: 风荷载(wind load)空气流动对工程结构所产生的压力。其大小与风速的平方成正比,即 式中ρ为空气质量密度,va和vb分别为风法结构表面前与结构表面后的风速。 基本含义: 风荷载也称风的动压力,是空气流动对工程结构所产生的压力。风荷载ш与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。中国的地理位置和气候条件造成的大风为:夏季东南沿海多台风,内陆多雷暴及雹线大风;冬季北部地区多寒潮大风,其中沿海地区的台风往往是设计工程结构的主要控制荷载。台风造成的风灾事故较多,影响范围也较大。雷暴大风可能引起小范围内的风灾事故。 计算公式: 垂直于建筑物表面上的风荷载标准值,应按下述公式计算: 1 当计算主要承重结构时,按式:wk=βzμsμzWo 式中wk—风荷载标准值(kN/m2); βz—高度z 处的风振系数; μs—风荷载体型系数; μz—风压高度变化系数; Wo—基本风压(kN/㎡)。 2 当计算围护结构时,按式:wk=βgzμslμzWo

式中βgz—高度z 处的阵风系数; μsl--风荷载局部体型系数。 风荷载是膜结构设计控制荷载之一,一般作为静荷载进行结构分析。组合值为0 6、频遇值为0 4、准永久值系数为O。 风振系数,指将lOmin平均风压系数转化为瞬时风压系数,同时考虑风荷载脉动与结构动力之间的谐振效应。风振系数不仅与建筑场地有关,且与结构自振特性有关,很难给出“准确值”c大型空间结构属柔性结构体系,自振频率小,振形密集,以至存在大量同频率振形,振形间模态相关性强。对动力效应起作用的频率多,且低阶振形并不一定为主振形,某些高阶振形动力效应反而大。因此,不能用低阶或某阶振形频率确定风振系数,需要综合评价结构整体动力特性,结合既往相似工程,选取合理值。

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

杆塔计算原则

皖电东送淮南—上海输变电工程杆塔荷载及铁塔计算原则 中国电力工程顾问集团公司 二〇〇八年九月

目录 1设计依据 (1) 1.1 技术标准及规程规范 (1) 1.2 设计气象条件 (1) 1.3 导地线参数 (2) 1.4 绝缘子及金具等相关参数 (2) 1.5 地线保护角 (3) 2荷载取值原则 (4) 2.1 重现期及结构重要性系数 (4) 2.2 荷载 (4) 3杆塔荷载条件 (9) 3.1 水平档距 (9) 3.2 垂直档距 (9) 3.3 代表档距 (10) 3.4 最大使用档距 (10) 3.5 Kv值 (10) 4荷载工况 (10) 4.1正常运行 (10) 4.2 断线工况 (11) 4.3 不均匀冰工况 (11) 4.4 安装工况 (11) 4.5 终端杆塔 (12) 4.6 验算情况 (12) 4.7 抗串倒塔荷载 (12) 4.8 OPGW开断塔 (12) 4.9 气象区分界塔 (13) 5其它 (13)

1.设计依据 1.1 技术标准及规程规范 适用于电力送电线路工程项目的法令、法规、标准、规程、规范、规定等的最新有效版本。主要标准如下: (1)《架空送电线路基础设计技术规定》(DL/T 5219-2005); (2)《送电线路铁塔制图和构造规定》(DLGJ136-1997); (3)参照执行《110-750kV架空输电线路设计技术规范》(报批稿)、《架空送电线路杆塔结构设计技术规定》(DL/T5154-2002)、《重覆冰架空输电线路设计技术规程》(报批稿)及其他有关规程、规范、技术规定和参考资料; (4)《1000kV交流架空输电线路设计暂行技术规定》(Q / GDW 178-2008); (5)本工程相关专题研究报告; (6)中国电力工程顾问集团公司出台的特高压相关规定。 1.2 设计气象条件 设计气象条件表

风荷载规范讲解幻灯片[1].ppt分析

风荷载的修订内容 --修订了风压和雪压的基准值 --调整了地面粗糙度类别 --通过高度变化系数的修正,考虑地形地貌的影响 --在风荷载体型系数方面强调了风洞试验的意义 --明确区分主要承重结构和围护结构的风荷载,对围护结构给出相应的阵风系数,要求考虑封闭房屋的内压影响,对局部体型系数进行了调整 --对圆形截面的柔性结构增加横风向风振的计算 --对高层建筑群体提出考虑相互干扰的效应

风雪荷载基准值的调整 --- 设计基准期的概念 --- 统一的设计基准期采用50年 --基本雪压 雪荷载的基准压力,一般按当地空旷平坦地面上积雪自重的观测数据,经概率统计得出50年一遇最大值确定。 --基本风压 风荷载的基准压力,一般按当地空旷平坦地面上10m 高度处10min 平均的风速观测数据,经概率统计得出50年一遇最大值确定的风速,再考虑相应的空气密度,按公式 确定的风压。 --- 附录D 全面提供了确定风雪荷载 的方法和与设计有关的数据 2/200v w ρ=

风压高度变化系数 (曝露系数) 地面粗糙度分为A、B、C和D四类 A类——近海海面和海岛、海岸、湖岸及沙漠地区 B类——田野、乡村、丛林、丘陵及房屋比较稀疏的乡镇和城市郊区 C类——有密集建筑群的城市市区 D类——有密集建筑群且房屋较高的城市市区

类 别 A B 各国规范 GB ISO ASCE GB ISO ASCE a 0.12 0.11 0.10 0.16 0.14 0.14 k p 1.38 1.40 1.40 1.0 1.0 1.0 类 别 C D 各国规范 GB ISO ASCE GB ISO ASCE a 0.22 0.22 0.22 0.30 0.31 0.33 k p 0.62 0.50 0.51 0.32 0.16 0.20 a μ2)10 (z k p z =

风振系数及其计算取值

风振系数及其计算取值公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

风振系数及其计算取值 科技名词定义 中文名称:风振系数英文名称:wind vibration coefficient 定义:脉动风压引起高耸建筑物的动力作用。此时风压应再乘以风振系数βz。风振系数βz与风速、脉动结构的尺度、结构固有频率、振型、结构组织以及地面粗糙度等有关。应用学科:资源科技(一级学科);气候资源学(二级学科) 风振系数是指风对建筑物的作用是不规则的,风压随风速、风向的紊乱变化而不停地改变。通常把风作用的平均值看成稳定风压或平均风压,实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在该侧移附近左右振动。对于高度较大,刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,在设计中必须考虑。目前采用加大风荷载的办法来考虑这个动力效应,在风压值上乘以风振系数。当房屋高度大于30m、高宽比大于时,以及对于构架、塔架、烟囱等高耸结构,均考虑风振。( PS:对于30m以下且高宽比小于的房屋建筑,可以不考虑脉动风压影响,此时风振系数取β(z)=。对于低矮、刚度比较大的结构,脉动风压引起的结构振动效应比较小,一般不需要考虑脉动风振作用,而仅考虑平均风压作用。但是为了考虑脉动风压的影响,还是引入一个与风振系数不同的参数:阵风系数。阵风系数考虑的是脉动风压的瞬间增大系数,即脉动风压的变异效应。门式钢架也只需要考虑阵风系数。但是门式钢架规程中没有采用阵风系数。而参照美国的规范弄的,这个规范里的体型系数也是参考美国的,规程中解释已经考虑了阵风系数。这与荷载规范GB5009中的体型系数不一样。) 《建筑结构荷载规范》(GB5009-2001)在计算风荷载时提到了这两个系数,但是在结合实际工程使用中,结构上的风荷载可分为两种成分:平均风和脉动风。对应地,风对结构的作用也有静力的平均风作用和动力的脉动风作用。平均风的作用可用静力方法计算,而脉动风是随机荷载,它引起结构的振动,一般采用随机振动理论对其振动进行分析。风振系数是指结构总响应与平均风压引起的结构响应的比值。 阵风系数是考虑到瞬时风较平均风大而乘的系数,一般是阵风风速与时距10min的平均风速之间的比值。 风荷载影响较大的结构一般都要考虑风振系数,具体如何取值只能参考以往的相关类似工程。对于屋盖结构(如大跨度的看台)不应当成“围护结构”而只考虑阵风系数。 对于风振系数βz,中国建筑科学研究院建筑结构研究所规范室的意见是:高度小于30m的单层工业厂房仍可按以往实践经验不考虑风振系数,即取βz=1。 对于阵风系数βgz,中国建筑科学研究院建筑结构研究所规范室的意见是:现行规范提供的阵风系数主要是对高层建筑的玻璃幕墙结构参考国外规范而加以制定的,但低矮房屋是否合适,仍需通过今后的设计和科研实践给以完善。《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002)提供的风荷载计算,是根据美国有关设计手册中的试验资料确定,更能符合实际,不妨按此参考执行。 风振系数把风成份中的脉动风引起的风振效应转换成等效静力荷载所乘的系数。 阵风系数是在不考虑风振系数时,考虑到瞬时风比平均风要大所乘的系数。

大跨度平屋面的风振响应及风振系数(精)

第19卷第2期 J: 程 山学 Voll9No2 竺:三』旦 文章编号:1000-4750(2002)02.052-06 !翌2些!型2些皇竺窒 墅!:坠 大跨度平屋面的风振响应及风振系数 陆锋,楼文娟,孙炳楠 {浙江太学土木系.杭州310027) 摘要:本文在有限元分析的基础上建立了大跨度平屋面结构在风荷载作用下的M振响应谱分析方法.并采用Davenport谱和由风洞试验得到的屋盖表面的平均风压分布系数计算了屋面的风振响应及风振系数。文中还深入探讨了屋面刚度、来流风速及风向等参数对太跨度平屋面竖向风振响应及风振系数的影响。计算表明:①大跨度平尾面的竖向风振响应丰要是由第一振型所支配,高阶振型对属面板竖向风振响应的影响很小;②屋面刚度及来流风速对人跨度平屋面的轻向风振响应影响比较大,但对位移风振系数的影响不太明显:③在工程设计中,建议粟用位移风振系数来计算大跨度平屋面的等效静力风荷载。 关键词:大跨度平屋面;有限元;谱分折方法;风振响应:风振系数中图分类号:TU3II.3 文献标识码:A 1 前言 对于风流场中的屋面结构.由于在檐角处出现 本文的主要目的是结合有限元方法推导出大跨度平屋面结构在风荷载作用下的风振响应谱分析方法;然后采用Davenport谱和由风洞试验得到的屋盖表面的平均风压分布系数来计算这种屋面的风振响应及风振系数:最后通过讨论屋面刚度、来流风速及风向等参数对大跨度平屋面竖向风振响应及风振系数的影响,得出~些有益的结论,为进一步深入研究奠定基础。 来流附面层的分离而引起复杂的绕流现象以及作用在屋面结构上的气动力的复杂性,使得它常常成为风工程研究的主要对象。许多研究者对某些特定外形的屋面风荷载进行了研究,并做了大量的风洞试验,例如:双坡屋面…、四坡屋面121、有女儿墙的平屋面pJ、弧状屋面H1及柱形和球形屋面【5I等。由于这

输电塔的风振系数计算与程序设计

万方数据

万方数据

特种结构2010年第3期 课题组编制的风振系数计算程序的可行性和正确性。 3.1时程法计算风振系数及程序验证 时程分析法可以较为准确地反映结构的风振情况。根据模拟风荷载下结构的时程响应结果对szT2的风振系数进行了计算,主要处理过程及相应的计算结果如下。 基于Matlab,采用线性滤波法中的自回归(Auto.Regressive,A11)模型对风荷载进行模拟,风速谱采用Davenpoa谱,自相关函数采用Shiotami 布置立面(单位:m)行风振响应分析。故本文的时程计算中取20%的湍流度和0.02的结构阻尼比。 图3为模拟所得的塔顶高度处的风速时程曲线及风速谱。可以看出,模拟所得的风速谱与Davenpoa谱吻合良好,平均风速与理论值一致。脉动风速为零均值平稳高斯过程,在10m高度处其均方差为5.457,对应的湍流度为20.4%,基本符合目标值20%。因此,可以认为模拟所得的脉动风速谱能够模拟真实风场。 将模拟的风速时程转化为输电塔模型上的结点力,通过在时间域内直接求解运动微分方程求得结构的响应[7|,图4给出了SZl2塔上导线横担高度处塔身位移及加速度时程曲线。 在已经进行风振时程响应分析的基础上,风振系数直接根据其定义进行计算,其中峰值保证因子取2.2。SZl2塔时程计算求得的最终的风振系数值情况见图4。沿塔身高度,风振系数加权一6——值日=∑Bhi/Shi=1.433,由于该结果为风荷载的动力时程分析计算所得,其值代表风振动力的实际情况,故不对其加权值进行调整。此外,图5中也给出了自编风振系数计算程序和荷载规范的计算结果(加权值调整到1.6)。 命 \ 目 √ 删 匿 时间(s) 频率(Hz) 图3塔顶高度处的模拟风速时程曲线及风速谱 图48Z'I'2塔上导线横担高度处塔身位移 及加速度时程曲线 图5风振系数计算值沿高度变化曲线可以看出:风振系数曲线在上、中、下三个导线横担处出现明显的突变。这是由输电塔结构特殊的结构外形特点造成的,其在横担处的质量和挡风面积的突变使其高度所在处的风振系数明显大于普通沿高度截面均匀变化的高耸结构相应高度的 SPF_EIALSTRL『Cn珉l=sNo.320103 2 2 2 2 2 L l 1 l l 籁帕鞲匠 万方数据

塔基础设计的水平荷载计算

塔基础设计的水平荷载计算 摘要:本文就塔基础结构设计中水平荷载计算进行阐述,使设计者能够掌握塔基础设计工程中的关键点,从而,加深对塔基础的认识。 关键词:塔型设备风荷载地震作用 引言 塔设备是石油化工、石油工业、化学工业等生产中最重要的设备之一。塔设备由塔设备本体、塔设备附属构筑物(如操作平台、栏杆、梯子、管线等)、支持塔设备的基础这三部分组成。塔基础支持塔设备的全部荷载(包括垂直荷载、水平荷载等),所以塔基础的设计非常重要,要求达到坚固、适用、经济和合理。 塔型设备属于高耸构筑物,在高耸构筑物计算中风荷载和地震作用的计算尤为重要。在塔基础的结构设计中,应根据使用中在结构上可能同时出现的荷载,按照承载能力极限状态和正常使用极限状态分别进行荷载效应组合。 表1荷载组合表 通过表1可以发现在塔基础结构设计中无论何种工况的组合都少不了风荷载。同时地震荷载在组合中往往起着决定性作用,《石油化工塔型设备基础设计规范》(SH3030-1997)中5.4.4列出了可不进行截面抗震验算的几种情况,说明在这几种情况下风荷载起决定因素。所以下面我们重点讨论风荷载作用和水平地震作用。 1 风荷载[] 露天放置的塔设备在风力作用下,将在两个方向上产生振动。一种是顺风向的振动,振动的方向与风流向的一致,另一种是横风向的振动,振动方向与风的流向垂直。前一种振动是常规设计的主要内容,后一种振动也称风诱发的振动,在工程界以前较少予以重视,但现在对诱发振动的研究日益受到重视,而在塔设备设计的时候考虑风诱发的振动已成为必然的趋势。 1.1 风向风荷载(常规风荷载计算) 《石油化工塔型设备基础设计规范》(SH3030-1997)5.3.1条给出了塔风

输电线路杆塔结构风荷载分析 肖丁文

输电线路杆塔结构风荷载分析肖丁文 发表时间:2019-06-10T09:58:00.767Z 来源:《电力设备》2019年第3期作者:肖丁文[导读] 摘要:为保障输电工程项目的顺利实施,应采取相应的措施提高输电线路杆塔结构风荷载分析水平。(国网四川省电力公司达州供电公司)摘要:为保障输电工程项目的顺利实施,应采取相应的措施提高输电线路杆塔结构风荷载分析水平。本文从输电线路杆塔结构风压、最大风时距及风向变化系数及风荷载的比较等方面对输电线路杆塔结构进行额风荷载分析,以期提高为输电线路杆塔结构设计水平的提高提供一定的借鉴作用。 关键词:输电线路;杆塔;风荷载分析在高压电网的建设使用过程中,风荷载对线路的正常生产运行造成了很大的影响,风荷载分析越来越被相关从业人员所重视,其分析的准确性直接关系到输电线路运行的安全与否,因此在输电线路建设过程中应加大对输电线路杆塔结构风荷载设计的关注程度,通过采用合理的措施减少因在输电线路杆塔结构设计过程中风荷载考虑不当而造成的输电线路杆塔结构问题的出现,进而提高输电线路杆塔的建设水平。 1.风荷载概述风荷载,是指大气流动对建筑物或构筑物所产生的应力作用,风荷载的大小一般与建筑物后构筑物的外型、高度、地理位置等条件有关。作用于建筑物或构筑物上的风压一般可以通过采用实测及风洞试验的方法进行测试其大小,但对于比较重要未建设完成的建筑物或构筑物不仅需要进行实物风洞试验而且需要以建筑物为中心进行粗糙的模型试验。对于高度较高的建筑物、构筑物或对风荷载有一定要求的结构在对其结构设计时应充分考虑风荷载的作用并应在符合设计规范的前提下适当提高设计强度,以保证其使用安全性。风荷载参数主要包括基本风压、平均时距、风压高度变化系数、地面粗糙度、风速廓线、风荷载体型系数以及风振。 2.风荷载对输电线路杆塔的影响风荷载在输电线路杆塔结构设计中有着重要影响,应采取科学的方法对输电线路杆塔风荷载进行合理的计算,以保证输电线路杆塔结构设计的安全性及适用性。在对输电线路进行结构设计时,应着重做好风荷载对输电线路杆塔产生结构位移及风荷载对输电线路杆塔的刚度两方面的分析工作。(1)风速会使输电线路杆塔产生结构位移风荷载对输电线路杆塔的作用一般是无规律、无法进行预测的,属于不可抗力因素的一种。通常来说建筑物或构筑物高度不高、外立面较规则或低于规范高度的风荷载计算采用风荷载规范进行结构内力和位移的确定,其他建筑物或构筑物可根据风荷载计算规范的计算方法进行风荷载值的确定。对于高层建筑物或构筑物而言,随着高度的不断增加,风荷载也会逐渐增大,此时由荷载效应造成的位移增加过快因现象不可忽略,应采用经验公式的方法进行顶点速度效果的估算。对于输电线路杆塔而言,其电线及支撑所处位置较高,所受拉力及重力较大,风荷载对输电线路杆塔产生结构位移可以通过风洞试验来进行确定。(2)风荷载对输电线路杆塔的刚度影响输电线路杆塔结构风荷载设计主要是在考虑结构承载力的设计的基础上考虑外界自然因素(风荷载)对输电线路杆塔正常使用功能所造成的影响,保证输电线路杆塔能在风暴作用下其结构的弹性和位移状态能够保证风有-100至+100度的角度变化,当在风荷载作用下加速度小于0.005g时,其自身结构不受影响。当在风荷载作用下加速度大于0.015g时,输电线路杆塔受到一定的外力作用,进而导致杆塔的加速度增大,严重则会导致输电线路杆塔造成破坏。 3.输电线路杆塔结构的风荷载分析输电线路杆塔是输电线路建设过程中的重要环节,其施工质量直接关系着输电工程项目的成败,具有十分重要的现实意义。由于输电工程的特殊性,输电线路杆塔一般设置在山岭之中,其受到的风荷载作用较为复杂,所以对风荷载的计算就显得尤为重要。此外由于输电线路杆塔属于高柔性结构,在风荷载作用下会产生一定程度对的位移或变形,进而引起动力反应。所以在对输电线路杆进行风荷载分析时应将其划分为多个受力结构,在风荷载作用时应所划分的受力结构的分何在进行累加,按静力方法求各截面所受的力,最后汇总求得总内力。(1)输电线路杆塔结构风压的计算在进行输电线路杆塔结构风压与风速的关系的计算时很多国家采用的是风压=风速2 /16(其中风压的单位是kgf/m。风速的单位是m /s)。其他一些采用英式单位的国家一般采用风压=0.0025风速2或是风压=0.0026风速2(其中风压的单位是psf。风速的单位是mph)。在进行输电线路杆塔线路风压计算时,美国、巴基斯坦一般采用风压=0.0025风速2,输电杆塔所使用的材料为角钢时,则采用风压=0.004风速来进行计算。(2)输电线路杆塔结构最大风时距的计算在进行输电线路杆塔结构最大风时距的计算时对瞬间风速和平均风速的选取是最重要的问题。瞬间风速是指在某一时点或非常短的时间段内(2s、5s或10s平均最大风速)的平均风速。平均风速是某莫地区某段时间内的平均风速。不同国家地区对最大风速的取值也是不同的,在进行输电线路杆塔结构最大风时距的计算时应根据各地区的实际情况进行风选类别的选取及使用。(3)输电线路杆塔结构风向变化系数在进行输电线路杆塔结构风向变化系数确定时应将风向和线路正交时的风压乘以空气动力系数。当风向与输电线路间的角度为θ时,所形成的风向变化系数为正交方向的风压力、风压大小的 sin2θ,θ一般按 0°、45°、60°、90°进行计算。(4)风荷载的比较在进行风荷载的比较时应着重从标准设计方面对输电线路杆塔结构进行比较,通过采用合理的方法作出判断。具体步骤如下:首先对最大风时距和概率进行转换,将不同时点的风时距进行比较、转换。其次,假定风压弯矩比。在进行风荷载比较计算时,假设输电线路对地面为总弯矩的百分之六十,塔弯矩风压力为总弯矩百分之四十时,塔填充率应按0.2进行计算。最后,进行风荷载的比较,根据所得到的风荷载数据,进行换算、确定路线杆塔的总弯矩。结语

相关文档
最新文档