计算机图形学-作业答案-几何变换

计算机图形学-作业答案-几何变换
计算机图形学-作业答案-几何变换

几何变换:作业共10题,每题10分,总分100分

1. 有如下使用矩阵表示的三维几何变换:

????

????????????????-=??????????z y x z y x 100001010''' 辅助说明(不计成绩):

1)3*3矩阵的3个列向量与3个行向量分别形成两个基向量集,即两个坐标系,这里分别称为列坐标系与行坐标系。

2)在矩阵中,列坐标系中各基向量(矩阵的3个列向量)的坐标是在假定行坐标系为单位正交坐标系(基向量的模为1,且基向量两两正交)前提下,由行坐标系测量的坐标;相似地,行坐标系中各基向量(矩阵的3个行向量)的坐标是在假定列坐标系为单位正交坐标系的前提下,由列坐标系测量的坐标。 3)对于此题给出的矩阵,假定行坐标系单位正交,则测量出的列坐标系也单位正交;反之,假定列坐标系单位正交,则测量出的行坐标系也单位正交;此矩阵描述的是两个单位正交坐标系间的坐标系变换,矩阵是一个单位正交阵(旋转矩阵)。

(1) 试解释其中的一种运算:????

?

?????+??????????-+????

?

?????=????

?

?????100001010'''z y x z y x ; 答:

1)使用考察向量在列坐标系下测量的坐标作为系数(线性组合中的各个系数x 、

y 、z 用于调节各列基向量的模,实质上这些系数是坐标变换前,考察向量在列

坐标系下测量的坐标,否则这样的线性组合运算无意义),对矩阵中列坐标系的3个基向量实施线性组合,重新组合为考察向量后(这里理解为向量不变,坐标系、坐标变化),其坐标变换为行坐标系下测量的坐标;

2)此运算的含义是已知考察向量的列坐标系坐标,以坐标和基向量(矩阵中的列)为基础,使用线性组合得到考察向量;(简言之,由坐标计算得到向量) 3)由于3个基向量的坐标为行坐标系下的坐标,则组合后的组合向量坐标亦为行坐标系下的坐标,由此,考察向量的坐标从列坐标系坐标变换到行坐标系坐

标。

(提示:如果矩阵为单位矩阵,行、列坐标系重叠,则列坐标系基向量的坐标可视为自身测量的坐标,从而线性组合后考察向量的坐标也不发生变化)

(2) 试解释其中的一种运算:????

?

?????????

?

?????+??????????????

?

?????+??????????????

??????-=??????????z y x z y x z y x z y x T

T

T

100001010'''; 答:

1)使用列坐标系下测量的考察向量,向矩阵中行坐标系的3个行向量投影,得到考察向量在行坐标系下测量的坐标; 2)由于考察向量变换前的坐标[]T

z y x

是列坐标系下测量的(前一小题已作

解释),那么,内积(投影)运算要能够得以进行,对于矩阵中行坐标系的3个基向量,它们的坐标也必须是列坐标系下测量的,因为只有同一坐标系下测量的向量在一起运算才会有意义;

3)由于是向行坐标系各基向量投影,此运算的含义是在列坐标系下完成考察向量向行坐标系各基向量的投影运算,得到的各投影值即为考察向量在行坐标系下测得的坐标(简言之,由向量计算得到坐标);

(提示:如果矩阵为单位矩阵,行、列坐标系重叠,从而重新投影后考察向量的坐标也不发生变化)

(3) 试作图描述矩阵行向量集与列向量集分别表示的坐标系(作在同一图中)

O 、O ’

X 、Y ’

Y

X ’

Z 、Z ’

O 、O ’分别为行、列坐标系

的原点,它们是重叠的;X 、Y 、Z 是列坐标系的基向量,X ’、Y ’、Z ’是行坐标系的基向量;行坐标系与列坐标系均为单位正交坐标系,两个坐标系间有些基向量是相互重叠的。

2. 二维空间中有如下单位正交阵表示的旋转变换:

??????-222

22222

(1) 假定行向量集对应的坐标系(行坐标系)为单位正交坐标系,试作图描述

单位正交的行坐标系下,各列向量的方位,观察其是否单位正交(各列模为1,且相互正交);

(2) 假定列向量集对应的坐标系(列坐标系)为单位正交坐标系,试作图描述

单位正交的列坐标系下,各行向量的方位,观察其是否单位正交(各行模为1,且相互正交);

(3) 试结合上面两个小题的结论,试解释为何旋转矩阵的转置矩阵与逆矩阵等

价。 答:

1)此题可从矩阵列向量集的线性组合与行向量集的投影两种角度来解释,这里从行向量集(行坐标系)的角度来解释;

2)旋转矩阵为单位正交阵,用于描述两个单位正交坐标系间的坐标系变换,矩阵行向量的坐标是在列坐标系下测得的,列向量的坐标是在行坐标系下测得的;

X 、Y 为列坐标系的基向量,X ’、Y ’为行坐标系的基向量;以列坐标系测量行坐标系的基向量,相互正交。

X 、Y 为行坐标系的基向量,X ’、Y ’为列坐标系的基向量;以行坐标系测

量列坐标系的基向量,相互正交。

3)若考察向量是列向量,则它与旋转矩阵的行向量的坐标均是列坐标系下测量的,考察向量与矩阵行向量间实施的是投影运算,投影后考察向量的坐标转换到行坐标系下的坐标;

4)若要实施逆变换,将考察向量的坐标从行坐标系变换回列坐标系,则只需转置旋转矩阵,将其列变行、行变列,则行、列坐标系的地位互换,其转换结果为列坐标系下的坐标;

3. 二维空间中有如下几何变换:

??

????3231 (1) 假定行向量集对应的坐标系(行坐标系)为单位正交坐标系,试作图描述

单位正交的行坐标系下,各列向量的方位;

(2) 假定列向量集对应的坐标系(列坐标系)为单位正交坐标系,试作图描述

单位正交的列坐标系下,各行向量的方位;

(3) 对于一般矩阵,其转置与逆等价吗?

答:对于一般矩阵,其转置与逆不等价。例如本题(1)小题中的图示,使用行坐标系测量的列向量做线性组合,可以完成列坐标系到行坐标系

1

2

X

X 、Y 为列坐标系(仅为示意图,严格而言,模应为1),其余两个向量为矩阵行向量

1

3

X

X 、Y 为行坐标系(仅为示意图,严格而言,模应为1),其余两个向量为矩阵列向量

的坐标变换;如果仍然使用该图中的列向量作逆变换,则需要向这两个列向量作正交投影,完成行坐标系到列坐标系的坐标变换,但是,这样的逆变换并不能成立。因为,列坐标系到行坐标系的变换,是通过列向量线性组合来实现,由于假设行坐标系单位正交的前提下,列坐标系并不是正交坐标系,因此线性组合所体现出的坐标系性质也并不是正交坐标系,而是基于“平行四边形法则”的坐标系,简言之,行到列坐标系的变换不是正交坐标系运算得出的。于是,如果针对同一列坐标系使用正交投影来完成变换,并企图得到列坐标系线性组合的逆变换,在逻辑上是矛盾的。

4. 有如下表示三维空间内几何变换的矩阵:

????

?

?????-θθ

θθcos sin 0sin cos 00

01

若完成运算了????

?

???????????????-z y x θθ

θθ

cos sin 0sin cos 00

01

,试解释该运算对向量[]T

z y x 实施的几

何变换;若完成了运算[]????

?

?????-θθ

θθcos sin 0sin cos 00

01

z y

x

,试解释该运算对向量[]z y

x

实施的几何变换。

答:对于前一种运算,矩阵的行向量与考察向量[]T

z y x

间实施内积运算,有

坐标系变换与向量变换两种理解。观察矩阵的行向量集,矩阵为单位正交阵,可知对应的几何变换为旋转变换,第一行为行坐标系X ’轴在列坐标系下的坐标,其坐标与列坐标系X 轴在列坐标系下的坐标一致,都是单位向量的标准坐标,若理解为坐标系变换,则坐标系变换前后X 轴未发生变化,可知旋转是绕X 轴进行的,观察行坐标系中Y ’、Z’坐标轴在列坐标系下的坐标可知(可作图说明),行坐标系是列坐标系绕X 轴顺时针旋转θ角度得到的,若看作针对考察向量

[]T

z y x

的向量变换,则是向量绕X 轴逆时针旋转θ角度。

对于后一种运算,矩阵的列向量与考察向量[]z y

x

间实施内积运算,有坐标

系变换与向量变换两种理解。相对于第一种运算,矩阵的行列向量集互换了角色,因此,若理解为坐标系变换,行坐标系是绕X 轴逆时针旋转θ角度得到的,若看作针对考察向量[]z y

x 的向量变换,

则是向量绕X 轴顺时针旋转θ角度。

5. 三维空间中给定一单位向量[

]

T

z y

x

r r r ,

若要求实现绕该向量旋转角度θ的几何变换,试给出一种旋转矩阵的计算方法。 答:

(1)若要围绕[

]

T

z y

x

r r r 旋转,则需要先作坐标系变换(坐标系旋转)

,将X 、Y 、Z 轴其中之一变换为[

]

T

z y

x

r r r ,这里选用Z 轴,然后绕新坐标系的Z ’轴旋

转考察向量(三维空间中的几何图形),最后将坐标系恢复原样。由上述分析可知,最终的旋转矩阵可有3个矩阵相乘得到,分别用于完成坐标系旋转、图形旋转、坐标系逆向旋转(恢复)。 (2)构造坐标系旋转矩阵:[

]

T

z y

x

r r r 一定是矩阵的第3行,即新坐标系的Z ’

轴,X ’、Y ’可以任意,只要满足单位正交坐标系结构即可。因此,可任意给定一单位向量

[]

T

z

y x

a a a (不等于

[]

T

z

y x

r r r

即可),计算

[][]

T

z y

x

T

z

y x

r r r

a a a

?(其中?表示外积)

,得到的结果作为新坐标系的X ’轴,记为

[]

T

z y x X X X

'''

,即矩阵的第1行,然后计算

[][]

T

z

y

x

T

z y x

r r r X X X

?''',得到的结果作为新坐标系的Y ’轴,记为

[]

T

z y x

Y Y Y '''

,即矩阵的第2行。至此,旋转矩阵构造完毕。

(3)构造图形旋转矩阵:即绕坐标系的Z ’轴旋转θ角度(若未指定旋转方向,则默认指逆时针方向),若理解为等价的坐标系变换,新(行)坐标系是旧(列)坐标系绕Z 轴顺时针旋转θ角度得到的。矩阵第3行应为[]T

100,第1、2

行分别为新(行)坐标系的X ’、Y ’轴,对于他们在旧(列)坐标系下的坐标,应计算在旧(列)坐标系下将X 、Y 轴绕Z 轴顺时针旋转θ角度后在旧(列)坐标

系(X 、Y 、Z )下的坐标。可直接写出,X ’为[]T 0sin cos θθ-、

Y ’为[]T

0cos sin θθ(若不熟练,可先作图,然后得到坐标)。

(4)构造坐标系逆向旋转矩阵:此矩阵为第(2)步中的逆变换,单位正交阵(旋转阵)的逆矩阵等价于转置矩阵(参考第2题),因此,将(1)中所得矩阵转置即得所需的逆向旋转矩阵。

最终矩阵可写为:

????

?

???????????????-??????????z y x z y x z y x z z z y y y

x x x r r r Y Y Y X X X r Y X r Y X r Y X ''''''10

0cos sin 0sin cos ''''''θθ

θθ

6. 若要在三维空间实现平移变换,x 、y 、z 方向上的平移量分别为5、3、9,则相应的变换矩阵应如何表示?

答:平移变换需要使用齐次坐标系,具体表达如下:

?????

???????10

00910030105001

7. 三维空间中有如下组合变换:

????

????????????????-????????????????????-z y x 10

0cos sin 0sin cos 10002000310

0cos sin 0sin cos α

αααα

ααα 试解释该变换对任意向量[]T

z y x 实施的几何变换是怎样的。

答:该变换先将坐标系绕Z 轴顺时针旋转α角度,然后将图形沿新坐标系的X ’轴放大3倍,沿Y ’轴放大2倍,沿Z ’轴不放缩,沿坐标轴的放缩完成后,将坐标系绕Z 轴逆时针旋转α角度,即坐标系恢复原状。

8. (1)三维齐次坐标标准化(规范化)过程如下:(符号≌表示同射等价,即仅相差一个比例系数)

????

??????=?????????????????????1/////z y z x z z z y z x z y x 齐次坐标的标准化实质上实现了何种几何变换?

答:将三维空间中的原像点全部映射到z=1这一成像平面上,形成像点,实质上完成了针对标准成像平面(与光心间距离为1)的透视投影变换。

(2)对于标准化的三维齐次坐标,有等价坐标形式如下:

????

?????????????????1//1//z y z x d z y z x 结合齐次坐标标准化实现的几何变换,对于等价的坐标形式,应该如何理解? 答:将三维空间中的原像点全部映射到z=d 这一指定的成像平面上,是齐次坐标标准化的推广,可针对任意成像平面实施透视投影。

9. 使用透视投影,将三维空间(负z 轴半部)映射到z= -5这一平面上,对应的几何变换表示为矩阵应是怎样的? 答:

1)可以使用第8题第(2)小题中的思路:

????

??????-???????????1//51//z y z x z y z x 2)如果需要将透视投影表示为矩阵形式,则转换矩阵如下:

?????

???????-05

100

010********* 要实现透视投影,仍需要结合齐次坐标的标准化:

?????

??????????????

?????-?????????????---105

100

010*******

0115/5/5z y x z y z x (注:这里z<0)

10.对于旋转、放缩、平移、透视投影四种几何变换,

(1)可通过矩阵直接实现的是哪些?必须借助齐次坐标系实现的是哪些?

答:旋转、放缩可通过矩阵直接实现,平移、透视投影必须借助齐次坐标系实现。

(2)哪些几何变换肯定不会改变图形的形状?

答:旋转、平移不会改变图形的形状。

(3)哪种几何变换可能会改变图形的形状,但不影响其中的平行性?

答:放缩变换可能改变图形的形状,但不会影响其中的平行性。

(4)哪种几何变换可能会改变图形的形状,并且改变其中的平行性?

答:透视投影可能会改变图形形状,并且改变其中的平行性。

(5)欧式变换、线性变换、仿射变换、射影变换分别包括其中哪些变换?

答:欧式变换包括旋转、平移,不改变图形的形状和量测;线性变换包括旋转、放缩,它们都可以直接用矩阵表示;仿射变换包括旋转、平移、放缩,这些变换保持平行性;射影变换包括旋转、平移、放缩、透视投影。

计算机图形学-图形的几何变换

贵州大学实验报告 学院:计算机科学与技术专业:软件工程班级:软件132 姓名常伟学号1308060226 实验地点一教704 实验时间2016.5.9 指导教师李智实验成绩 实验项目名称试验四、图形的几何变换 实验目的1.掌握矢量运算。 2.熟练使用齐次坐标。 3.掌握采用齐次坐标进行几何变换。 实验要求1.理解几何图形变换的原理,编程实现图形的几何变换。 2.编程界面友好,实现变换的所有方式,包括平移、缩放、旋转、对称、错切以及基本变换基础上的组合变换。 3.几何变换使用矩阵进行运算。

实验原理 二维齐次坐标变换的矩阵的形式是 ? ? ? ? ? ? ? ? ? ? i h g f e d c b a 这个矩阵的每一个元素都是有特殊含义的。其中,? ? ? ? ? ? e d b a 可以对图形进行缩放、旋 转、对称和错切等变换;? ? ? ? ? ? f c 是对图形进行平移变换;[]h g是对图形作投影变换;[]i 则是对图形进行缩放变换。 下面给出几个基本变换的矩阵运算。 1.平移变换 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? 1 ) , ( 1 1 1 1 1 1 ' ' y x T y x y x t t t t t t y x y x y x y x 2.缩放变换 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 ) , ( 1 1 1 1 ' ' y x s s S y s x s y x s s y x y x y x y x 3.旋转矩阵 ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? + - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?- = ? ? ? ? ? ? ? ? ? ? 1 ) ( 1 cos sin sin cos 1 1 cos sin sin cos 1 ' ' y x R y x y x y x y x θ θ θ θ θ θ θ θ θ 4.对称矩阵 ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 1 1 1 ' ' ey dx by ax y x e d b a y x 对称变换其实只是a、b、d、e取0、1等特殊值产生的一些特殊效果。 5.错切变换 ? ? ? ? ? ? ? ? ? ? + + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 ' ' y dx by x y x d b y x

《计算机图形学》 试卷A及参考答案

()4.EGA/VGA为增强图形显示效果的一种图形处理软件的名称。 ()5.对山、水等不规则对象进行造型时,大多采用过程式模拟方法。 ()6.实体的边界由平面多边形或空间曲面片组成。 ()7.平面多面体表面的平面多边形的边最多属于两个多边形,即它的表面具有二维流形的性质。 ()8.观察空间位于前后裁剪面之间的部分称为裁剪空间或视见体。 ()9.找出并消除物体中的不可见部分,称为消隐。 ()10.使用齐次坐标可以将n维空间的一个点向量唯一的映射到n+1维空间中。 三、填空题(将正确答案填入横线上,每空2分,共20分) 1.直线的属性包括线型、和颜色。 2.颜色通常用红、绿和蓝三原色的含量来表示。对于不具有彩色功能的显示系统,颜色显示为。 3.平面图形在内存中有两种表示方法,即和矢量表示法。 4.将三维物体变为二维图形的变换称为,其有两种基本方式:平行投影、。 5.边界点组成的集合称为集合的。 6.对于一个占据有限空间的正则(点)集,如果其表面是,则该正则集为一个实体有效物体。 7.通过实体的边界来表示一个实体的方法称为。 8.表面由平面多边形构成的空间三维体称为。 9.标量:一个标量表示。 四、简答题(每小题5分,共20分) 1.什么是图像的分辨率?

2.局部光照模型和全局光照模型的不同之处是什么? 3.实体采用八叉树表示法有哪些缺点? 4.消隐算法有哪些类型,它们各有什么特点?

五、计算题(每小题11分,共22分) 1.写出直线方程b mx y +=''对应的xy 坐标方程,假设''y x 坐标系是由xy 坐标系旋转90°得到。 2.写出从),(111y x P 到),(222y x P 的段与(a )垂直线x =a , (b )水平线y =b 的交点。

计算机图形学作业-Display-答案分析

计算机图形学作业I 一.判断题 1.齐次坐标提供了坐标系变换的有效方法,但仍然无法表示无穷远的点;(×) 2.若要对某点进行比例、旋转变换,首先需要将坐标原点平移至该点,在新的坐标系下做比例或旋转变换,然后在将原点平移回去;(√) 3. 相似变换是刚体变换加上等比缩放变换;(√) 4. 保距变换是刚体变换加上镜面反射;(√) 5. 射影变换保持直线性,但不保持平行性。(√) 二、填空题 1.透视投影的视见体为截头四棱锥形状;平行投影的视见体为长方体形状。 2.字符的图形表示可以分为矢量表示和点阵表示两种形式。 3.仿射变换保持直线的平行性 4.刚体变换保持长度 5.保角变换保持向量的角度 三、单项选择题 1. 分辨率为1024×1024的显示器各需要多少字节位平面数为24的帧缓存?( D) A. 512KB; B. 1MB; C. 2MB; D. 3MB ; 2. 在透视投影中,主灭点的最多个数是( C ) A 1; B 2; C 3; D 4 3. 以下关于图形变换的论述不正确的是( B ) A. 平移变换不改变图形大小和形状,只改变图形位置; B. 拓扑关系不变的几何变换不改变图形的连接关系和平行关系; C.旋转变换后各图形部分间的线性关系和角度关系不变,变换后直线的长度不变 D.错切变换虽然可引起图形角度的改变,但不会发生图形畸变; 4. 使用下列二维图形变换矩阵:将产生变换的结果为( D ) A. 图形放大2倍; B. 图形放大2倍,同时沿X、Y1个绘图单位; C.沿X坐标轴方向各移动2个绘图单位; D.沿X坐标轴方向放大2倍,同时沿X、Y坐标轴方向各平移1个绘图单位。 5. 下列有关投影的叙述语句中,正确的论述为(B ) A. 透视投影具有近小远大的特点; B. 平行投影的投影中心到投影面距离是无限的; C. 透视投影变换中,一组平行于投影面的线的投影产生一个灭点; T =

图形的几何变换

《计算机图形学》上机实习报告(一)——基本图形的生成 一、实习目的和要求 1、目的 深入学习三种基本几何变换的原理和方法,以及错切、镜像变换同上的类同性, 同时,在掌握基本几何变换的基础上理解组合变换的实现机制,掌握几何变换 的共同特点; 通过程序的编写和运行,学习基本几何变换在程序上的实现方法,这就要求掌 握结构体、一维数组的基本性质和使用方法; 进一步锻炼使用WIN-TC的熟练程度。 2、要求 实现平移变换、比例变换、旋转变换三种基本几何变换; 实现镜像变换、错切变换; 二、运行环境 本次上机在WIN-TC 中进行。 三、直线的生成——用Bresenham算法实现 1、算法基本原理 图形的几何变换一般是指对图形的几何信息经过变换后产生新的图形,图形几何变换既可以看作是坐标系不动而图形变动,变动后的图形在坐标系中的坐标值发生变化;出可以看作图形不动而坐标系变动,变动后的图形在新坐标系下具有新的坐标值。这两种情况本质上都是一样的,都是图形由新的坐标值表示,因此是新产生的图形。图形几何变换包括比例变换、对称变换、错切变换、旋转变换、平移变换及其复合变换。图形上所有的点在几何变换前后的坐标关系一般用解析几何方法可以求得,但这些几何关系用矩阵方法表示,运算更为方便。 图形基本几何变换是指比例变换、对称变换、错切变换、旋转变换和平移变换等。变换通过矩阵运算均可以表示为表示几何图形的点阵的一维矩阵和表示变换的三维矩阵相乘的形式,即P’=P·T,具体如下: 平移变换

比例变换 旋转变换 对称变换 对称于x轴对称于y轴对称于原点 对称于y=x 对称于y=-x 错切变换 沿x轴方向关于y的错切 沿y轴方向关于x的错切 2、对程序中变量的说明 3、源程序 4、运行结果 5、个人总结

计算机图形学教程课后习题参考答案.

第一章 1、试述计算机图形学研究的基本内容? 答:见课本P5-6页的1.1.4节。 2、计算机图形学、图形处理与模式识别本质区别是什么?请各举一例说明。 答:计算机图形学是研究根据给定的描述,用计算机生成相应的图形、图像,且所生成的图形、图像可以显示屏幕上、硬拷贝输出或作为数据集存在计算机中的学科。计算机图形学研究的是从数据描述到图形生成的过程。例如计算机动画制作。 图形处理是利用计算机对原来存在物体的映像进行分析处理,然后再现图像。例如工业中的射线探伤。 模式识别是指计算机对图形信息进行识别和分析描述,是从图形(图像)到描述的表达过程。例如邮件分捡设备扫描信件上手写的邮政编码,并将编码用图像复原成数字。 3、计算机图形学与CAD、CAM技术关系如何? 答:见课本P4-5页的1.1.3节。 4、举3个例子说明计算机图形学的应用。 答:①事务管理中的交互绘图 应用图形学最多的领域之一是绘制事务管理中的各种图形。通过从简明的形式呈现出数据的模型和趋势以增加对复杂现象的理解,并促使决策的制定。 ②地理信息系统 地理信息系统是建立在地理图形基础上的信息管理系统。利用计算机图形生成技术可以绘制地理的、地质的以及其它自然现象的高精度勘探、测量图形。 ③计算机动画 用图形学的方法产生动画片,其形象逼真、生动,轻而易举地解决了人工绘图时难以解决的问题,大大提高了工作效率。 5、计算机绘图有哪些特点? 答:见课本P8页的1.3.1节。 6、计算机生成图形的方法有哪些? 答:计算机生成图形的方法有两种:矢量法和描点法。 ①矢量法:在显示屏上先给定一系列坐标点,然后控制电子束在屏幕上按一定的顺序扫描,逐个“点亮”临近两点间的短矢量,从而得到一条近似的曲线。尽管显示器产生的只是一些短直线的线段,但当直线段很短时,连成的曲线看起来还是光滑的。 ②描点法:把显示屏幕分成有限个可发亮的离散点,每个离散点叫做一个像素,屏幕上由像素点组成的阵列称为光栅,曲线的绘制过程就是将该曲线在光栅上经过的那些像素点串接起来,使它们发亮,所显示的每一曲线都是由一定大小的像素点组成的。当像素点具有多种颜色或多种灰度等级时,就可以显示彩色图形或具有不同灰度的图形。 7、当前计算机图形学研究的课题有哪些? 答:见课本P10-11页的1.4节。

计算机图形学--图形几何变换实现

实验五 图形几何变换的实现 班级:信计二班 学号: :解川 分数: 一、实验目的 为了掌握理解二维、三维的数学知识、变换原理、变换种类、变换方法;进一步理解采用齐次坐标进行二维、三维变换的必要性;利用VC++语言实现二维、三维图形的基本变换与复合变换。 二、实验容 (1) 理解采用齐次坐标进行图形变换的必要性——变换的连续性,使复合变换 得以实现。 (2) 掌握二维、三维图形基本变换的原理及数学公式。 (3) 利用VC++语言实现二维、三维图形的基本变换、复合变换,在评不上显 示变换过程或变换结果。 三、实验步骤 (1) 预习教材关于二维、三维图形变换的原理与方法。 (2) 使用VC++语言实现某一种或几种基本变换。 (3) 调试、编译、运行程序。 四、原理分析 源程序分别实现了对二维图形进行的平移变换—基本变换;对三维图形进行的绕某一个坐标轴旋转变换以及相对于立方体中心的比例变换—复合变换。 三维几何变换: (1) 比例变换: []1111z y x =[]1z y x T 3D =[]1z y x ????? ?? ?? ???s n m l r j i h q f e d p c b q 局部比例变换: s T =? ? ??? ???? ???1000000000000j e a 其中a 、b 、j 分别为在x 、y 、z 方向的比例系数。

整体比例变换: s T =? ? ??? ???? ???s 000010000100001其中s 为在xyz 方向的等比例系数。S>1时,整体缩小;s<1时,整体放大。 (2) 旋转变换: 旋转变换的角度方向为(沿坐标轴的反方向看去,各轴按逆时针方向旋转) 绕z 轴旋转: RZ T =?? ??? ???? ???-100 010000cos sin 00sin cos θθθθ 绕x 轴旋转: RX T =??????? ?? ???-10 00 0cos sin 00sin cos 000 01 θθθθ 绕y 轴旋转: RY T =????? ???? ???-10 0cos 0sin 00100sin 0cos θθθθ 程序代码: /*三维图形(立方体)旋转变换、比例变换*/ #include #include #include #include #include #include #define ZOOM_IN 0.9 #define ZOOM_OUT 1.1

《计算机图形学》复习试题

计算机图形学模拟试卷 计算机图形学课程试卷(卷) 注意:1、本课程为必修(表明必修或选修),学时为 51 ,学分为 3 2、本试卷共 3 页;考试时间 120 分钟;出卷时间:年 12 月 3、姓名、学号等必须写在指定地方;考试时间:年 1 月 11 日 4、本考卷适用专业年级:任课教师: (以上内容为教师填写) 专业年级班级 学号姓名 一、名词解释(15分) 1.国际标准化组织(ISO)对计算机图形学的定义

2. 象素图 3. 正投影 4. 纹理 5. 位图 二.单项选择题(1.5×10=15分) ( )1、在TC 环境下编译绘图程序进行图形初始化时,要寻找文件的格式是?______。 A ).DOC B ).CPP C ).C D ).BGI ( )2、图形系统是由四部分组成,分别为 A).应用系统结构;图形应用软件;图形支撑软件;图形设备。 B).计算机;显示器;打印机;图形应用软件。 C).计算机;图形设备;图形支撑软件;图形应用软件。 D).计算机;图形软件;图形设备;应用数据结构。 ( )3、使用下列二维图形变换矩阵: T=???? ??????111020002 将产生变换的结果为______ 。 A )图形放大2倍; B )图形放大2倍,同时沿X 、Y 坐标轴方向各移动1个绘图单位; C )沿X 坐标轴方向各移动2个绘图单位; D )上述答案都不对。 ( )4、图形显示器的工作方式为 A ).文本方式 B ).图形方式 C ).点阵方式 D ).文本与图形方式 ( )5、透视投影中主灭点最多可以有几个? A) 3 B)2 C)1 D)0 ( )6、在用射线法进行点与多边形之间的包含性检测时,下述哪一个操作不正确? A) 当射线与多边形交于某顶点时且该点的两个邻边在射线的一侧时,计数0次 B) 当射线与多边形交于某顶点时且该点的两个邻边在射线的一侧时,计数2次 C) 当射线与多边形交于某顶点时且该点的两个邻边在射线的两侧时,计数1次 D) 当射线与多边形的某边重合时,计数1次 ( )7、下列有关平面几何投影的叙述语句中,正确的论述为

计算机图形学5套模拟题

组卷规则:每套模拟题5个问答或者计算或者证明题,每题20分。 《计算机图形学基础》模拟试题(1) 1、简述Cohen-Sutherland 裁剪方法的思想,并指出与之相比,中点裁剪方法的改进之处,及这种改进的理由。 答:Cohen-Sutherland 裁剪算法的思想是:对于每条线段分为三种情况处理。(1)若完全在窗口内,则显示该线段简称“取”之。(2)若明显在窗口外,则丢弃该 线段,简称“弃”之。(3)若线段既不满足“取”的条件,也不满足“弃”的条件,则求线段与窗口交点,在交点处把线段分为两段。其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。中点分割算法的大意是,与Cohen-Sutherland 算法一样首先对线段端点进行编码,并把线段与窗口的关系分为三种情况: 全在、完全不在和线段和窗口有交。对前两种情况, 进行同样的处理。对于第三种情况,用中点分割的方法求出线段与窗口的交点。即从点出发找出距最近的可见点A和从点出发找出距最近的可见点B,两个可见点之间的连线即为线段的可见部分。从出发找最近可见点采用中点分割方法:先求出的中点,若不是显然不可见的,并且在窗口中有可见部分,则距最近的可见点一定落在上,所以用代替;否则取代替。再对新的求中点。重复上述过程,直到长度小于给定的控制常数为止,此时收敛于交点。 改进之处在于,对第三种情况,不直接解方程组求交,而是采用二分法收搜索交点。这种改进的理由是:计算机屏幕的象素通常为1024×1024,最多十次二分搜索即可倒象素级,必然找到交点。而且中点法的主要计算过程只用到加法和除2运算,效率高,也适合硬件实现。 2、在Phong 模型 中,三项分别表示何含义?公式中的各个符号的含义指什么? 答:三项分别代表环境光、漫反射光和镜面反射光。为环境光的反射光强,为理想漫反射光强,为物体对环境光的反射系数,为漫反射系数,为镜面反射系数,为高光指数,L 为光线方向,N 为法线方向,V 为视线方向,R 为光线的反射方向。

计算机图形学第二版课后习题答案

第一章绪论 概念:计算机图形学、图形、图像、点阵法、参数法、 图形的几何要素、非几何要素、数字图像处理; 计算机图形学和计算机视觉的概念及三者之间的关系; 计算机图形系统的功能、计算机图形系统的总体结构。 第二章图形设备 图形输入设备:有哪些。 图形显示设备:CRT的结构、原理和工作方式。 彩色CRT:结构、原理。 随机扫描和光栅扫描的图形显示器的结构和工作原理。 图形显示子系统:分辨率、像素与帧缓存、颜色查找表等基本概念,分辨率的计算 第三章交互式技术 什么是输入模式的问题,有哪几种输入模式。 第四章图形的表示与数据结构 自学,建议至少阅读一遍 第五章基本图形生成算法 概念:点阵字符和矢量字符; 直线和圆的扫描转换算法; 多边形的扫描转换:有效边表算法; 区域填充:4/8连通的边界/泛填充算法;

内外测试:奇偶规则,非零环绕数规则; 反走样:反走样和走样的概念,过取样和区域取样。 5.1.2 中点 Bresenham 算法(P109) 5.1.2 改进 Bresenham 算法(P112) 习题答案

习题5(P144) 5.3 试用中点Bresenham算法画直线段的原理推导斜率为负且大于1的直线段绘制过程(要求写清原理、误差函数、递推公式及最终画图过程)。(P111) 解: k<=-1 |△y|/|△x|>=1 y为最大位移方向 故有 构造判别式: 推导d各种情况的方法(设理想直线与y=yi+1的交点为Q): 所以有: y Q-kx Q-b=0 且y M=y Q d=f(x M-kx M-b-(y Q-kx Q-b)=k(x Q-x M) 所以,当k<0, d>0时,M点在Q点右侧(Q在M左),取左点 P l(x i-1,y i+1)。 d<0时,M点在Q点左侧(Q在M右),取右点 Pr(x i,y i+1)。 d=0时,M点与Q点重合(Q在M点),约定取右点 Pr(x i,y i+1) 。 所以有 递推公式的推导: d2=f(x i-1.5,y i+2) 当d>0时, d2=y i+2-k(x i-1.5)-b 增量为1+k =d1+1+k

(计算机图形学)关于任意直线的对称变换

实验3:关于任意直线的对称变换 实验类型:验证、设计 所需时间:3学时 主要实验内容及要求: 对于任意直线的二维图形对称变化的实验,要求输入的直线是任意直线,直线的端点只能由键盘输入或者鼠标拾取,要做对称变换的图形也是一个任意图形(至少应是一个任意多边形)。 对称变换,先分析如何使用一系列简单变换来构造题目要求的复合变换。本体要实现的变换可以用如下一组变换组合来实现: ①将直线任一点移至与坐标原点重合 ②将平移后的直线绕原点旋转至与某一坐标轴重合 ③将题目要求的对称变换转为实现已知图形关于上述坐标轴的对称变换 ④按逆序求上述①、②变换的逆变换 ⑤将上述矩阵依次相乘得到最终的复合变换矩阵 则某一多边形关于任意直线的对称变换就转变为将该多边形的各顶点与上述求得的复合变换进行矩阵乘法,求得变换后的新多边形的各个顶点坐标。 根据上述流程,编程实现,并测试程序功能。 源代码: #include #include using namespace std;

void Initial(void) { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } class CPoint { public: int x; int y; CPoint(){} CPoint(int x1,int y1) { x=x1; y=y1; } static CPoint ZeroMoveToXY(CPoint p, CPoint XY);//原始坐标向屏幕坐标XY 的平移 static CPoint ToZero(CPoint p);//关于原点对称 static CPoint XYMoveToZero(CPoint p, CPoint XY);//XY坐标向屏幕坐标的平移

计算机图形学模拟题

计算机图形学试题B 2011/2012学年第一学期期末试题 一、选择题(每小题5分,共30分) 1. 分辨率为1024×1024的显示器各需要多少字节位平面数为24的帧缓存?( ) A)512KB B) 1MB C) 2MB D)3MB 2. 在直线的 Bresenham 算法中,若直线的斜率 |m|>1 ,且 y1

图像的几何变换的两种实现(旋转、平移、放大、缩小)

面向对象程序设计 学号:2 学生所在学院:信息工程学院 学生姓名:邵丽群 任课教师:熊邦书 教师所在学院:信息工程学院

2013级 实现图像的几何变换 电子信息工程 信息工程学院 摘要:几何变换是最常见的图像处理手段,通过对变形的图像进行几何校正,可以得出准确的图像。常用的几何变换功能包括图像的平移、图像的镜像变换、图像的转置、图像的缩放、图像的旋转等等。目前数字图像处理的应用越来越广泛,已经渗透到工业、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。作为数字图像处理的一个重要部分,本文接受的工作是如何Visual C++编程工具设计一个完整的应用程序,实现经典的图像几何变换功能。程序大概分为两大部分:读写BMP图像,和数字图像的几何变换。即首先用Visual C++创建一个单文档应用程序框架,在实现任意BMP图像的读写,打印,以及剪贴板操作的基础上,完成经典的图像几何变换功能。图像几何变换的Visual C++编程实现,为校内课题的实现提供了一个实例。 关键字:图像处理;几何变换(图像的平移、缩放、转置、旋转和镜像变换);BMP图像;Visual C++

一、引言 图像几何变换是指用数学建模的方法来描述图像位置、大小、形状等变化的方法。在实际场景拍摄到的一幅图像,如果画面过大或过小,都需要进行缩小或放大。如果拍摄时景物与摄像头不成相互平行关系的时候,会发生一些几何畸变,例如会把一个正方形拍摄成一个梯形等。这就需要进行一定的畸变校正。在进行目标物的匹配时,需要对图像进行旋转、平移等处理。在进行三维景物显示时,需要进行三维到二维平面的投影建模。因此,图像几何变换是图像处理及分析的基础。 图像几何变换是计算机图像处理领域中的一个重要组成部分,也是值得深讨的一个重要课题。在图像几何变换中主要包括图像的放缩、图像的旋转、图像的移动、图像的镜像、图像的块操作等内容,几何变换不改变图像的像素值,只改变像素所在的几何位置。从广义上说,图像是自然界景物的客观反映,是人类认识世界和人类本身的重要源泉。图像对我们并不陌生。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有75%来自视觉系统,也就是从图像中获得的。所以对数字图像的处理便显得尤为重要了。 本文主要深讨了图像的几何变换(主要包括图像的平移、转置、缩放、旋转、镜像等)理论,并在此基础上用Visual C++实现的过程。 1.3.2研究方法 方法一: 利用Windows 本身就提供了一个API函数SetWorldTransForm来实现图片旋转、位移及其他变形,这个函数是对一个设备上下文DC进行操作,通过坐标转换来实现各种功能的。 方法二: 通过图像进行平移、旋转、转置、镜像、缩放后重新计算各点新像素完成几何变换。自定义一个图像处理的Cdibapi类,把一般处理图像时要用到的函数实现封装在这个类中,该类用于实现DIB对象的绘制,DIB对象调色板的创建,DIB对象的读取与存储,图像线性变换,图像灰度拉伸等。然后把在视类中实现图像平移,图像镜像,图像转置,图像缩放及图像旋转的函数调用和实现。

计算机图形学课后习题答案

第三章习题答案 3.1 计算机图形系统的主要功能是什么? 答:一个计算机图形系统应具有计算、存储、输入、输出、交互等基本功能,它们相互协作,完成图形数据的处理过程。 1. 计算功能 计算功能包括: 1)图形的描述、分析和设计;2)图形的平移、旋转、投影、透视等几何变换; 3)曲线、曲面的生成;4)图形之间相互关系的检测等。 2. 存储功能 使用图形数据库可以存放各种图形的几何数据及图形之间的相互关系,并能快速方便地实现对图形的删除、增加、修改等操作。 3. 输入功能 通过图形输入设备可将基本的图形数据(如点、线等)和各种绘图命令输入到计算机中,从而构造更复杂的几何图形。 4. 输出功能 图形数据经过计算后可在显示器上显示当前的状态以及经过图形编辑后的结果,同时还能通过绘图仪、打印机等设备实现硬拷贝输出,以便长期保存。 5. 交互功能 设计人员可通过显示器或其他人机交互设备直接进行人机通信,对计算结果和图形利用定位、拾取等手段进行修改,同时对设计者或操作员输入的错误给以必要的提示和帮助。 3.2 阴极射线管由哪些部分组成?它们的功能分别是什么? 答:CRT主要由阴极、电平控制器(即控制极)、聚焦系统、加速系统、偏转系统和阳极荧光粉涂层组成,这六部分都在真空管内。 阴极(带负电荷)被灯丝加热后,发出电子并形成发散的电子云。这些电子被电子聚集透镜聚焦成很细的电子束,在带正高压的阳极(实际为与加速极连通的CRT屏幕内侧的石墨粉涂层,从高压入口引入阳极高电压)吸引下轰击荧光粉涂层,而形成亮点。亮点维持发光的时间一般为20~40mS。 电平控制器是用来控制电子束的强弱的,当加上正电压时,电子束就会大量通过,在屏幕上形成较亮的点,当控制电平加上负电压时,依据所加电压的大小,电子束被部分或全部阻截,通过的电子很少,屏幕上的点也就比较暗。所以改变阴极和 控制电平之间的电位差,就可调节电子 束的电流密度,改变所形成亮点的明暗 程度。 利用偏转系统(包括水平方向和 垂直方向的偏转板)可将电子束精确定 位在屏幕的任意位置上。只要根据图形 的几何坐标产生适当的水平和垂直偏转磁场(或水平和垂直偏转板静电场),图 2.2CRT原理图

计算机图形学 图形几何变换的实现

计算机图形学图形几何变换的实现

————————————————————————————————作者:————————————————————————————————日期:

实验五图形几何变换的实现 班级08信计2 学号89姓名徐阳分数 一、实验目的和要求: 1、掌握理解二维、三维变换的数学知识、变换原理、变换种类、变换方法;进一步理解采用齐次坐标进行二维、三维变换的必要性;利用Turboc实现二维、三维图形的基本变换和复合变换。 二、实验内容: 1、理解采用齐次坐标进行图形变换的必要性——变换的连续性,使复合变换得以实现。 2、掌握二维、三维图形基本变换(平移、缩放、对称、旋转、错切)的原理及数学公式。 3、利用Turboc实现二维、三维图形的基本变换、复合变换,在屏幕上显示变换过程或变换结果。 三、实验结果分析: 程序代码如下: /*二维图形(直线)平移变换*/ #include #include #include main() {int x0,y0,x1,y1,i,j; int a[3][3]; char key; for(i=0;i<3;i++) for(j=0;j<3;j++) a[i][j]=0; for(i=0;i<3;i++) a[i][i]=1; int graphdriver=DETECT; int graphmode=0; initgraph(&graphdriver,&graphmode," "); cleardevice(); x0=250;y0=120;x1=350;y1=220; line(x0,y0,x1,y1); for( ; ;) {outtextxy(100,400,"<-:left->:right^:up v:down Esc->exit"); key=getch();

计算机图形学模拟试卷一资料

北京语言大学网络教育学院 《计算机图形学》模拟试卷一 注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分100分,答题时间为90分钟。 4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。 一、【单项选择题】(本大题共10小题,每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。 1、计算机图形学与计算机图像学(图像处理)的关系是( B )。 [A] 计算机图形学是基础,计算机图像学是其发展 [B] 不同的学科,研究对象和数学基础都不同,但它们之间也有可相互转换部分 [C] 同一学科在不同场合的不同称呼而已 [D] 完全不同的学科,两者毫不相干 2、多边形填充算法中,错误的描述是( D )。 [A] 扫描线算法对每个象素只访问一次,主要缺点是对各种表的维持和排序的耗费较大 [B] 边填充算法基本思想是对于每一条扫描线与多边形的交点,将其右方象素取补 [C] 边填充算法较适合于帧缓冲存储器的图形系统 [D] 边标志算法也不能解决象素被重复访问的缺点 3、在多边形的逐边裁剪法中,对于某条多边形的边(方向为从端点S到端点P)与某条裁剪线(窗口的某一边)的比较结果共有以下四种情况,分别需输出一些顶点.哪种情况下输出的顶点是错误的?( C ) [A] S和P均在可见的一侧,则输出点P [B] S和P均在不可见的一侧,,则输出0个顶点 [C] S在可见一侧,,P在不可见一侧,则输出线段SP与裁剪线的交点和S [D] S在不可见的一侧,P在可见的一侧,则输出线段SP与裁剪线的交点和P 4、由k个控制顶点Pi(i=1,… k)所决定的n次B样条曲线,由( C )段n次B 样条曲线段光滑连接而成。 [A] k-n-2[B] k-n-1 [C] k-n[D] k-n+1 5、凸多边形窗口的二维线裁剪Cyrus-Beck算法中,若( C ),说明P1P2与第i 条边平行。 [A] N i·(P2-P1)<0[B] N i·(P2-P1)> 0 [C] N i·(P2-P1)=0[D] N i·(P2-P1) ≠0

计算机图形学模拟试卷和答案教程文件

计算机图形学模拟试 卷和答案

北京语言大学网络教育学院 《计算机图形学》模拟试卷一 注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分100分,答题时间为90分钟。 4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。 一、【单项选择题】(本大题共10小题,每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。 1、计算机图形学与计算机图像学(图像处理)的关系是()。 [A] 计算机图形学是基础,计算机图像学是其发展 [B] 不同的学科,研究对象和数学基础都不同,但它们之间也有可相互转换部分 [C] 同一学科在不同场合的不同称呼而已 [D] 完全不同的学科,两者毫不相干 2、多边形填充算法中,错误的描述是()。 [A] 扫描线算法对每个象素只访问一次,主要缺点是对各种表的维持和排序的耗费较大 [B] 边填充算法基本思想是对于每一条扫描线与多边形的交点,将其右方象素取补 [C] 边填充算法较适合于帧缓冲存储器的图形系统 [D] 边标志算法也不能解决象素被重复访问的缺点 仅供学习与交流,如有侵权请联系网站删除谢谢0

3、在多边形的逐边裁剪法中,对于某条多边形的边(方向为从端点S到端点P)与某条裁剪线(窗口的某一边)的比较结果共有以下四种情况,分别需输出一些顶点。哪种情况下输出的顶点是错误的?() [A] S和P均在可见的一侧,则输出点P [B] S和P均在不可见的一侧,,则输出0个顶点 [C] S在可见一侧,,P在不可见一侧,则输出线段SP与裁剪线的交点和S [D] S在不可见的一侧,P在可见的一侧,则输出线段SP与裁剪线的交点和P 4、下列关于反走样的叙述中,错误的论述为()。 [A] 把像素当作平面区域来采样[B] 提高分辨率 [C] 增强图像的显示亮度[D] 采用锥形滤波器进行加权区域采 样 5、下列关于平面几何投影的叙述中,错误的论述为()。 [A] 透视投影的投影中心到投影面的距离是有限的 [B] 在平行投影中不可能产生灭点 [C] 在透视投影中,一组平行线的投影仍保持平行 [D] 透视投影与平行投影相比,视觉效果更真实,但不一定能真实反映物体的精确尺寸和形状 6、下列关于Bezier曲线的论述中,错误的论述为()。 [A] 曲线及其控制多边形在起点和终点具有同样的几何性质 [B] 在起点和终点处的切线方向和控制多边形第一条边和最后一条边的方向相同 [C] n个控制点控制一条n次Bezier曲线 [D] 某直线与平面Bezier曲线的交点个数不多于该直线与控制多边形的交点个数 7、下面给出的四个选项中,()不是Bezier曲线具有的性质。 [A] 局部性[B] 几何不变性[C] 变差缩减性[D] 凸包性 8、分辨率为2048×1024的显示器需要多少字节位平面数为8的帧缓存?() 仅供学习与交流,如有侵权请联系网站删除谢谢1

图形与几何变换.doc

图形与变换 一、考点综述 考点内容: (1)图形的轴对称 (2)图形的平移 (3)图形的旋转 (4)图形相似变换 考纲要求: 1理解轴对称及轴对称图形的联系和区别; 2掌握轴对称的性质;根据要求正确地作出轴对称图形。 3理解图形的平移性质; 4会按要求画出平移图形; 5会利用平移进行图案设计。 6理解图形旋转的有关性质; 7掌握基本中心对称图形; 8会运用轴对称、平移和旋转的组合进行图案设计 9掌握按耍求作出简单平面图形经相似变换后的图形。 考查方式及分值: 近年全国各地的中考数学试题出现了不少有关图形变换的试题.这些试题以新课程标准的内容和要求为依据,注重对数学知识的理解,技能的掌握综合应用能力的检测,积极推进素质教育和数学创新思维培养,中考中考查的内容丰富,形式多样,题型涉及选择题、填空题、作图题和解答题等,其中尤以选择题居多,填空题相对较少,所占分值在3"0分,在选择、填空、解答题中都有出现,图案的设计常在作图题中出现。 备考策略: 加强了对学生实验操作、读图作图、合情推理等能力的耍求,强化对图形变换的训练, 适当渗透空间观念,侧重数学思想方法以及运用几何知识解决实际问题能力。 二、例题精析 例1、如图1,在直线/上摆放有AABC和宜角梯形DEFG,且CD = 6 cm;在左ABC中:ZC = 90°, ZA=30°, AB = 4 cm;在直角梯形DEFG 中:EF//DG, ZDGF=90°, DG=6 cm, DE = 4cm, ZEDG = 60° 解答下列问题: o (1)旋转:将AABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形 △ABC,并求出AB】的长度; (2)翻折:将沿过点Bi且与直线/垂直的直线翻折,得到翻折后的对应图形

计算机图形学(第三版)孙家广课后习题答案

第一章:P56 1、列出在你过去学习工作中用过与计算机图形学有关的程序c语言: #include main() { int graphdriver = VGA, graphmode=VGAHI; initgraph(&graphdriver,&graphmode,””); setbkcolor(BLUE); setcolor(WHITE); setfillstyle(1,LIGHTRED); bar3d(100,200,400,350,100,1); floodfill(450,300,WHITE); floodfill(250,450,WHITE); setcolor(LIGHTGREEN); rectangle(450,400,500,450); floodfill(470,420,LIGHTGREEN); getch(); closegraph(); } JA V A语言: 例1、画点 Import java.io.*; Class point { int ax; int ay; int bx; int by; public point(int ax, int ay, int bx, int by) { float k ; //计算斜率 float b; k=(by-ay)/(bx-ax); b=ay-ax*k; system.out.println(“直线的方程为:y=”+k+”x”+”+”+b); } } 例2、画矩形 class DrawPanel extends Jpanel { public void paint(Graphics g)

图形学模拟试题 (含答案)

计算机图形学课程模拟试卷(参考答案含评分标准) 2010—2011学年第二学期 年级专业学号姓名得分 一、简要回答题(每题7分,共7题,共49分) 1.被誉为“图形学之父”的伊万?萨瑟兰(Ivan Sutherland)对计算机图形学理论和 应用的主要贡献有哪些? 答:(1)(3分)萨瑟兰在MIT攻读博士学位时,在著名的林肯实验室完成基于光笔的交互式图形系统:Sketchpad。这一系统中许多交互式图形设计的创意是革命性的,它的影响一直延续到今天。 (2)(4分)用于显示立体和彩色图像的“Lorgnette”技术和一系列图形图像算法,如分区编码的直线段裁剪算法、多边形裁剪算法、曲面的表示和消除隐藏线算法等等。 2.有人认为图形学算法主要依赖于点和向量的数学运算,你是否认同这一观点?给出 同意或反对的理由,并举例说明。 答:这一观点是正确的(2分),主要理由和举例如下(5分): (1)图形学的很多算法属于几何算法,点(从三维、二维到一维)是最基本的几何要素,也是统一基本几何的计算机表示形式。例如,在观察流水线上的主要图形学算法,无 论是表示和生成(显示)、建模(造型)、变换(包括投影、观察、消隐)都可以统 一到建立基于点的几何模型;(可以以典型的光栅图形学的算法如基本图形的生成和 变换、三维观察、Z-Buffer算法为例说明) (2)向量几何是图形学的重要数学基础、建立了以“方向性”概念的基本理论、思想方法、几何结构、几何算法与复杂性分析的几何计算理论体系。例如,借助向量几何可以将 二维布尔运算降为一维向量计算、将三维布尔运算下降为二维布尔运算、将三维消隐 算法最终归结为一维交集算法等等,从而使几何计算的复杂性大为简化。(可以以比 较典型的Liang-Barsky裁剪算法、三维实体造型CSG树生成,隐藏线消除算法等为例 说明)。 『评分说明』若认为这一观点是错误的或持有含糊的态度,且给出的例子是片面的、主观的,则本题不得分。其他错误情况者,如未举例说明,酌情扣2分左右。 3.针对多面体模型,直接用简单光照模型绘制会有什么问题?简述两种增量式光照明 模型(多边形绘制)的基本思想,并指出两个算法的主要区别。 答: (1)(3分)针对多面体模型,使用简单光照模型绘制会在多边形与多边形之交界处产生明暗的不连续变化,影响了曲面的显示效果,即马赫带效应。如果增加多边形个数,减小每个多边形的

相关文档
最新文档