短时傅里叶变换及其谱图分析

短时傅里叶变换及其谱图分析
短时傅里叶变换及其谱图分析

西南交通大学峨眉校区

(作业小论文)

工程测试技术课程设计

短时傅里叶变换及其谱图分

姓名:xxxx

学号:2wwwww

班级:wwww

专业:工程机械

2013.03.20

短时傅里叶变换及其谱图分析

摘要:本文讨论了有噪信号的短时傅里叶变换STFT及其谱围.分析和仿真结果表明,受

白噪声污染的信号的STFT可以无偏估计原信号的STFT,而其谱图可以对愿信号的谱图作有偏

估计,估计方差是有限的,且是时间和频率的函数.在短窗的情况下,求得了该方差上限的

近似表示.

关键词:短时傅里叶变换谱图噪声污染信号估计

1.前言

信号的短时傅里叶变换STFT是最早提出的一种时。频二维表示方法,它采用加窗的复正

弦作为基函数,也称为加窗傅里叶变换。由于它采用单一的分析窗处理所有频率分量,在时-

频平面内所有点上的分辨率是相同的,因而适合于准平稳信号的处理。STFT 简单易实现,许

多联合时.频分析的应用都是由它开始的。尽管STFT按定义属于线性变换,但在各种实际应

用中常采用它的能谱分布表示方法,这就是基于短时傅里叶变换的谱图Spectrogram)表示。

谱图定义为STFT的模平方,它是二次型时.频分布,尽管不满足时一频边缘条件,但可以认为

是信号能量在时.频平面上的分布。谱图已经在信号检测,语音处理等方面得到了广泛应用

[1Ⅱ2】。

谱图具有非线性性质,对于多分量信号将产生类似于Wigner分布中的交叉项干扰,从而

引入了模糊,影响信号分析结果。在利用谱图对信号的谱估计中,加性噪声的影响使信号具有

了多分量特性.可能使得估计产生较大偏差。本文就确定性信号受自噪声污染后的STFT及其

谱图的最小方差估计问题进行了分析。文中第二部分做了理论推导,求得了有噪信号的sTFT

及其谱图的均值和方差,第三部分对短窗的情况作了近似分析,最后给出了一例简单的仿真结

果。

2.傅立叶变换的提出

让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。

3.理论分析

设确定性信号5(f)被零均值实平稳噪声n(t)污染,表示为

x(t)=sO)+胛O)

按照定义,信号x(,)的短时傅里叶变换sTFT为

STFT,(t,co)=£x(f)w(f—r)exp(一joJf)如

其中w(f)为分析窗函数。则由(1>一2)式得其均值为

E[STFTAt,国】-STUI',(t,co)即宵嗓信号的STFT足原信号STFT的无偏估计,这是所希望具有的性质。

按}!c{定义,信号z(,)的谱幽表示为

犯(7,oJ)=ISTFLq,∞)J 2

f4)

山(1)叫2)式斤揪据二次营加原理,得

s只(‘’。)=s只(f·∞)+se(t,co)+so,。O,甜)+s巴。(f,co) (s、

卜式右端前两项分别为原信号和噪声的谱幽,后两项为相干=项,称为互谱图.它”J的均值都为

零? f^『此,x(O的l蘑f{}f的均值为

EB只(,,埘)】=£B只(,,彩)】+E【咒(,,∞)】

、与喙声是rf色的情况卜,R一(f,一r。)=£【门(f,)胛(r,)】=仃。2占(r。一r,),其中O'n2为噪卢功

率谱密度。由此可以推导山

E陋(,,∞)】=犯f,,瑚)+O"n2£w,2(H)dr

T(,)的即宵嗓信号的STFT足原信号STFT的无偏估计,这是所希望具有的性质。

按}!c{定义,信号z(,)的谱幽表示为

犯(7,oJ)=ISTFLq,∞)J 2

f4)

山(1)叫2)式斤揪据二次营加原理,得

s只(‘’。)=s只(f·∞)+se(t,co)+so,。O,甜)+s巴。(f,co) (s、

卜式右端前两项分别为原信号和噪声的谱幽,后两项为相干=项,称为互谱图.它”J的均值都为

零? f^『此,x(O的l蘑f{}f的均值为

EB只(,,埘)】=£B只(,,彩)】+E【咒(,,∞)】

、与喙声是rf色的情况卜,R一(f,一r。)=£【门(f,)胛(r,)】=仃。2占(r。一r,),其中O'n2为噪卢功

率谱密度。由此可以推导山

E陋(,,∞)】=犯f,,瑚)+O"n2£w,2(H)dr

T(,)的仃。。2:E【s只2(f,∞)】一E2墨只o,国)】

=££££【R。(f。一f,)R。(r:一f。)+R。(r.一r。)R。(f:一f,)] (12) Rw‘“、(fl,f2,f3,f4)dflr2f3f4

以上两部分都是有限值,从而保证了x“)谱图的方差是有限的。因此,受臼噪声污染的信号

的谱图可以对原信号的谱图做有偏估计,估计方差是有限的,并且是时间和频率的函数。估计

偏差为

b=吒2£w2(f—f)如(13)

即偏差与原信号无关,对于白噪声,它可以很容易地被移去,这也说明了谱图具有在白噪声中

检测信号的能力。

4.用Matlab实快速傅立叶变换

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,F现FT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT 之后的结果是什意思、如何决定要使用多少点来做FFT。

现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC 采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。

采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz 的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到

0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。

假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即

2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。

下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:

S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)。式中cos 参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT

的结果的模值如图所示。

从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:

1点: 512+0i

2点: -2.6195E-14 - 1.4162E-13i

3点: -2.8586E-14 - 1.1898E-13i

50点:-6.2076E-13 - 2.1713E-12i

51点:332.55 - 192i

52点:-1.6707E-12 - 1.5241E-12i

75点:-2.2199E-13 -1.0076E-12i

76点:3.4315E-12 + 192i

77点:-3.0263E-14 +7.5609E-13i

很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:

1点: 512

51点:384

76点:192

按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。

然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是

180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192,

3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。

总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的

方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。

5.简介离散傅里叶变换的应用。

DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算法,即快速傅里叶变换(快速傅里叶变换(即FFT)是计算离散傅里叶变换及其逆变换的快速算法。)。

1.频谱分析

DFT是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。

2.数据压缩

由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。

3.OFDM

OFDM(正交频分复用)在宽带无线通信中有重要的应用。这种技术将带宽为N个等间隔的子载波,可以证明这些子载波相互正交。尤其重要的是,OFDM调制可以由IDFT实现,而解调可以由DFT实现。OFDM还利用DFT的移位性质,在每个帧头部加上循环前缀(Cyclic Prefix),使得只要信道延时小于循环前缀的长度,就能消除信道延时对传输的影响。

6.结语

传统理论在的情况下,与之间关系的理论存在瑕疵。尽管这种瑕疵并不3 影响计算结果,但从数学的角度看,理论是不完善的。本文所提出的单边拉氏变换与傅氏变换的转换关系在理论上更严谨。由于笔者水平有限,本文参考借鉴了一些资料,自主性和创新性有很大不足,希望老师指正。

参考文献

[1]徐天成,谷亚林.信号与系统[M] . 北京:电子工业出版社,2008

[2]郑君里,杨为理.信号与系统[M] .北京:高等教育出版社,

1981.

[3]刘永健信号与线性系统[M].北京:人民邮电出版社,1994.

[4]沈元隆,周井泉.信号与系统[M] 北京:AE邮电出版社,20o3.

[5]姜建国,曹建中,高玉明.信号与系统分析基础[M].北京:

清华大学出版社.1994..

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

短时傅立叶变换试验

短时傅立叶变换试验 为了克服傅立叶变换的时频局部化方面的不足,也是为了对时域信号作局部分析,D.Gabor 于1946年提出了窗口傅立叶变换(简记为WFT )。 WFT 的公式形式 ()(,)()()j w t R G f w b f t w t b e d t -=-?()(,)()()j w t R G f w b f t w t b e d t -=-? 其中,实函数w(t)为是时窗函数,窗函数w(t)具有较强的衰减性,所以要精心选择窗函数。 下面是一个短时傅立叶变换的代码程序 function timefreq(x,Nw,window) % 待分析信号,行向量,Nw 时窗宽度 subplot(2,2,1); plot(real(x));%描绘待分析信号 X=fft(x);%快速傅里叶变换 X=fftshift(X);%调整0频位置 subplot(2,2,2); plot(abs(X));%描绘幅度谱 Lap=Nw/2;%重叠宽度 Tn=(length(x)-Lap)/(Nw-Lap);%计算分段数目 nfft=2^ceil(log2(Nw));%做fft 的点数 TF=zeros(Tn,nfft);%时频矩阵 for i=1:Tn if(strcmp(window,'rec')) Xw=x((i-1)*10+1:i*10+10);%加窗矩形处理 elseif(strcmp(window,'Hamming')) Xw=x((i-1)*10+1:i*10+10).*Hamming(Nw)';%加hamming 处理 elseif(strcmp(window,'Blackman')) Xw=x((i-1)*10+1:i*10+10).*Blackman(Nw)';%加black 处理 elseif(strcmp(window,'Gauss')) Xw=x((i-1)*10+1:i*10+10).*Gauss(Nw)';%加Gauss 处理 else return; end temp=fft(Xw,nfft);%求fft temp=fftshift(temp);%调整0频位置 TF(i,:)=temp;%保存分段fft 结果 end %绘制时频分析结果 subplot(2,2,3); fnew=((1:nfft)-nfft/2)/nfft; tnew=(1:Tn)*Lap; [F,T]=meshgrid(fnew,tnew); mesh(T,F,abs(TF)); xlabel('n');ylabel('w');zlabel('Gf');

希尔伯特变换与傅立叶变换

在数学与信号处理的领域中,一个实数值函数的希尔伯特转换(Hilbert transform)——在此标示为——是将信号与做卷积,以得到。因此,希尔伯特转换结果可以被解读为输入是的线性非时变系统(linear time invariant system)的输出,而此一系统的脉冲响应为。这是一项有用的数学, 用在描述一个以实数值载波做调制的信号之复数包络(complex envelope),出现在通讯理论(应用方面的详述请见下文。) 希尔伯特转换是以著名数学家大卫·希尔伯特(David Hilbert)来命名。 希尔伯特转换定义如下: 其中 并考虑此积分为柯西主值(Cauchy principal value),其避免掉在以及 等处的奇点。 另外要指出的是: 若,则可被定义,且属于;其中。频率响应 希尔伯特转换之频率响应由傅立叶变换给出: , 其中 ?是傅立叶变换, ?i (有时写作j )是虚数单位, ?是角频率,以及

? 即为符号函数。 既然: , 希尔伯特转换会将负频率成分偏移+90°,而正频率成分偏移?90°。 反(逆)希尔伯特转换 我们也注意到:。因此将上面方程式乘上,可得到: 从中,可以看出反(逆)希尔伯特转换 傅里叶变换(Fourier变换)是一种线性的积分变换。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。 傅里叶变换在物理学、声学、光学、结构动力学、量子力学、数论、组合数学、概率论、统计学、信号处理、密码学、海洋学、通讯、金融等领域都有着广泛的应用。例如在信号处理中,傅里叶变换的典型用途是将信号分解成振幅分量和频率分量。 ?傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的[1]。 ?傅里叶变换属于谐波分析。 ?傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 ?正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。

傅里叶变换与傅里叶级数

重温傅里叶—笔记篇 本文记录的大多是基础的公式,还有一些我认为比较重要的有参考价值的说明。(如果对这些公式已经很熟悉,可以直接看第三部分:总结性说明) 重温傅里叶—笔记篇 一、傅里叶级数 $关于三角函数系的正交性: 三角函数系包括: 1,cos x,sinx,cos2x,sin 2x,……cos nx,sinnx,…… “正交性”是说,三角函数系中的任何一项与另一项的乘积,在(-π, π) 区间内的积分为0。(任何两相的积总可以展成两个频率为整数倍基频的正余弦函数之和或差,而这两个展开后的正余弦在(-π, π)上积分都为0)。 不同频率(但都是整数倍基频)的两个正弦函数之积,在(-π, π)上积分恒为0。 同频率的两个正弦函数之积,只有在这两个正弦的相位正交时,其在(-π, π)上积分才是0。 三角函数系中除“1”以外的任何一项的平方,在(-π, π)上的积分恒为π,“1”在这个区间上的积分为2π。

$ 上公式! ①当周期为2π时: 式(1): 上式成立的条件是f(x)满足狄立克雷充分条件: 1.在任意有限区间内连续,或只有有限多个第一类间断点; 2.任意的有限区间,都可被分成有限多个单调区间(另一种说法是:任意有限区间内只有有限多个极值点,其实是一样的)

式(1)第一行中的a0/2 就是f(x)的周期平均值,而且第一行的式子只对f(x)是连续函数的情况成立;如果f(x)不连续,则应表示成“(1/2) ×[f(x-0)+f(x+0)]”,即f(x)左右极限的算术平均。下面的类似情况都是这样,之后就不再专门说明,这些大家应该都懂。 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。 ②当周期为2L时(这也是最一般的情形): 式(2): 第一行中的a0/2 就是f(x)的周期平均值; 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。

短时傅里叶变换matlab程序

function [Spec,Freq]=STFT(Sig,nLevel,WinLen,SampFreq) %计算离散信号的短时傅里叶变换; % Sig 待分析信号; % nLevel 频率轴长度划分(默认值512); % WinLen 汉宁窗长度(默认值64); % SampFreq 信号的采样频率(默认值1); if (nargin <1), error('At least one parameter required!'); end; Sig=real(Sig); SigLen=length(Sig); if (nargin <4), SampFreq=1; end if (nargin <3), WinLen=64; end if (nargin <2), nLevel=513; end nLevel=ceil(nLevel/2)*2+1; WinLen=ceil(WinLen/2)*2+1; WinFun=exp(-6*linspace(-1,1,WinLen).^2); WinFun=WinFun/norm(WinFun); Lh=(WinLen-1)/2; Ln=(nLevel-1)/2; Spec=zeros(nLevel,SigLen); wait=waitbar(0,'Under calculation,please wait...'); for iLoop=1:SigLen, waitbar(iLoop/SigLen,wait); iLeft=min([iLoop-1,Lh,Ln]); iRight=min([SigLen-iLoop,Lh,Ln]); iIndex=-iLeft:iRight; iIndex1=iIndex+iLoop; iIndex2=iIndex+Lh+1; Index=iIndex+Ln+1; Spec(Index,iLoop)=Sig(iIndex1).*conj(WinFun(iIndex2)); end; close(wait); Spec=fft(Spec); Spec=abs(Spec(1:(end-1)/2,:));

傅里叶级数及变换的本质解释和形象阐述

傅里叶级数及变换的本质解释和形象阐述 ——老师不会这么讲,书上也不会讲很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,什么是傅里叶变换,它是怎样一种变换,具体有怎么变换,有没有确切一点或者形象一点的物理解释呢?下面笔者将尝试将自己的理解比较本质和形象地讲出来,形式是思考探讨渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。 首先,要知道傅里叶变换是一种变换,准确点说是投影。傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。但是要是从投影(或者说变换)的角度来说,怎么解释呢?这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基的投影很好理解,那么,傅里

叶变换的正交基函数,也是这样一种相互垂直的关系么???投影也是取余弦值么? 这可以很容易地想清,我们只用余弦或者只用正弦就可以,如cos(2pi*nf0)系列,显然每两个函数图像之间不可能是垂直关系,相反可以看出这是在同一个维度里面的!所以上面两个答案是否定的。 那么,到底是怎么正交、怎么投影的呢。出现这个问题,是因为开始看书的时候我看得太粗心太浅显,没有认真透彻地理解函数正交的含义,没想到那才是最重要最根本的,从那里面再深刻理解一下,问题就迎刃而解。 函数正交和矢量正交完全不一样,是两个概念。函数正交是两个函数,一个不变另一个取共轭值然后逐点相乘再求积分的结果,积分就涉及到一个区间,这也很重要。如果满足:当这两个函数不同时,积分值为0;当两函数相同,积分值不为0。那么这两个函数在这个区间上正交。现在再回过头去看正弦或者余弦函数序列,在各个周期内,都满足上述条件,在正弦和余弦函数之间同样满足,所以这些函数是正交的。至于完备,很明显看出,不去证明了。 第一个问题解决了,现在看怎么去投影了。为更易于理解,我们取指数傅里叶变换为例。众所周知exp(jwt)表示的是一个圆周,我们用来作傅里叶变换的因子,正是这个形式(exp(-jwt)),这里我们还要理解一下傅里叶变换和傅里叶级数的区别,前者求的是复指数傅里叶级数的系数,即每个正交函数的系数(权重),复指数傅里叶级数的正交函数集正是exp(jwt),所以求系数刚好乘以一个共轭

傅里叶变换和傅里叶级数的收敛问题

1、傅里叶变换和傅里叶级数的收敛问题 由于傅里叶级数是一个无穷级数,因而存在收敛问题。这包含两方面的意思:是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级数,是否对任何t 值级数都收敛于原来的信号。关于傅里叶级数的收敛,有两组稍有不同的条件。 第一组条件:如果周期信号()t x 在一个周期内平方可积,即 ()∞

吉布斯现象: 当简单地把信号频谱截断时,相当于给信号频谱加上了一个矩形窗口函数,正是由于矩形窗口函数的时域特性导致了在间断点处的吉布斯现象的产生。 2、周期序列的傅里叶级数展开和傅里叶变换之间的问题 假定()t x 是一个长度为N 的有限长序列,将()t x 以N 为周期延拓而成的周期序列为()n x ~,则有 ()()∑∞-∞=-= r rN n x n x ~ 或表示为()()()N n x n x =~。于是()n x ~ 与()n x 的关系表示为: ()()()N n x n x =~ ()()()n R n x n x N ~= 将()n x ~表示为离散时间傅里叶级数有: ()()kn N N n W k X N n x --=?=∑10~~ 1 ()()kn N N n W n x k X ?=∑-=10~ ~ 其中()k X ~是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里叶变换的形式相类似。如果将()k X ~的主值周期记为()k X ,10-≤≤N k ,由于以上两式中的求和范围均取为区间0~N-1,在次区间内()n x ~ =()n x ,因此可以得到: ()()kn N N n W n x k X ∑-==10~, 10-≤≤N k ()()kn N N n W k X N n x --=∑=10~1, 10-≤≤N n 表明时域N 点有限长序列()n x 可以变换成频域N 点有限长序列()k X 。显然,DFT 与DFS 之间存在以下关系: ()()()N k X k X =~

傅里叶变换

研究生课程论文(作业)封面 ( 2014 至 2015 学年度第 1 学期) 课程名称:__________________ 课程编号:__________________ 学生姓名:__________________ 学号:__________________ 年级:__________________ 提交日期:年月日 成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周 评阅日期:年月日 东北农业大学研究生部制

积分变换在工程上的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的积分变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用,并在分离变数法中对齐次方程及非齐次方程进行了区分。傅里叶变换在不同的领域有不同的形式,诸如现代声学,语音通讯,声纳,地震,核科学,乃至生物医学工程等信号的研究发挥着重要的作用。 关键词:傅里叶变换;偏微分方程;数字信号处理 1 概要介绍 积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 1.傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。——(1) 2.傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 3.正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。 ()()()()()()?? ? ??-++=-? ? ∞ +∞ +∞ -.,200,]cos [1 其它连续点处, 在t f t f t f t f d d t f ωττωτπ 当()t f 满足一定条件时,在()t f 的连续点处有:

常用傅里叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 | 线性 2时域平移 3频域平移, 变换2的频域对应 \ 4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当| a | 趋向无 穷时,成为Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 / 傅里叶变换的微分性质 7变换6的频域对应

8 表示和的卷积—这 就是卷积定理 - 9 矩形脉冲和归一化的sinc函数 10变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。 11- tri是三角形函数 12变换12的频域对应 13高斯函数exp( ? αt2) 的傅里叶变换是他本身. 只有当Re(α) > 0时,这是可积的。 ¥14 15 16》 a>0

18δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换 【 19 变换23的频域对应20由变换3和24得到. 21` 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22由变换1和25得到 23这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 / 24此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 25变换29的推广. 17变换本身就是一个公式

26【 变换29的频域对应. 27此处u(t)是单位阶跃函数; 此变换根据变换1和31得到. 28u(t)是单位阶跃函数,且a > 0. 34狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.

(完整版)傅里叶变换分析

第一章 信号与系统的基本概念 1.信号、信息与消息的差别? 信号:随时间变化的物理量; 消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等 信息:所接收到的未知内容的消息,即传输的信号是带有信息的。 2.什么是奇异信号? 函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。例如: 单边指数信号 (在t =0点时,不连续), 单边正弦信号 (在t =0时的一阶导函数不连续)。 较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。 3.单位冲激信号的物理意义及其取样性质? 冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。 它表达的是一类幅度很强,但作用时间很短的物理现象。其重要特性是筛选性,即: ()()()(0)(0)t x t dt t x dt x δδ∞ ∞ -∞ -∞ ==? ? 4.什么是单位阶跃信号? 单位阶跃信号也是一类奇异信号,定义为: 10()00t u t t >?=?

12()()()x t ax t bx t =+,其中a 和b 是任意常数时, 输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+; 且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。 其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性; 如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。 线性时不变系统是最基本的一类系统,是研究复杂系统,如非线性、时变系统的基础。 6.线性时不变系统的意义与应用? 线性时不变系统是我们本课程分析和研究的主要对象,对线性时不变性进行推广,可以得到线性时不变系统具有微分与积分性质,假设系统的输入与输出信号分别为()x t 和()y t ,则 当输入信号为 ()dx t dt 时,输出信号则为() dy t dt ; 或者当输入信号为()t x d ττ-∞ ?时,输出信号则为()t y d ττ-∞ ?。 另外,线性时不变系统对信号的处理作用可以用冲激响应(或单位脉冲响应)、系统函数或频率响应进行描述。而且多个系统可以以不同的方式进行连接,基本的连接方式为:级联和并联。 假设两个线性时不变系统的冲激响应分别为:1()h t 和2()h t , 当两个系统级联后,整个系统的冲激响应为:12()()*()h t h t h t =; 当两个系统并联后,整个系统的冲激响应为:12()()()h t h t h t =+; 当0t <时,若()0h t =, 则此系统为因果系统; 若|()|h t dt ∞ -∞<∞?, 则此系统为稳定系统。 第二章 连续时间系统的时域分析 1.如何获得系统的数学模型? 数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。 不同的系统,其数学模型可能具有不同的形式和特点。对于线性时不变系统,其数学模型

傅里叶级数与傅里叶变换关系与应用

论文题目傅里叶级数与傅里叶变换的关系与应用 目录 摘要: 0 关键词 0 Abstract 0 1绪论 (1) 2傅里叶级数的概念 (1) 2.1周期函数 (2) 2.2傅里叶级数的定义 (2) 3 傅里叶变换的概念及性质 (10) 3.1傅里叶变换的概念 (10) 3.2傅立叶变换的性质 (11) 4傅里叶变换与傅里叶级数之间的区别与联系 (12) 5傅里叶级数和傅里叶变换的应用 (12) 5.1傅里叶级数的应用 (12) 5.2傅里叶变换的应用 (13) 参考文献 (15)

傅里叶级数与傅里叶变换的关系与应用 摘要:傅里叶级数是对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。 傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。 关键词:傅里叶级数;傅里叶变换;周期性 Fourier series And Fourier Transforms Abstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very important in the field of signal processing algorithms. Fourier transform is a method of signal analysis, it can analyze signal component, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fourier transform as a signal of composition. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications. Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal into a complex signal superposition, similar features. Key words: Fourier series; Fourier Transform; Periodic

傅里叶变换

1.课题综述 第一章中我们主要学习了信号、测试、测控、信号分析处理的概念、测试技术的应用情况、测试技术的发展动态及主要信号测试仪器生产厂商。信号是指那些代表一定意义的现象,比如声音、动作、旗语、标志、光线等,它们可以用来传递人们想表达的事情。从广泛意义上来说,信号是指事物运动变化的表现形式,它代表事物运动变化的特征。信号采集测量系统由传感器、中间变换装置和显示记录装置三部分组成,如今传感器技术越来越趋向于新型化和智能化。在工程领域,科学实验、产品开发、生产监督、质量控制等,都离不开测试技术。测试技术应用涉及到航天、机械、电力、石化和海洋运输等每一个工程领域。 第二章我们主要学习了信号分类方法、信号时域波形分析方法、信号时差域相关分析方法、信号频域频谱分析方法及其它信号分析方法。首先学习了信号的分类,其主要是依据信号波形特征来划分的,从信号描述上分可分为确定性信号与非确定性信号;从信号的幅值和能量上分可分为能量信号与功率信号;从分析域上分可分为时域与频域;从连续性上分可分为连续时间信号与离散时间信号;从可实现性上分可分为物理可实现信号与物理不可实现信号。 信号的时域波形分析,信号的时域波形分析是最常用的信号分析手段,用示波器、万用表等普通仪器直接显示信号波形,读取特征参数。可以求得信号的均值、均方值、方差以及概率密度函数等参数。信号的时差域相关分析,用相关函数来描述与时间有关的变量τ、x(t)和y(t),三者之间的函数关系,相关函数表征了x、y之间的关联程度。信号频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),频域分析能明确揭示信号的频率组成和各频率分量大小。 第三章我们主要学习了传感器的分类、常用传感器测量原理及传感器测量电路。传感器是借助检测元件将一种形式的信息转换成另一种信息的装置。传感器由敏感器件与辅助器件组成。敏感器件的作用是感受被测物理量,并对信号进行转换输出。辅助器件则是对敏感器件输出的电信号进行放大、阻抗匹配,以便于后续仪表接入。主要有电阻式、电容式、电感式、磁电式、压电式传感器,磁敏、热敏和气敏元件传感器,以及超声波、光电及半导体敏感元件传感器,光纤传感器等。 第四章我们主要学习了自动化工程机械分类、工程机械控制器及发展趋势、

傅里叶级数及变换的本质解释和形象阐述

傅里叶级数及变换的本质解释和形象阐述(更正版) ——老师不会这么讲,书上也不会讲 注:原来上传到百度文库的文档有较多问题,或者阐述不清楚,因原文档无法删除,只能重新上传一次了。此为更正版。 很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,傅里叶变换到底是怎样一种变换?具体又怎么变换?有没有确切一点,或者形象一点的物理解释呢?下面笔者将尝试从以一种可理解的、物理的方式来解释,并尽量形象地讲出来,形式是探究、渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。 首先,要知道傅里叶变换是一种变换,准确点说是投影。傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。但是要是从投影(或者说变换)的角度来说,怎么解释呢?书上说:这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基上的投影很好理解,因为各矢量正交基在空间是垂直关系,原矢量在各正交基上的投影就是其模值乘以与各正交基夹角余弦值。那么,傅里叶变换的正交基函数,也是这样一种相互垂直的关系么?投影也是取余弦值么?

短时傅里叶变换

短时距傅里叶变换(英文:short-time Fourier transform, STFT,又称short-term Fourier transform)是和傅里叶变换相关的一种数学变换关系,用以决定时变信号其局部段落之弦波成份的频率与相位。 简单来说,在连续时间的例子,一个函数可以先乘上仅在一段时间不为零的窗函数(window function)再进行一维的傅里叶变换。再将这个窗函数沿着时间轴挪移,所得到一系列的傅里叶变换结果排开则成为二维表象。数学上,这样的操作可写为: 其中w(t)是窗函数,通常是翰氏窗函数(Hann window)或高斯函数的“丘型”分布,中心点在零,而x(t)是待变换的信号。X(τ,ω)本质上是x(t)w(t?τ)的傅里叶变换,乃一个复函数代表了信号在时间与频率上的强度与相位。 短时傅里叶变换(STFT,short-time Fourier transform,或 short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。 它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率不能同时达到最优。

用快速傅里叶变换对信号进行频谱分析

实验二 用快速傅里叶变换对信号进行频谱分析 一、实验目的 1.理解离散傅里叶变换的意义; 2.掌握时域采样率的确定方法; 3.掌握频域采样点数的确定方法; 4.掌握离散频率与模拟频率之间的关系; 5.掌握离散傅里叶变换进行频谱分析时,各参数的影响。 二、实验原理 序列的傅里叶变换结果为序列的频率响应,但是序列的傅里叶变换是频率的连续函数,而且在采用计算机计算时,序列的长度不能无限长,为了便于计算机处理,作如下要求:序列x (n )为有限长,n 从0~N -1,再对频率ω在0~2π范围内等间隔采样,采样点数为N ,采样间隔为2π/N 。第k 个采样点对应的频率值为2πk /N 。可得离散傅里叶变换及其逆变换的定义为 ∑-=-=1 02)()(N n n N k j e n x k X π (1) ∑-==1 02)(1)(N k k N n j e k X N n x π (2) 如果把一个有限长序列看作是周期序列的一个周期,则离散傅里叶变换就是傅里叶级数。离散傅里叶变换也是周期的,周期为N 。 数字频率与模拟频率之间的关系为 s f f /2πω=,即s s T f f πωπω22== (3) 则第k 个频率点对应的模拟频率为 N kf NT k T N k f s s s k ==?=ππ212 (4) 在用快速傅里叶变换进行频谱分析时,要确定两个重要参数:采样率和频域采样点数,采样率可按奈奎斯特采样定理来确定,采样点数可根据序列长度或频率分辨率△f 来确定 f N f s ?≤,则f f N s ?≥ (5) 用快速傅里叶变换分析连续信号的频谱其步骤可总结如下: (1)根据信号的最高频率,按照采样定理的要求确定合适的采样频率f s ; (2)根据频谱分辨率的要求确定频域采样点数N ,如没有明确要求频率分辨率,则根据实际需要确定频率分辨率; (3)进行N 点的快速傅里叶变换,最好将纵坐标根据帕塞瓦尔关系式用功率来表示,

短时傅里叶变换的有关资料

短时傅里叶变换短时傅里叶变换(STFT,short-time Fourier transform,或short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率不能同时达到最优。 短时距傅里叶变换 维基百科,自由的百科全书 汉漢▼

[编辑]与傅里叶转换在概念上的区别 将信号做傅里叶变换后得到的结果,并不能给予关于信号频率随时间改变的任何信息。以下的例子作为说明: 傅里叶变换后的频谱和短时距傅里叶转换后的结果如下: 傅里叶转换后, 横轴为频率(赫兹) 短时距傅里叶转换, 横轴为时间( 秒 ) , 纵轴 为频率(赫兹) 由上图可发现,傅里叶转换只提供了有哪些频率成份的信息,却没有提供时间信息;而短时傅里叶转换则清楚的提供这两种信息。这种时频分析的方法有利于频率会随着时间改变的信号(例如:音乐信号、语音信号等)分析。 [编辑]定义 [编辑]数学定义 简单来说,在连续时间的例子,一个函数可以先乘上仅在一段时间不为零的窗函数再进行一维的傅里叶变换。再将这个窗函数沿着时间轴挪移,所得到一系列的傅里叶变换结果排开则成为二维表象。数学上,这样的操作可写为: 另外也可用角频率来表示:

实验应用快速傅里叶变换对信号进行频谱分析

实验二、应用快速傅里叶变换对信号进行频谱分析 一、 实验目的 1、 加深对DFT 算法原理和基本性质的理解,熟悉FFT 算法原理。 2、 掌握应用FFT 对信号进行频谱分析的方法。 3、 通过本实验进一步掌握频域采样定理。 4、 了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中 正确应用FFT 。 二、 实验原理 1、 一个连续时间信号()a x t 的频谱可以用它的傅里叶变换表示为: ()()j t a a X j x t e dt +∞ -Ω-∞ Ω=? 如果对信号进行理想采样,得: ()()a x n x nT =, 其中,T 为采样周期。对()x n 进行Z 变换,得: ()()n n X Z x n z +∞ -=-∞ = ∑ 当jwt z e -=时,我们便得到序列傅氏变换SFT : ()()jw jwn n X e x n e +∞ -=-∞ = ∑ 其中w 称为数字角频率:/s w T F =Ω=Ω。

2、12()[()]jw a m w m X e X j T T T π+∞=-∞=-∑,序列的频谱是 原模拟信号频谱的周期延拓,这样,可以通过分析序列的频谱,得到相应连续信号的频谱。 3、离散傅里叶变换(DFT )能更好的反映序列的频域特性。 当序列()x n 的长度为N 时,它的离散傅氏变换为: 1 0()[()]()N kn N n X k DFT X n x n W -===∑ 它的反变换为: 10 1()[()]()N kn N n x n IDFT X k X k W N --===∑ 比较Z 变换式和DFT 式,令k N z W -=,则 10 ()|()[()]k N N kn N z W n X z x n W DFT X n --====∑ 因此有 ()()|k N z W X k X z -== 即k N W -是z 平面单位圆上幅角为2/w k N π=的点,也即是将单位圆 N 等分后的第k 点。所以()X k 是()x n 的Z 变换在单位圆上的 等距采样,或者说是序列傅氏变换的等距采样。 三、 如何提高估计精度 增大做FFT 运算的点数 四、 幅频特性曲线及结果分析

相关文档
最新文档