三相五线制怎么表示

三相五线制怎么表示
三相五线制怎么表示

三相五线制怎么表示

————————————————————————————————作者:————————————————————————————————日期:

三相五线制怎么表示

“三相五线制”是指低压380/220伏供电的一种制式。

三相五线制包括三相电的三个相线(A、B、C线)、中性线(N线);以及地线(PE线)。中性线(N线)就是零线。三相负载对称时,三相线路流入中性线的电流矢量和为零,但对于单独的一相来讲,电流不为零。三相负载不对称时,中性线的电流矢量和不为零,会产生对地电压。

三相五线制标准导线颜色为:A线黄色,B线绿色,C线红色,N 线淡蓝色,PE线黑色。

三相五线制分为TT接地方式和TN接地方式,其中TN又具体分为TN-S,TN-C,TN-C-S三种方式。

一、TT接地方式:

第一个字母T表示电源中性点接地,第二个T是设备金属外壳接地,这种方法高压系统普遍采用,低压系统中有大容量用电器时不宜采用。

二、TN接地方式:

1、TN-S接地方式:

字母S代表N与PE分开,设备金属外壳与PE相连,设备中性点与N相连。

其优点是PE中没有电流,故设备金属外壳对地电位为零。主要

用于数据处理,精密检测,高层建筑的供电系统。

2、TN-C接地方式:

字母C表示N与PE合并成为PEN,实际上是四线制供电方式。设备中性点和金属外壳都和N相连。由于N正常时流通三相不平衡电流和谐波电流,故设备金属外壳正常对地有一定电压,通常用于一般供电场所。

3、TN-C-S接地方式:

一部分N与PE分开,是四线半制供电方式。应用于环境较差的场所。当N和PE分开后不允许再合并。

根据《施工现场临时用电安全技术规范JGJ 46-2005》7.1.5.1规定,架空线用三相五线制,导线相序排列的顺序如下。

面向负载,从左侧起为L1、N、L2、L3、PE,(L123表示火线、N 表示零线、PE表示接地线);

动力线、照明线在两个横担上分别架设时,上层横担面向负截从

左侧起为 L1、L2、L3 ;下层横担:单相三线时面向负截从左侧起为L1、(或L2、L3)、N、PE;

在两上横担上架设时,最下层横担面向负截,最右边的导线为保护零线PE。

三相五线制:上个世纪80年代开始,我国的电力、电气行业逐渐与国际IEC接轨。因此在低压配电系统广泛采用TN-S系统。它要从变压器中性点引出两根线,其中一根就是N线(零线),而另一根叫接零保护线(接地线),用PE标示,它的作用是保护人员免受电击。这个系统由A、B、C、N、PE五根线构成,因此人们习惯叫做三相五线制,但准确地说,应叫做TN-S系统。要特别注意:N和PE两根线只在变压器中性点处有连接,在那之后直到负荷末端,两根线要绝缘良好,不准再有电气连接。

三相四线制配电系统-下载

三相四线制配电系统,适用于低电压用户。 三相说白了就是常说的三根火线,但是他们互相之间有个120度的角度差。 也就是说,在同一时间,三根火线上的电压,电流之和都等于零。 三相四线制配电,是由一般的供电变压器低压侧引出,变压器低压侧为星(Y)型接线,它一共有4根出线,每相的通过三个相同的负载后都要通过中性线(零线)回到变压器。 零线不带电。电路要畅通总得有电压高的和电压低的。这样才能从电压高的流向电压低的。零线0电压 没有零线可以 1,零线是单相电,电流回路线,电压通常是220伏,电流经过火线与零线之间的电器就作功了,没有作功的电就经过零线回电厂了。两根或三根火线也能组成回路,其电压就是380伏。 2,家庭用电是单相电,供电部门送来的是一根火线,一根零线,家里墙上插座的火线零线就是这么接过来的,另外还有个孔是接地线,以防电器漏电,也叫安全线 电压是两点之间的电势差,平时说的电压隐含了以大地为零电势面的前提。零线是三相供电制的相平衡(电势连)线,理论上对大地电压应是 0V,实际上相平衡不能时刻保证,所以零线会有微弱的电压。 为什么火线有电压而零线没有? 简单一点说,在两相电中不是电从火线流向零线的,而是在相互交替变化着来回的流,一秒钟变化50次,也就是我们说的频率是50赫兹,发电厂出来的电,其中一相输出的同时,进行接地连接,那么这一相就是零线了。而另一相则为火线,大地本身导电,两根线又是同相所以不存在电压差,因此也不会有电压。 远距离高压输电用三相三线制,三根都是火线,没有零线。到变压成我们用的380V或是220V工频电源时,在变电处将零线接地所以地线和零线在变压器处同点位,除非它的接地处发生故障,我们不应该感觉出零线带电。但由于大地的电阻比零线的大,所以当某处漏电时,就会发生零线带电的状况,还由于零线通过的电流比地线漏电流大的多,导致零线上的电压降低,使用户端零线电位与地不一致,也会造成零线带电。 现在我国是三相四线制,火线就是其中一个相线。零线就是中线,地线是保护线。

三相四线制和三相五线制接线图解

三相四线制和三相五线制接线图解 三相指L1---(A)相、L2---(B)相、L3---(C)相三相, 四线指通过正常工作电流的三根相线和一根N线(中性线),或称零线。不包括不通过正常工作电流的PE线(接地线)。 由于在三相四线制中有中线,而中线的作用在于保证负载上的各相电压接近对称,在负载不平衡时不致发生电压升高或降低,若一相断线,其他两相的电压不变。所以在低压供电线路上采用三相四线制。 L1---(A)相、L2---(B)相、L3---(C)相,各相线之间的电压称为线电压,线电压为380伏。 L1---(A)相、L2---(B)相、L3---(C)相中的任一相与N线(中性线) 或称零线间的电压,称为相电压。相电压为220伏。 三相五线制中五线指的是:三根相线加一根地线一根零线。三相五线制比三相四线制多一根地线,用于安全要求较高,设备要求统一接地的场所。三相五线制的学问就在于这两根"零线"上,在比较精密电子仪器的电网中使用时,如果零线和接地线共用一根线的话,对于电路中的工作零点会有影响的,虽然理论上它们都是零电位点,如果偶尔有一个电涌脉冲冲击到工作零线,而零线和地线却没有分开,比如这种脉冲却是因为相线漏电引起的,再如有些电子电路中如果零点飘移现象严重的话那么电器外壳就可能会带电,可能会损坏电气元件的,甚至损坏电器,造成人身安全的危险. 零线和地线的根本差别在于一个构成工作回路,一个起保护作用叫做保护接地,一个回电网,一个回大地,在电子电路中这两个概念是要区别开来的. 结构的区别: 零线(N):从变压器中性点接地后引出主干线。 地线(PE):从变压器中性点接地后引出主干线,根据标准,每间隔20-30米重复接地。 原理的区别: 零线(N):主要应用于工作回路,零线所产生的电压等于线阻乘以工作回路的电流。由于长距离的传输,零线产生的电压就不可忽视,作为保护人身安全的措施就变得不可靠。

三相五线制供电的原理和接地

三相五线制供电的原理和接地 682人阅读| 0条评论发布于:2009-11-12 1:46:00 在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。该结线的点是:工作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种结线能用于单相负载,没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。三相五线制供电的原理:在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。长期以来,零线与地线被人们混为一谈,有人认为零线就是地线,反之,地线也就是零线。其实这是一种错误的熟悉,那么零线与地线有什么区别呢?下面笔者谈一谈个人的观点。零线与地线并不是同一概念,零线是中线的俗称,是电力部门提供的工作线路。就是说我们每家每户使用的两线照明线路,一线称相线(火线),另一线则是中线(零线)。目前电力系统的供电方式绝大部分是采用三相四线制。为减小电能的损失,在输电过程中采用远距离高压输电,即三相输电,到城镇通过变压器降为市电单相220V和三相380V供给不同的用户,中线(零线)就是三相高压输入变压器变为四线低压供给用户的工作线路之一。 地线是接地装置的简称,地线又分为工作接地和安全性接地,其中安全性接地又可分为保护接地、防雷击接地和防电磁辐射接地。1 工作接地是用它完成回路使设备达到性能要求的接地线。如六、七十年代农村家家户户使用的广播有一根地线,而且接地处要经常用水淋湿。工作接地是把金属导体铜块埋在土壤

TN_S系统三相五线制电路布线详解

定义:三级配电系统 总配电箱为一级,分配电箱为二级,末级配电箱为三级 定义:三相电的概念 我们知道线圈在磁场中旋转时,导线切割磁场线会产生感应电动势,它的变化规律可用正弦曲线表示。如果我们取三个线圈,将它们在空间位置上相差点120度角,三个线圈仍旧在磁场中以相同速度旋转,一定会感应出三个频率相同的感应电动势。由于三个线圈在空间位置相差点120度角,故产生的电流亦是三相正弦变化,称为三相正弦交流电。工业用电采用三相电,如三相交流电动机等。相与相之间的电压是线电压,电压为380V。相与中心线之间称为相电压,电压是220V。 什么是电源中性点? 中性点是指变压器低压侧的三相线圈构成星形联结,联结点称中性点,又因其点为零电位,也称零线端,一般的零线就从此点引出的。中性点接地后,所有该电网覆盖面的设备接地保护线可就近入地设置为地线,一旦出现漏电可通过大地传导回路到变压器中性点,以策安全。 定义:三相五线制 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图所示. 为什么不是“五相”“六相”?

果使用移相技术,就比如简单的电容移相,我们一样可以得到四相、五相、N相都可以!但那在电力拖动中没有实际的应用意义,只在电子技术中有时用到。为什么在电力拖动中大都使用三相(当然有时会用到单相),而不是四相、五相呢?因为发电机的三相绕组在空间120°分布时,交变磁力线均可最大限度的切割它们,成而最以限度的发出电能。而三相用电器呢,除了相反的原理外,三相互成120°的回路又能最大限度的使用电能! 三相五线制供电的原理 在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。 如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。 从线路的性质上来说,火线(相线)是提供能源的线路,零线是单相电路中,给提供能源的线路一条电流回路(和相线形成电流通道)的线路,地线是作为保护电器设备、防止漏电而发生事故的一条“非正常”电流通道。这三条线,正常工作时,由相线(某一个单位时间内)提供电流,经过用电设备(负载)后由零线回到电源端;正常情况下,地线是没有任何电流通过的。所以从性质上来看,这三条线路中的零线和地线,是不允许“并用”或合用的。 接地及中性点的英文缩写 PE”即英文“protecting earthing”的缩写,意思是“保护导体、保护接地”。“N”即英文“neutral point”意思“中性点,零压点” 按照规定,380伏(三相)的民用电源的中性点是不应该在进户端接地的(在变压器端接地,这个接地是考虑到不能因悬浮点位造成高于电源电压的点位,用户端的接地与变压器端的接地在大地中是存在一定的电阻的),如果把电源的中性点直接接地(这在民用电施工中是不允许的),漏电保护器就失去了作用,不能保护人身和电器设备的短路了。 因此,三相五线制地线在供电变压器侧和中性线接到一起,但进入用户侧后不能当作零线使用,否则发生混乱后就与三相四线制无异了。 定义:TN—S接零保护系统 它是把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统,TN-S供电系统的特点如下: 1、系统正常运行时,专用保护线上没有电流,只是工作零线上有不平衡电流。PE线对地没有电压,所以电气设

低压供电系统中三相四线制和三相五线制有何区别

低压供电系统中三相四线制和三相五线制有何区别 三相四线制就是动力负载和照明负载共用-根零线。三相五线是动力照明分开。 三相四线制:相线A、B、C,保护零线PEN,PEN线上有工作电流通过,PEN在进入用电建筑物处要做重复接地;三相五线制:相线A、B、C,零线N,保护接地线PE,N线有工作电流通过,PE线平时无电流(仅在出现对地漏电或短路时有故障电流); 前者属于TN-C接地系统,后者属于TN-S接地系统。如今我国民用建筑的配电方式采用后者。 三相四线制分两种情况: TN-S:L1L2L3+PE(保护线)+N(中性线) TN-C:L1L2L3+PEN(二者合一) 三相五线制有一种情况: TN-C-S:L1L2L3+前半部PEN,后半部PE+N 具体如下: 低压系统接地制式按配电系统和电气设备接地的不同组合分类,可分为TN、TT、IT三种形式,其文字代号的意义如下: 1、第一个字母表示配电系统的对地关系: T:电源端有一点直接接地; I:电源端所有带电部分与地绝缘,或有一点经阻抗接地。 2、第二个字母表示电气装置的外露导电部分与地的关系: T:外露导电部分对地直接做电气连接,与配电系统的任何接地点无关; N:外露导电部分与配电系统的接地点直接做电气连接(在交流配电系统中,接地点通常就是中性点) 在TN系统中,所有电气设备的外露导电部分接到保护线上,与配电系统的接地点相连接。这个接地点通常是配电系统的中性点。如果没有中性点(如配电变压器二次侧为三角形接线)或未引出中性点,可将变压器二次侧的一相接地,但该接地线不能用作PEN线。保护线应在每个变电所附近接地。配电系统引入建筑物时,保护线在其入口处接地。为了在故障时,保护线的电位尽量接近地电位,应尽可能将保护线与附近的有效接地极相连,如有必要,可增加接地点,并使其均匀分布。 根据中性线N与保护线PE是否合并的情况,TN系统又分为TN-C、TN-S及TN-C-S。 1、在TN-C系统中,保护线与中性线合并为PEN线,具有简单、经济的优点。当发生接地故障时,故障电流大,可采用一般过电流保护电器切断电源,以保证安全。但对于单相负荷或三相不平衡负荷以及有谐波电流负荷的线路,正常PEN线有电流,其所产生的压降呈现在电气设备的金属外壳和线路金属套管上,这对敏感的电子设备不利。另外,PEN线上的微弱电流在爆炸危险环境也能引起爆炸,因此,我国《爆炸危险环境电力设备设计规范》中明确规定:在1、10区爆炸危险环境中不能采用TN-C系统。同时由于PEN线在同一建筑物内往往相互有电气连接,当PEN线断线或相线直接与大地短路时,都将呈现相当高的对地故障电压,这时可能扩大事故范围。 2、在TN-S系统中,保护线与中性线分开,具有TN-C系统的优点,但价格较贵。由于正常情况下PE线不通过负荷电流,与PE线相连的电气设备金属外壳不带电位,所以适用于数据处理和精密电子仪器设备的供电,也可用于有爆炸危险的环境中。在民用建筑中,家用电器大都有单独接地极的插头,采用TN-S供电,既方便又安全。但TN-S系统仍不能解决相线对大地适中引起电压升高和对地故障电压的蔓延问题。 3、在TN-C-S系统中,PEN线自A点起分为保护线和中性线,分开以后,N线应对地绝缘。为了防止分开后的PE线与N线混淆,应按国标GB7947-87的规定,给PE线和PEN线涂以黄绿相间的色标,给N线涂以浅蓝色色标。PEN自分开后,PE线与N线不能再合并,否则将丧失分开后形成的TN-S系统的特点。 TN-C-S是广泛采用的配电系统,在工矿企业中,对电位敏感的电气设备往往设置在线路未端,而线路前端大多数为固定设备,因此,到了线咱未端改为TN-S系统十分不利。在民用建筑中,电源线咱采用TN-C系统,进入建筑物内改为TN-S系统。这种系统,线路结构简单又能保证一定的安全水平。在电源侧的PEN线上难免有一定的电压降,但对工矿企业的固定设备及作为民用建筑的电源线都没有影响,PEN分开后即有专用的保护线,可以确保TN-S所具有的特点。

IEC三相五线制供电学习材料

1.什么是三相五线制? 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图1 所示. 图1 三相五线制接线示意图 该接线的特点是:工作零线N与保护零线PE 除在变压器中性点共同接地外,两线不再有任何的电气连接.由于该种接线能用于单相负载、没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用.在三相负载不完全平衡的运行情况下,工作零线 N是有电流通过且是带电的,而保护零线 PE 不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位. 2.三相五线制与三相四线制的比较 (1)基本供电系统简介常用的基本供电系统有(380V)三相三线制和(380/220V)三相四线制等,但这些名词术语内涵不是十分严格.国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统.其中TN系统又分为TN-C、TN-S系统. TT 式供电系统是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统.第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关.在TT 系统中负载的所有接地均称为保护接地。 TN 方式供电系统是将电气设备的金属外壳和正常不带电的金属部分与工作零线相接的保护系统,称作接零保护系统,用 TN 表示.TN-C 方式供电系统是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE 表示,即常用的三相四线制供电方式.TN-S 式供电系统是把工

三相五线制

三相五线制 三相五线制比三相四线制多一根地线,用于安全要求较高,设备要求统一接地的场所。 三相五线制的学问就在于这两根"零线"上,在比较精密电子仪器的电网中使用时,如果零线和接地线共用一根线的话,对于电路中的工作零点会有影响的,虽然理论上它们都是0电位点,如果偶尔有一个电涌脉冲冲击到工作零线,而零线和地线却没有分开,比如这种脉冲却是因为相线漏电引起的,再如有些电子电路中如果零点飘移现象严重的话那么电器外壳就可能会带电,可能会损坏电气元件的,甚至损坏电器,造成人身安全的危险. 现在实际中还有一种三相六线的接法,除工作零线,保护接地外,还专门另配一路接地线,这根线跟设备地线分开来接,不与其他任何线相接,用做对仪器设备的保护,因为电气件的损坏往往只几微秒的时间,所以要将误动作电流更快的引回大地,需要仪器直接接地. 接地装置的基本概念 一.电气接地的基本概念 (一)接地与接地装置 电气设备的任何部分与大地之间作良好的电气连接,称为接地.埋入地中并直接与大地接触的金属导体,称为接地体,或接地极.专门为接地而人为装设的接地体,称为人工接地体.间作接地体用的直接与大地接触的各种金属构件,金属管道及建筑物的钢筋混凝土基

础等,称为自然接地体.连接于接地体与电气设备接地部分之间的 金属导线,称为接地线与接地体合称为接地装置.由若干接地体在 大地中相互用接地线连接起来的一个整体,称为接地网. 接地线又分为接地干线和接地支线,接地干线一般应采用不少于两根导体在不同地点与接地网连接. 接地体按其布置方式可分为外引式接地体和环路式接地体.按其形状划分,有管形,带形和环形几种基本形式.按其结构划分,有自然 接地体和人工接地体之分. (二)接地电流和接地短路电流 凡从带电体流入地下的电流即属于接地电流. 接地电流有正常接地电流和故障接地电流之分.正常接地电流系指正常工作时通过接地装置流入地下,借大地形成工作回路的电流; 故障接地电流系指系统发生故障时出现的接地电流. 系统一相接地可能导致系统发生短路,这时的接地电流叫做接地短路电流,如接地的380/220V系统的单相接地短路电流.在高压系统中,接地短路电流可能很大,接地短路电流在200A及以下的,称小 接地短路电流系统;接地短路电流大于500A的,称大接地电流系统. (三)流散电阻和接地电阻 接地电流流入地下以后,就通过接地体向大地作半球形散开,这一 接地电流就叫做流散电流.流散电流在土壤中遇到的全部电阻叫做流散电阻. 接地电阻是接地体的流散电阻与接地线的电阻之和.接地线的电阻

三相三线制与三相四线制

三相三线制 三相三线制(three-phase three-wire system )不引出中性线的星型接法和三角形接法。电力系统高压架空线路一般采用三相三线制,三条线路分别代表a,b,c 三相,我们 在野外看到的输电线路,一回即有三根线(即三相),三根线可能水平排列,也可能是三角 形排列的;对每一相可能是单独的一根线(一般为钢芯铝绞线),也有可能是分裂线(电压 等级很高的架空线路中,为了减小电晕损耗和线路电抗,采用分裂导线,多根线组成一相线, 一般2-4 分裂,在特高压交直流工程中可能用到6-8 分裂),没有中性线,故称三相三线制。 三相交流发电机的三个定子绕组的末端联结在一起,从三个绕组的始端引出三根火线 向外供电、没有中线的三相制叫三相三线制。 电晕:曲率半径小的导体电极对空气放电,便产生了电晕。 (电晕产生热效应和臭氧、氮的氧化物,使线圈内局部温度升高,导致胶粘剂变 质、碳化,股线绝缘和云母变白,进而使股线松散、短路,绝缘老化。) 三相四线制 概述 在低压配电网中,输电线路一般采用三相四线制,其中 三相四线制 三条线路分别代表A,B,C 三相,另一条是中性线N(如果该回路电源侧的中性点接地,则中性线也称为零线,如果不接地,则从严格意义上来说,中性线不能称为零线)。在进入 用户的单相输电线路中,有两条线,一条我们称为火线,另一条我们称为零线,零线正常情 况下要通过电流以构成单相线路中电流的回路。而三相系统中,三相平衡时,中性线(零线)是无电流的,故称三相四线制;在380V 低压配电网中为了从380V 线间电压中获得220V 相间电压而设N 线,有的场合也可以用来进行零序电流检测,以便进行三相供电平衡的监控。

三相五线制供电方式

三相五线制供电方式 一、概述 在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线 (该接线的是: 工 作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种接线能用于单相负载,没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。 二、三相五线制供电的原理 众所周知,在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处

在“地”电位,从而消除了设备产生危险电压的隐患。 三、对三相五线制敷设的要求 (1) 在用绝缘导线布线时,保护零线应用黄绿双色线,工作零线一般用黑色线。沿墙垂直布线时,保护零线设在最下端,水平布线时,保护零线在靠墙端。 (2) 在电力变压器处,工作零线从变压器中性瓷套管上引出,保护零线从接地体的引出线引出。 (3) 重复接地按要求一律接在保护零线上,禁止在工作零线上重复接地。 (4) 采用低压电缆供电时应选用五芯低压电力电缆。 (5) 在终端用电处(如闸板、插座、墙上配电盘等)工作零线和保护零线一定分别与零干线相连接。 (6) 对老企业的改造应逐步实行保护零线和工作零线分开的办法。例如在车间入户时零干线做重复接地,重复接地以后工作零线单独敷设,保护零线由此重复接地体引出;使用四极漏电保护断路器的,在断路器前是三相四线制,在断路器后改为三相五线制; 在架空线路供电又实行动力电和照明电分开架设的(两棚线),可以用随照明线横担架设的零线为工作零线,随动力线横担架设的零线做保护零线。 四、三相五线制供电的应用范围 凡是采用保护接零的低压供电系统,均是三相五线制供电的应用

tns三相五线制电路布线详解审批稿

t n s三相五线制电路布 线详解 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

施工现场用电大全 定义:三级配电系统 总配电箱为一级,分配电箱为二级,末级配电箱为三级 定义:三相电的概念 我们知道线圈在磁场中旋转时,导线切割磁场线会产生感应电动势,它的变化规律可用正弦曲线表示。如果我们取三个线圈,将它们在空间位置上相差点120度角,三个线圈仍旧在磁场中以相同速度旋转,一定会感应出三个频率相同的感应电动势。由于三个线圈在空间位置相差点120度角,故产生的电流亦是三相正弦变化,称为三相正弦交流电。工业用电采用三相电,如三相交流电动机等。相与相之间的电压是线电压,电压为380V。相与中心线之间称为相电压,电压是220V。 什么是电源中性点 中性点是指变压器低压侧的三相线圈构成星形联结,联结点称中性点,又因其点为零电位,也称零线端,一般的零线就从此点引出的。中性点接地后,所有该电网覆盖面的设备接地保护线可就近入地设置为地线,一旦出现漏电可通过大地传导回路到变压器中性点,以策安全。 定义:三相五线制 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图所示. 为什么不是“五相”“六相” 你先要明白“相”在电中的含义,相是指相位角,比如常说的三相电,是指相位角在空间互成120°交流电。如果使用移相技术,就比如简单的电容移相,我们一样可以得到四相、五相、N相都可以!但那在电力拖动中没有实际的应用意义,只在电子技术中有时用到。为什么在电力拖动中大都使用三相(当然有时会用到单相),而不是四相、五相呢?因为发电机的三相绕组在空间120°

详解三相四线制系统中零线的重要作用

三相四线制系统中零线的重要作用 在低压供电系统中,大多数采用三相四线制方式供电,因为这种方式能够提供两种不同的电压——线电压(380V)和相电压(220V),可以适应用户不同的需要。 在三相四线制系统中,如果三相负载是完全对称的(阻抗的性质和大小完全相同,即阻抗三角形是全等三角形),则零线可有可无,例如三相异步电动机,三相绕组完全对称,连接成星形后,即使没有零线,三相绕组也能得到三相对称的电压,电动机能照常工作。但是对于宅楼、学校、机关和商场等以单相负荷为主的用户来说,零线就起着举足轻重的作用了。尽管这些地方在设计、安装供电线路时都尽可能使三相负荷接近平衡,但是这种平衡只是相对的,不平衡则是绝对的,而且每时每刻都在变化。在这种情况下,如果零线中断了,三相负荷中性点电位就要发生位移了。中性点电位位移的直接后果就是三相电压不平衡了,有的相电压可能大大超过电器的额定电压(在极端情况下会接近380V),轻则烧毁电器,重则引起火灾等重大事故;而有的相电压大大低于电器的额定电压(在极端情况下会接近0V),轻则使电器无法工作,重则也会烧毁电器(因为电压过低,空调、冰箱和洗衣机等设备中的电动机无法起动,时间长了也会烧毁)。由于三相负荷是随机变化的,所以电压不平衡的情况也是随机变化的。 对于没有零线时中性点电位发生位移这个问题,很多同学甚至一些电工无法理解,而理论计算又涉及到较深的电工基础知识(如电动势和阻抗的复数表示法以及复数的四则运算等),特别是当负载不是纯电阻时,计算相当繁琐,学生也难以弄懂,在大多数情况下也没有必要去计算。下面仅举个特例来帮助同学们理解没有零线时各相负载两端电压的变化。 现在我们假定某住宅楼为三层,三相电源分别送入一楼、二楼和三楼住户。

三相五线制

三相五线制 什么是三相五线制? 三相五线制和三相四线制是中国配电系统的叫法,国家标准叫法:TN-S系统(中国:三相五线制)TN-C系统(中国:三相四线制) 1、TN-C系统(中国的三相四线制):--3根火线+1根零线N 三相四线制PEN线规定距离内接地,在入户端就近接地,四线到达用电设备。节省了一根线!为了安全连接设备时要动些脑筋。对设备直接使用者有些迷茫!导线分为黄、绿、红、黄绿线。节省一根淡蓝线! 2、TN-C-S系统(伪三相五线制): 伪三相五线制,三相四线制PEN线规定距离内接地,在入户端就近接地,进入入户端后分为五线制到达用电设备。对设备直接使用者接线对号入座就可!三相五线制标准导线颜色为:A线黄色,B线绿色,C线红色,N线淡蓝色,PE线黄绿色。节省入户端前的淡蓝线! 3、TN-S系统(中国三相五线制):--3根火线+1根零线N+1根接地线PE 三相五线制,变压器输出三相五线制PE在规定距离内接地,入户端就近接地。五线制到达用电设备。对设备直接使用者接线对号入座就可!导线分为黄、绿、红、N淡蓝、PE黄绿线。把零线的两个作用分开,即一根线

做工作零线(N),另外用一根线专做保护零线(PE)。这是最费材料的系统!但也是最安全的系统。 除此之外,还有一种TT接地方式: 第一个字母T表示电源中性点接地,第二个T是设备金属外壳接地,这种方法高压系统普遍采用,低压系统中有大容量用电器时不宜采用。 三相五线制的特点 1、系统正常运行时,专用保护线上不有电流,只是工作零线上有不平衡电流。PE线对地没有电压,所以电气设备金属外壳接零保护是接在专用的保护线PE上,安全可靠。 2、工作零线只用作单相照明负载回路。 3、专用保护线PE不许断线,也不许进入漏电开关。 4、干线上使用漏电保护器,工作零线不得有重复接地,而PE线有重复接地,但是不经过漏电保护器,所以TN-S系统供电干线上也可以安装漏电保护器。 5、TN-S方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。在建筑工程工工前的“三通一平”(电通、水通、路通和地平——必须采用TN-S方式供电系统。) N与PE在电源变压器那是连在一起的,其他没有再连接的地方。

三相四线主要应用和联接方法

三相四线 主要应用 在低压配电网中,输电线路一般采用三相四线制,其中三条线路分别代表A,B,C三相,不分裂,另一条是中性线N,故称三相四线制。 不论N线还是PE线,在用户侧都要采用重复接地,以提高可靠性。但是,重复接地只是重复接地,它只能在接地点或靠近接地的位置接到一起,但绝不表明可以在任意位置特别是户内可以接到一起。 应用中最好使用标准/规范的导线颜色:A线用黄色,B线用绿色,C线用红色,N线用褐色,PE线用黄绿色。 联接方法 三相交流电机的电枢有三组线圈,其联接有星形接法及三角形接法两种,一般采用星形接法。 星形联接方法 三相交流发电机向外供电时,把三组线圈的末端X、Y、Z联在一起,从联接点引出一条线,这条线叫零线,也叫中性线。再从线圈绕组另一端A、B、C各引出一条线,这三条线叫相线或火线,这种联接方法叫星形联接法。 发电机的这种向外输电方法构成三相四线制。若不引出中线,用三条线向外供电则称三相三线制。 因为三相四线制供电能同时供出220V、380v两种不同的电压,因而得到广泛应用。星形接法用Y表示,也叫Y接法。 采用星形接法时。线电压与相电压的关系如何? 星形接法时,线电压与相电压之间的关系是:U线≈1.732U相

三相交流电如何产生旋转磁场? 在三相异步电动机的每相定子绕组中,流过正弦交流电流时,每相定子绕组都产生脉动磁场。由于三相绕组在铁心中摆放的空间位置互差120°电角度空间相位,绕组中分别流过三相交流电流,而各相电流在时间上又互差120°,使它们同时产生的三个脉动磁场在空间所合成的总磁场,成为一个旋转磁场。 三相五线制是指A、B、C、N和PE线,其中,PE线是保护地线,也叫安全线,是专门用于接到诸如设备外壳等保证用电安全之用的。PE线在供电变压器侧和N线接到一起,但进入用户侧后均不能当作零线使用,否则,发生混乱后就与三相四线制无异了。但是,由于这种混乱容易让人丧失警惕,可能在实际中更加容易发生触电事故。现在民用住宅供电已经规定要使用三相五线制,如果你的不是,可以要求整改。为了安全,要斩钉截铁地要求!

“三相五线制”在标准里的标准解释是什么

“三相五线制”在标准里的标准解释是什么? 国家标准:三相五线制系统(TN-S系统),又称保护接地系统,国际电工委员会IEC的编号为TN-S,见[图-1]。这种供电方式是把三相供电的零线N接地,与仪器设备外壳相连的保护地PE也接地,零线N和保护地PE可以连接在同一地线上,或将保护地线PE单独接地,视工作环境要求而定。电源变压器输出三相,加上零线N和保护接地线PE共五条线从配电柜输出,故称三相五线制。 一、概述 在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。 该结线的点是: 工作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种结线能用于单相负载,没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。 二、三相五线制供电的原理 众所周知,在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。 三、对三相五线制敷设的要求 (1) 在用绝缘导线布线时,保护零线应用黄绿双色线,工作零线一般用黑色线。沿墙垂直布线时,保护零线设在最下端,水平布线时,保护零线在靠墙端。(2) 在电力变压器处,工作零线从变压器中性瓷套管上引出,保护零线从接地体的引出线引出。 (3) 重复接地按要求一律接在保护零线上,禁止在工作零线上重复接地。 (4) 采用低压电缆供电时应选用五芯低压电力电缆。 (5) 在终端用电处(如闸板、插座、墙上配电盘等)工作零线和保护零线一定分别与零干线相连接。 (6) 对老企业的改造应逐步实行保护零线和工作零线分开的办法。例如在车间入户时零干线做重复接地,重复接地以后工作零线单独敷设,保护零线由此重复接地体引出;使用四极漏电保护断路器的,在断路器前是三相四线制,在断路器后改为三相五线制; 在架空线路供电又实行动力电和照明电分开架设的(两棚线),可以用随照明线横担架设的零线为工作零线,随动力线横担架设的零线做

TNS三相五线制电路布线详解

施工现场用电大全 定义:三级配电系统 总配电箱为一级,分配电箱为二级,末级配电箱为三级 定义:三相电的概念 我们知道线圈在磁场中旋转时,导线切割磁场线会产生感应电动势,它的变化规律可用正弦曲线表示。如果我们取三个线圈,将它们在空间位置上相差点120度角,三个线圈仍旧在磁场中以相同速度旋转,一定会感应出三个频率相同的感应电动势。由于三个线圈在空间位置相差点120度角,故产生的电流亦是三相正弦变化,称为三相正弦交流电。工业用电采用三相电,如三相交流电动机等。相与相之间的电压是线电压,电压为380V。相与中心线之间称为相电压,电压是220V。 什么是电源中性点? 中性点是指变压器低压侧的三相线圈构成星形联结,联结点称中性点,又因其点为零电位,也称零线端,一般的零线就从此点引出的。中性点接地后,所有该电网覆盖面的设备接地保护线可就近入地设置为地线,一旦出现漏电可通过大地传导回路到变压器中性点,以策安全。 定义:三相五线制 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图所示. 为什么不是“五相”“六相”? 你先要明白“相”在电中的含义,相是指相位角,比如常说的三相电,是指相位角在空间互成120°交流电。如果使用移相技术,就比如简单的电容移相,我们一样可以得到四相、五相、N相都可以!但那在电力拖动中没有实际的应用意义,只在电子技术中有时用到。为什么在电力拖动中大都使用三相(当然有时会用到单相),而不是四相、五相呢?因为发电机的三相绕组在空间120°分布时,交变磁力线均可最大限度的切割它们,成而最以限度的发出电能。而三相用电器呢,除了相反的原理外,三相互成120°的回路又能最大限度的使用电能! 三相五线制供电的原理 在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。 如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。 从线路的性质上来说,火线(相线)是提供能源的线路,零线是单相电路中,给提供能源的线路一条电流回路(和相线形成电流通道)的线路,地线是作为保护电器设备、防止漏电而发生事故的一条“非正常”电流通道。这三条线,正常工作时,由相线(某一个单位时间内)提供电流,经过用电设备(负载)后由零线回到电源端;正常情况下,地线是没有任何电流通过的。所以从性质上来看,这三条线路中的零线和地线,是不允许“并用”或合用的。接地及中性点的英文缩写 PE”即英文“protecting earthing”的缩写,意思是“保护导体、保护接地”。“N”即英文“neutral point”意思“中性点,零压点” 按照规定,380伏(三相)的民用电源的中性点是不应该在进户端接地的(在变压器端接地,这个接地是考虑到不能因悬浮点位造成高于电源电压的点位,用户端的接地与变压器端的接地在大地中是存在一定的电阻的),如果把电源的中性点直接接地(这在民用电施工中是不允许的),漏电保护器就失去了作用,不能保护人身和电器设备的短路了。 因此,三相五线制地线在供电变压器侧和中性线接到一起,但进入用户侧后不能当作零线使用,否则发生混乱后就与三相四线制无异了。 定义:TN—S接零保护系统 它是把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统,TN-S供电系统的特点如下:

低压供电系统中三相四线制和三相五线制有何区别

三相四线制就是动力负载和照明负载共用-根零线。三相五线是动力照明分开。 三相四线制: 相线 A、B、C,保护零线PEN,PEN线上有工作电流通过,PEN在进入用电建筑物处要做重复接地;三相五线制: 相线 A、B、C,零线N,保护接地线PE,N线有工作电流通过,PE线平时无电流(仅在出现对地漏电或短路时有故障电流); 前者属于TN-C接地系统,后者属于TN-S接地系统。如今我国民用建筑的配电方式采用后者。 三相四线制分两种情况: TN-S: L1L2L3+PE(保护线)+N(中性线) TN-C: L1L2L3+PEN(二者合一) 三相五线制有一种情况: TN-C-S: L1L2L3+前半部PEN,后半部PE+N 具体如下: 低压系统接地制式按配电系统和电气设备接地的不同组合分类,可分为TN、TT、IT三种形式,其文字代号的意义如下:

1、第一个字母表示配电系统的对地关系: T: 电源端有一点直接接地; I: 电源端所有带电部分与地绝缘,或有一点经阻抗接地。 2、第二个字母表示电气装置的外露导电部分与地的关系: T: 外露导电部分对地直接做电气连接,与配电系统的任何接地点无关; N: 外露导电部分与配电系统的接地点直接做电气连接(在交流配电系统中,接地点通常就是中性点)在TN系统中,所有电气设备的外露导电部分接到保护线上,与配电系统的接地点相连接。这个接地点通常是配电系统的中性点。如果没有中性点(如配电变压器二次侧为三角形接线)或未引出中性点,可将变压器二次侧的一相接地,但该接地线不能用作PEN线。保护线应在每个变电所附近接地。配电系统引入建筑物时,保护线在其入口处接地。为了在故障时,保护线的电位尽量接近地电位,应尽可能将保护线与附近的有效接地极相连,如有必要,可增加接地点,并使其均匀分布。 根据中性线N与保护线PE是否合并的情况,TN系统又分为TN- C、TN-S及TN-C-S。 1、在TN-C系统中,保护线与中性线合并为PEN线,具有简单、经济的优点。当发生接地故障时,故障电流大,可采用一般过电流保护电器切断电源,以保证安全。但对于单相负荷或三相不平衡负荷以及有谐波电流负荷的线路,正常PEN线有电流,其所产生的压降呈现在电气设备的金属外壳和线路金属套管上,这对敏感的电子设备不利。另外,PEN线上的微弱电流在爆炸危险环境也能引起爆炸,因此,我国《爆炸危险环境电力设备设计规范》中明确规定:

三相五线制供电方式

三相五线制供电方式 在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。 一、概述 三相五线制即在三相四线制的供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。 该结线的特点是: 工作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种结线能用于单相负载,没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。 二、三相五线制供电的原理

众所周知,在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。 三、对三相五线制敷设的要求 (1) 在用绝缘导线布线时,保护零线应用黄绿双色线,工作零线一般用黑色线。沿墙垂直布线时,保护零线设在最下端,水平布线时,保护零线在靠墙端。(2) 在电力变压器处,工作零线从变压器中性瓷套管上引出,保护零线从接地体的引出线引出。 (3) 重复接地按要求一律接在保护零线上,禁止在工作零线上重复接地。 (4) 采用低压电缆供电时应选用五芯低压电力电缆。 (5) 在终端用电处(如闸板、插座、墙上配电盘等)工作零线和保护零线一定分别与零干线相连接。 (6) 对老企业的改造应逐步实行保护零线和工作零线分开的办法。例如在车间入户时零干线做重复接地,重复接地以后工作零线单独敷设,保护零线由此重复接地体引出;使用四极漏电保护断路器的,在断路器前是三相四线制,在断路器后改为三相五线制; 在架空线路供电又实行动力电和照明电分开架设的(两棚线),可以用随照明线横担架设的零线为工作零线,随动力线横担架设的零线做保护零线。 四、三相五线制供电的应用范围 关部门规定:凡是新建、扩建、企事业、商业、居民住宅、智能建筑、基建施工现场及临时线路,一律实行三相五线制供电方式,做到保护零线和工作零线单独

三相五线制详解

三相五线制 工地电路布线详解 根据JGJ/T-1992《民用建筑电气设计规范》,凡是新建、扩建、企事业、商业、居民住宅、智能建筑、基建施工现场及临时线路,一律实行三相五线制供电方式,做到保护零线和工作零线单独敷设.对现有企业应逐步将三相四线制改为三相五线制供电,具体办法应按三相五线制敷设要求的规定实施. 定义:三级配电系统: 总配电箱为一级,分配电箱为二级,末级配电箱为三级 定义:三相电的概念: 我们知道线圈在磁场中旋转时,导线切割磁场线会产生感应电动势,它的变化规律可用正弦曲线表示。如果我们取三个线圈,将它们在空间位置上相差点120度角,三个线圈仍旧在磁场中以相同速度旋转,一定会感应出三个频率相同的感应电动势。由于三个线圈在空间位置相差点120度角,故产生的电流亦是三相正弦变化,称为三相正弦交流电。工业用电采用三相电,如三相交流电动机等。相与相之间的电压是线电压,电压为380V。相与中心线之间称为相电压,电压是220V。 什么是电源中性点? 中性点是指变压器低压侧的三相线圈构成星形联结,联结点称中性点,又因其点为零电位,也称零线端,一般的零线就从此点引出的。中性点接地后,所有该电网覆盖面的设备接地保护线可就近入地设置为地线,一旦出现漏电可通过大地传导回路到变压器中性点,以策安全。 定义:三相五线制: 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图所示.

为什么不是“五相”“六相”? 你先要明白“相”在电中的含义,相是指相位角,比如常说的三相电,是指相位角在空间互成120°交流电。如果使用移相技术,就比如简单的电容移相,我们一样可以得到四相、五相、N相都可以!但那在电力拖动中没有实际的应用意义,只在电子技术中有时用到。为什么在电力拖动中大都使用三相(当然有时会用到单相),而不是四相、五相呢?因为发电机的三相绕组在空间120°分布时,交变磁力线均可最大限度的切割它们,成而最以限度的发出电能。而三相用电器呢,除了相反的原理外,三相互成120°的回路又能最大限度的使用电能! 三相五线制供电的原理 在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。 如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。 从线路的性质上来说,火线(相线)是提供能源的线路,零线是单相电路中,给提供能源的线路一条电流回路(和相线形成电流通道)的线路,地线是作为保护电器设备、防止漏电而发生事故的一条“非正常”电流通道。这三条线,正常工作时,由相线(某一个单位时间内)提供电流,经过用电设备(负载)后由零线回到电源端;正常情况下,地线是没有任何电流通过的。所以从性质上来看,这三条线路中的零线和地线,是不允许“并用”或合用的。 接地及中性点的英文缩写: “PE”即英文“protecting earthing”的缩写,意思是“保护导体、保护接地”。“N”即英文“neutral point”意思“中性点,零压点” 为什么在变压器端接地? 按照规定,380伏(三相)的民用电源的中性点是不应该在进户端接地的(在变压器端接地,这个接地是考虑到不能因悬浮点位造成高于电源电压的点位,用户端的接地与变压器端的接地在大地中是存在一定的电阻的),如果把电源的中性点直接接地(这在民用电施工中是不允许的),漏电保护器就失去了作用,不能保护人身和电器设备的短路了。 因此,三相五线制地线在供电变压器侧和中性线接到一起,但进入用户侧后不能当作零线使用,否则发生混乱后就与三相四线制无异了 定义:TN—S接零保护系统 它是把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统,TN-S供电系统的特点如下: 1、系统正常运行时,专用保护线上没有电流,只是工作零线上有不平衡电流。PE线对地 没有电压,所以电气设备金属外壳接零保护是接在专用保护线PE上,安全可靠。

相关文档
最新文档