热工计算公式及参数

热工计算公式及参数
热工计算公式及参数

附录一建筑热工设计计算公式及参数

(一)热阻的计算

1.单一材料层的热阻应按下式计算:

式中R——材料层的热阻,㎡·K/W;

δ——材料层的厚度,m;

λc——材料的计算导热系数,W/(m·K),按附录三附表3.1及表注的规定采用。

2.多层围护结构的热阻应按下列公式计算:

R=R1+R2+……+Rn(1.2)

式中R1、R2……Rn——各材料层的热阻,㎡·K/W。

3.由两种以上材料组成的、两向非均质围护结构(包括各种形式的空心砌块,以及填充保温材料的墙体等,但不包括多孔粘土空心砖),

其平均热阻应按下式计算:

(1.3)

式中——平均热阻,㎡·K/W;

Fo——与热流方向垂直的总传热面积,㎡;

Fi——按平行于热流方向划分的各个传热面积,㎡;(参见图3.1);

Roi——各个传热面上的总热阻,㎡·K/W

Ri——内表面换热阻,通常取0.11㎡·K/W;

Re——外表面换热阻,通常取0.04㎡·K/W;

φ——修正系数,按本附录附表1.1采用。

图3.1 计算图式

修正系数φ值附

/

注:(1)当围护结构由两种材料组成时,λ2应取较小值,λ1应取较大值,然后求得两者的比值。

(2)当围护结构由三种材料组成,或有两种厚度不同的空气间层时,φ值可按比值/λ1确定。

(3)当围护结构中存在圆孔时,应先将圆孔折算成同面积的方孔,然后再按上述规定计算。

4.围护结构总热阻应按下式计算:

Ro=Ri+R+Re(1.4)

式中Ro——围护结构总热阻,㎡·K/W;

Ri——内表面换热阻,㎡·K/W;按本附录附表1.2采用;

Re——外表面换热阻,㎡·K/W,按本附录附表1.3采用;

r——围护结构热阻,㎡·K/W。

内表面换热系数αi 及内表面换热阻Ri 值

注:表中h 为肋高,s为肋间净距。

5.空气间层热阻值的确定

(1)不带铝箔,单面铝箔、双面铝箔封闭空气间层的热阻值应按附表1.4采用。

(2)通风良好的空气间层热阻,可不予考虑。这种空气间层的间层温度可取进气温度,表面换热系数可取11.63W/(㎡·K)。

外表面换热系数αe 及外表面换热阻Re 值

(二)围护结构热惰性指标D 值的计算

1.单一材料层的D 值应按下式计算:

D =R·S

(1.5)

式中 R ——材料层的热阻,㎡·K/W;

S ——材料的蓄热系数,W/(㎡·K);

空气间层热阻值[㎡·K/W]

地面吸热计算系数K值

2.多层围护结构的D值应按下式计算:

D=D1+D2+……+Dn

=R1S1+R2S2+……+RnSn (1.6)

式中R1,R2……Rn——分别为各层材料的热阻,㎡·K/W;

S1,S2……Sn——分别为各层材料的蓄热系数,W/(㎡·K),空气间层的蓄热系数取S=O。

注:如某层有两种以上材料构成,则可按下式求得其平均导热系数:

(1.7)

然后按下式计算其平均热阻:

该层的平均蓄热系数按下式计算:

(1.8)

式中F1,F2……Fn——按平行于热流方向划分的各个传热面,㎡;

λ1,λ2……λN——各个传热面积上材料的导热系数,W/(m·k)。

(三)地面吸热指数B值的计算地面吸热指数B值,应根据地面中影响吸热的界面位置,按下列几种情况计算:

1.影响吸热的界面在最上一层内,即当:

(1.9)

式中δ1——最上一层材料的厚度,m;

α1——最上一层材料的导温系数,㎡/h;

τ——人脚与地面接触的时间,取0.2H。

这时,B值可按下式计算

(1.10)

式中b1——最上一层材料的热渗透系数,W/(㎡··K);

λ1——最上一层材料的导热系数。W/(m·K);

c1——最上一层材料的比热,W·h/(kg·K);

1——最上一层材料的容重,kg/。

2.影响吸热的界面在第二层内,即当:

(1.11)

式中δ2——第二层材料的厚度,m;

α2——第二层材料的导温系数,㎡/h。

这时,B值可按下式计算:

B=b1(1+K1,2) (1.12)

式中K1,2——第1,2两层地面吸热计算系数,根据b2/b1和两值按附表1.5查得;

b2——第2层材料的热渗透系数,W/㎡··K)。

3.影响吸热的界面在第二层以下,即按(1.11)式求得的结果小于3.0,则影响吸热的界面位于第三层或更深处。此时可仿照(1.12)式求出

B2,3或B3,4等,然后按顺序依此求出B1,2值,这时式中的K1,2值应根据和值按附表1.5查得。

太阳辐射吸收系数ρ值

(

四)

室外综合温度的计算

1.室外综合温度各小时值按下式计算:

(1.13)

式中 tsa ——室外综合温度,℃;

te ——室外空气温度,℃;

I ——水平或垂直面上的太阳辐射强度,W/㎡

ρ——太阳辐射吸收系数,按附表1.6采用;

αe ——外表面换热系数,通常取23.26W/(㎡·K)。

注:tsa 计算式中未考虑外表面的长波辐射散热,它对顶层房间的降温是有一定作用的。

2.室外综合温度平均值按下式计算:

(1.14)

式中 ——室外综合温度平均值,℃;

——室外计算温度平均值,℃,按附录二附表2.2采用;

_

I——水平或垂直面上太阳辐射强度平均值,W/㎡,按附录二附表2.4采用;

ρ——太阳辐射吸收系数,按附表1.6采用;

αe——外表面换热系数,W/(㎡·K)。

3.室外综合温度波幅按下式计算:

At·sa=(Ate+Ats)β

(1.15)

式中At·sa——室外综合温度波幅,℃;

Ate——室外计算温度波幅,℃,按附录二附表2.2采用;

Ats——太阳辐射当量温度波幅,℃,按下式计算:

(1.16)

Imax——水平或垂直面上太阳辐射强度最大值,W/㎡,按附录二附表2.4

采用;

_

I——水平或垂直面上太阳辐射强度平均值,W/㎡,按附录二附表2.4采用;

αe——外表面换热系数,W/(㎡·K);

β——相位差修正系数,根据Ate与Ats的比值以及φte与φl之间的差值按附表1.7采用;

φte——室外空气温度最大值出现时间,通常取15:00;

φl——太阳辐射强度最大值出现时间。通常取:水平及南向12:00,东向8:00,西向16:00;

ρ——太阳辐射吸收系数,按附表1.6采用。

(五)围护结构总衰减倍数和总延迟时间的计算

1.多层围护结构的总衰减倍数按下式计算:

(1.17)

式中νo——围护结构的总衰减倍数;

ΣD——围护结构的热惰性指标,按本附录(二)的规定计算;

ai,ae——分别为内、外表面换热系数,W/(㎡·K),

S1,s2……Sn——由内到外各层材料的蓄热系数,W/(㎡·K),这气间层取S=O;

y1,y2……yn——由内到外各层材料外表面蓄热系数,W/(㎡·K),按本附录(七)1的规定计算。

2.多层围护结构总延迟时间按下式计算:

(1.18)

式中ξo——围护结构的总延迟时间,h;

ye——围护结构外表面(亦即最后一层外表面)蓄热系数,W/(㎡·K);

yi——围护结构内表面蓄热系数,W/(㎡·K),按本附录(七)2的规

定计算。

(六)室内空气到内表面的衰减倍数及延迟时间的计算

1.室内空气到内表面的衰减倍数按下式计算:

(1.19)

2.室内空气到内表面的延迟时间按下式计算:

(1.20)

式中νi——内表面衰减倍数;

ξi——内表面延迟时间,h;

αi——内表面换热系数,W/(㎡·K);

yi——内表面蓄热系数,W/(㎡·K)。

(七)表面蓄热系数的计算

1.多层围护结构各层的外表面蓄热系数,按下列规定由内到外逐层进行计算:

如果任何一层的D≥1,则y=S,即为该层材料的蓄热系数。

如果第一层的D1<1,则:

如果第二层的D2<1,则:

余类推,直到最后一层(第n层):

式中S1,S2…Sn——各层材料的蓄热系数,W/(m·K);

R1,R2…Rn——各层材料的热阻,㎡·K/W;

y1,y2…yn——各层外表面蓄热系数,W/(㎡·K);

α——内表面换热系数,W/(㎡·K)。

2.多层围护结构内表面蓄热系数按下列规定计算:

如果多层围护结构中的第一层(即紧接内表面的一层)D1≥1,则取围护结构内表面蓄热系数yi=Si。

如果多层结构中最接近内表面的第m层,其Dm≥1,则取ym=Sm,然后从第m-1层开始,由外向内逐层计算,直至第1层的y1即为所求的围护结构内表面蓄热系数。

如果多层结构中的每一层D值均小于1,则计算应从最后一层(第n层)开始,然后由外向内逐层计算,直至第1层的y1即为所求的围护结构内表面蓄热系数。

(八)内表面最高温度的计算

1.非通风围护结构内表面最高温度按下式计算:

(1.21)

内表面平均温度按下式计算:

(1.22)

式中θimax——内表面最高温度,℃;

θi——内表面平均温度,℃;

_ _

ti——室内计算温度平均值,℃,取t=te+1.5℃

te——室外计算温度平均值,按附录二附表2.2采用;

Ati——室内计算温度波幅,℃,取Ati=Ate-1.5℃,(Ate为室外计算温度波幅,按附录二附表2.2采用);

tse——室外综合温度平均值,℃,按本附录(1.14)式计算;

Atsα——室外综合温度波幅,℃,按本附录(1.15)式计算;

νo——围护结构总衰减倍数,按本附录(1.17)式计算;

ξo——围护结构总延迟时间,按本附录(1.18)式计算;

νi——室内空气至内表面的衰减倍数,按本附录(1.19)式计算;

ξi——室内空气至内表面的延迟时间,按本附录(1.20)式计算;

β——相位差修正系数,根据与的比值及(φtsa+ξo)与(φti+ξi)的差值,按本附录附表1.7采用;

φtsa——室外综合温度最大值出现时间,取值见本附录附表1.7;

φti——室内空气温度最大值出现时间,通常取16:00。

2.通风屋顶内表面最高温度的计算

对于薄型面层(如混凝土薄板、大阶砖等),厚型基层(如混凝土实心板、空心板等)、间层高度为20cm左右的通风屋顶,其内表面最高温度可近似地按下列规定计算:

相位差修正系数β值

与的比

注:表中φtsa为室外综合温度最大值出现时间,h,通常可取:水平及南向,13:00;东向,9:00;西向,16;00。

(1)面层下表面温度的最大值、平均值及波幅可分别按下列三式计算:

θ1·max=0.8tsα·max(1.23)

_

θ1=0.54tsα·max(1.24)

Aθ1=0.26tsα·max (1.25)

式中θ1·max——面层下表面温度最大值,℃;

_

θ1——面层下表面温度平均值,℃;

Aθ1——面层下表面温度波幅,℃;

tsα·max——室外综合温度最大值,℃。

(2)间层综合温度(作为基层上表面的热作用)的平均值及波幅可分别按下列二式计算:

___

tvc sy=0.5(tvc+θ1) (1.26)

Atvc sy=0.5(Atvc+Aθ1) (1.27) _

式中tvc sy——间层综合温度平均值,℃;

Atvc sy——间层综合温度波幅,℃;

____

tvc——间层空气温度平均值,℃,取tvc=1.06teo;tt6为室外计算温度平均值。

___

Atvc——间层空气温度波幅,℃,取Atvc=1.3At6;At6为室外计算温度波幅。

_

θ——面层下表面温度平均值,℃;

Ao1——面层下表面温度波幅,℃。

(3)在求得间层综合温度后,即可按本附录(八)1同样的方法计算基层内表面(即下表面)最高温度。计算中间层综合温度最大值出现时间取φtvc sy =13:30。

围护结构保温材料选用及热工性能指标

附录围护结构保温材料选用及热工性能指标 附录A 屋面保温材料选用及热工性能参数 A.0.1屋面保温材料主要性能指标应符合表A.0.1的要求 表A.0.1屋面保温材料的主要性能指标 A.0.2正置式屋面的保温材料、厚度及热工性能按表A.0.2-1、表A.0.2-2确定

A.0.3倒置式屋面的保温材料、厚度及热工性能按表A.0.3-1、表A.0.3-2确定 注:倒置式屋面保温层的设计厚度按计算厚度增加25%;

A.0.4倒置式屋面采用B1级保温材料时,应按住宅单元设置防火隔断墙,防火隔断墙为厚度不小于100 mm 的不燃烧体,应从屋面板砌至高出屋面完成面不小于250mm ;防火隔断墙可利用住宅单元分隔墙延伸至屋面以上,高度不小于250mm ;防火隔断墙之间的屋顶面积不应大于300㎡,当屋面面积大于300㎡时,应增设一道防火隔断墙;防火隔断墙的泛水构造应符合屋面防水技术规范要求。 图A.0.4 屋面防火隔断墙示意图

附录B 外墙保温材料选用及热工性能参数 B.0.1 保温材料主要性能指标应符合表B.0.1的要求 表B.0.1外墙内保温材料的主要性能指标 能参数取自上海市地方标准《保温装饰复合板墙体保温系统应用技术规程》DG/TJ08-2122-2013表B.0.5 B.0.2全装修房外墙内保温的装饰面层由装修设计确定,内保温的构造组成应符合表B.0.2的规定, 2、保温材料采用硬泡聚氨酯时,应采用板材或硬泡聚氨酯龙骨固定内保温系统 3、岩棉、硬泡聚氨酯龙骨固定内保温系统的基本构造详见《外墙内保温工程技术规程》JGJ/T261-2011表6.6.1,并应符合《外墙内保温工程技术规程》JGJ/T261-2011第6.6节的规定。

(新)混凝土热工计算

混凝土热工计算: 依据《建筑施工手册》(第四版)、《大体积混凝土施工规范》(GB_50496-2009)进行取值计算。 砼强度为:C40 砼抗渗等级为:P6 砼供应商提供砼配合比为: 水:水泥:粉煤灰:外加剂:矿粉:卵石:中砂 155: 205 : 110 : 10.63 : 110 : 1141 : 727 一、温度控制计算 1、最大绝热温升计算 T MAX= W·Q/c·ρ=(m c+K1FA+K2SL+UEA)Q/Cρ 式中: T MAX——混凝土的最大绝热温升; W——每m3混凝土的凝胶材料用量; m c——每m3混凝土的水泥用量,取205Kg/m3; FA——每m3混凝土的粉煤灰用量,取110Kg/m3; SL——每m3混凝土的矿粉用量,取110Kg/m3; UEA——每m3混凝土的膨胀剂用量,取10.63Kg/m3; K1——粉煤灰折减系数,取0.3; K2——矿粉折减系数,取0.5; Q——每千克水泥28d 水化热,取375KJ/Kg; C——混凝土比热,取0.97[KJ/(Kg·K)]; ρ——混凝土密度,取2400(Kg/m3);

T MAX=(205+0.3×110+0.5×110+10.63)×375/0.97×2400 T MAX=303.63×375/0.97×2400=48.91(℃) 2、各期龄时绝热温升计算 Th(t)=W·Q/c·ρ(1-e-mt)= T MAX(1-e-mt); Th——混凝土的t期龄时绝热温升(℃); е——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。根据商砼厂家提供浇注温度 为20℃,m值取0.362 Th(t)=48.91(1-e-mt) 计算结果如下表: 3、砼内部中心温度计算 T1(t)=T j+Thξ(t) 式中: T1(t)——t 龄期混凝土中心计算温度,是该计算期龄混凝土 温度最高值; T j——混凝土浇筑温度,根据商砼厂家提供浇注温度为20℃; ξ(t)——t 龄期降温系数,取值如下表

5.2.3 1#围护结构热工性能提高率计算书

1#楼围护结构热工性能 提高率计算书 (居住建筑) 提供者: XXXX建筑设计有限公司 绿色建筑咨询中心 电话:0635-XXXXXX 传真:0635-XXXXXX 地址:山东省XXX市XX区XX路X号 日期:2017-05

目录 一、项目概况 (3) 二、建筑信息 (3) 三、设计依据 (3) 四、体形系数 (3) 五、参考标准 (3) 六、围护结构热工性能提高率汇总表 (5) 七、结论 (5)

一、项目概况 二、建筑信息 三、设计依据 1.《山东省居住建筑节能设计标准》(DB37_5026_2014) 2.《严寒和寒冷地区居住建筑节能设计标准》(JGJ26-2010) 3.《民用建筑热工设计规范》(GB50176-93) 4.《建筑外门窗气密、水密、抗风压性能分级及检测方法》(GB/T 7106-2008) 5.《建筑设计防火规范》(GB50016-2014) 四、体形系数 五、参考标准 围护结构热工性能指标依据为《绿色建筑评价标准》(GB/T 50378-2014)中有关围护结构热工性能的条目要求。具体要求如下: 5.2.3 围护结构热工性能指标优于国家现行相关建筑节能设计标准的规定,评价总分值

为10分,并按下列规则评分: 1 围护结构热工性能比国家现行相关建筑节能设计标准规定的提高幅度达到5%,得5分;达到10%,得10分。 注:外墙、屋面的传热系数,外窗/幕墙的传热系数、遮阳系数,比《严寒和寒冷地区居住建筑节能设计标准》JGJ26-2010中表4.2.2-5规定的现行值高出5%或10%,即可判定满足该条款。

六、围护结构热工性能提高率汇总表 注: 1.东西向窗墙比小于0.2,外窗遮阳系数不做要求。 2.该汇总表传热系数设计值来源于5.1.1 1#楼节能计算书、节能登记表。 七、结论 根据计算,该工程维护结构热工性能指标优于国家现行标准《严寒和寒冷地区居住建筑节能设计标准》JGJ26-2010的相关标准规定,提高幅度达到10%。 根据《绿色建筑评价标准》第5.2.3条“围护结构热工性能比国家现行相关建筑节能设计标准规定的提高幅度达到10%,”本项目得10分。 根据《绿色建筑评价标准》第11.2.1条“围护结构热工性能比国家现行相关建筑节能设计标准的规定高20%,”本项目得2分。

热工计算

一、窗节能设计分析 按《民用建筑热工设计规范》(GB50176-93)设计计算,设计依据: R o =R i +R+R e ……附2.4[GB50176-93] 在上面的公式中: R o :围护结构的传热阻(m2·K/W); R i :围护结构内表面换热阻,按规范取0.11m2·K/W; R e :围护结构外表面换热阻,按规范取0.04m2·K/W; R:围护结构热阻(m2·K/W); R=R 面板+R 中空层 =δ 面板/λ 面板 +R 中空层 =0.01/0.76+0.12 =0.133m2·K/W 在上面的公式中: δ 面板 :面板材料(玻璃)的总厚度(m); λ 面板 :面板材料的导热系数(W/m·K),按规范取0.76;

R 中空层 :中空玻璃中空空气层热阻值(m2·K/W),按规范取0.12; 故窗玻璃部分热阻 R o玻=R i +R+R e =0.11+0.133+0.04 =0.283m2·K/W 玻璃部分传热系数K 玻=1/ R o玻 =1/0.283 =3.5W/m2·K 常用普通铝型材传热系数K 铝 约=6.0 W/m2·K 整窗传热系数为玻璃和铝框传热系数按面积的加权平均值本工程铝框所占窗洞面积百分比=0.19 本工程玻璃所占窗洞面积百分比=0.71 故整窗传热系数K 窗=K 铝 X0.19 + K 玻 X0.71 =6.0X0.19+3.5X0.71 =3.6 W/m2·K 根据《公共建筑节能设计标准》GB50189-2005相关规定,本工程属于夏热冬冷地区。则外围护结构传热系数和遮阳系数应符合下表规定:

夏热冬冷地区围护结构传热系数和遮阳系数限值 本工程两主要立面窗墙比为0.47,故要求建筑外窗传热系数≤2.8. 根据上面计算,采用普通中空玻璃窗无法满足节能要求. 若采用6+9A+6LOW-E中空玻璃,非断热型材,外窗传热系数计算如下: 6+9A+6LOW-E中空玻璃传热系数约为1.5—2.1 W/m2·K,此处按最不利情况取为2.1 W/m2·K。 常用普通铝型材传热系数K 铝 约=6.0 W/m2·K 整窗传热系数为玻璃和铝框传热系数按面积的加权平均值 本工程铝框所占窗洞面积百分比=0.19 本工程玻璃所占窗洞面积百分比=0.71 故整窗传热系数K 窗=K 铝 X0.19 + K 玻 X0.71 =6.0X0.19+2.1X0.71 =2.6 W/m2·K<2.8 W/m2·K

混凝土热工计算公式

冬季施工混凝土热工计算步骤 冬季施工混凝土热工计算步骤如下: 1、混凝土拌合物的理论温度: T0=【0.9(mceTce+msaTsa+mgTg)+4.2T(mw+wsamsa-wgmg)+c1(wsamsaTsa+wgmgTg) -c2(wsamsa+wgmg)】÷【4.2mw+0.9(mce+msa+mg)】 式中 T0——混凝土拌合物温度(℃) mw、 mce、msa、mg——水、水泥、砂、石的用量(kg) T0、Tce、Tsa、Tg——水、水泥、砂、石的温度(℃) wsa、wg——砂、石的含水率(%) c1、c2——水的比热容【KJ/(KG*K)】及熔解热(kJ/kg) 当骨料温度>0℃时, c1=4.2, c2=0; ≤0℃时, c1=2.1, c2=335。 2、混凝土拌合物的出机温度: T1=T0-0.16(T0-T1) 式中 T1——混凝土拌合物的出机温度(℃) T0——搅拌机棚温度(℃) 3、混凝土拌合物经运输到浇筑时的温度: T2=T1-(at+0.032n)(T1-Ta) 式中 T2——混凝土拌合物经运输到浇筑时的温度(℃); tt——混凝土拌合物自运输到浇筑时的时间; a——温度损失系数 当搅拌车运输时, a=0.25 4、考虑模板及钢筋的吸收影响,混凝土浇筑成型时的温度: T3=(CcT2+CfTs)/( Ccmc+Cfmf+Csms) 式中 T3——考虑模板及钢筋的影响,混凝土成型完成时的温度(℃); Cc、Cf、Cs——混凝土、模板、钢筋的比热容【kJ/(kg*k)】; 混凝土取1 KJ/(kg*k); 钢材取0.48 KJ/(kg*k); mc——每立方米混凝土的重量(kg); mf、mc——与每立方米混凝土相接触的模板、钢筋重量(kg); Tf、Ts——模板、钢筋的温度未预热时可采用当时的环境温度(℃)。 根据现场实际情况,C30混凝土的配比如下: 水泥:340 kg,水:180 kg,砂:719 kg,石子:1105 kg。 砂含水率:3%;石子含水率:1%。 材料温度:水泥:10℃,水:60℃,砂:0℃,石子:0℃。 搅拌楼温度:5℃ 混凝土用搅拌车运输,运输自成型历时30分钟,时气温-5℃。 与每立方米混凝土接触的钢筋、钢模板的重量为450Kg,未预热。 那么,按以上各步计算如下: 1、 T0=【0.9(340×10+719×0+1105×0)+4.2×60×(180-0.03×719-0.01×1105)+2.1×0.03×719×0+2.1×0.01×1105×0-335×(0.03×719+0.01×1105)】/【4.2×180+0.9(340+719+1105)】=13.87℃ 2、 T1= T0-0.16(T0- T1)=13.87-0.16×(13.78-5)=12.45℃ 3、 T2= 12.45-(0.25×0.5+0.032×1)(12.45+5)=9.7℃

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻:R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

建筑热工计算的补充说明

建筑热工计算的补充说明 一、热工计算方法补充说明 6-01

6-01 3 朝向窗墙面积比M 1 1) 地下室为非采暖空间时,±0.00以下的建筑物垂直外立面不参与计算。 2) 地下室为采暖空间时,±0.00以下与室外空气接触的建筑物垂直外立面参与计算(包括:±0.00至室外地平、至窗井底部、至下沉庭院地平的外墙和门窗)。 4 建筑物体形系数S 1) 没有地下室,或有地下室但地下室为非采暖空间时,建筑物外表面积及其所包围的空间从首层地面(±0.00)算起,±0.00以下不参与计算。 2) 有地下室且地下室为采暖空间时 (1)参与计算的建筑物外表面积F Σ,为地上和地下所有与大气接触的围护结构外表面积的总和(其中凸窗和封闭式阳台计算方法见上述1、2)。 (2)参与计算的建筑物体积0V ,为±0.00以上体积上V 和±0.00以下计算体积’下V 两部分之和。 (3)±0.00以下计算体积’下V 按下式确定: 下 下 ’ 下 ’下 V f f V 式中:’ 下f ——±0.00以下与室外空气接触的垂直外立面面积(包括:±0.00至室外地平、至窗井底部、至下沉庭院地平的外立面); 下f ——±0.00以下垂直外立面总面积(包括与室外空气接触和与土壤接触的外立面) ; 下V ——±0.00以下下f 包围的总体积。 5 当建筑物各部分层数不统一(阶梯式错层)时,该建筑热工参数限值可按面积所占比例最大部分的层数统一确定取值。 6 采用附录权衡判断表B.1.3.-2进行温差传热量计算时, 楼梯间和封闭外走廊的屋面、地面(或楼板)不单独计算,简化为与户内部分统一计算,即室内外温差均为17.9℃。

冬季施工混凝土热工计算

冬季施工混凝土热工计算 一、混凝土拌合物的理论温度计算 To=[0.9(Mce*Tce+Mcm*Tcm+Mg*Tg)+4.2*Tw(Mw-Wcm*Mcm-Wg*Mg)-C1(Wcm*Mcm*Tcm+Wg*Mg*Tg)-C2(Wcm*Mcm+Wg*Mg)]÷[4.2*Mw+0.9(Mce+Mcm+Mg)] ——(公式1) To—混凝土拌合物温度(℃) Mw、Mce、MCm、Mg—水、水泥、砂、石的用量(kg) Tw、Tce、Tcm、Tg—水、水泥、砂、石的温度(℃) Wcm、Wg—砂、石的含水率 C1、C2—水的比热容[kj/(kg.k)]及冰的溶解[kj/(kg.k)] 当骨料温度>0℃时,C1=4.2,C2=0 ≤0℃时, C1=2.1, C2=335 墙体混凝土配合比为: 水泥:砂:石:水(每立方量)=419:618:1100:190 砂含水量为5%,石含水量为0% 热水温度为80℃,水泥温度为5℃,砂温度为3℃,石温度为3℃。 根据公式1 To=[0.9(419×5+618×3+1100×3)+4.2×80(190-0.05×618)-4.20.05×618×3-2.1×0.05×618-335×0.05×618]÷ [4.2×190+0.9(419+618+1100)]=18.06 ℃ 二、混凝土拌合物的出机温度计算: T1= To-0.16(To-Tp) ——(公式2)

T1—混凝土拌合物出机温度(℃) Tp—搅拌机棚内温度(℃) 根据公式2 T1=18.06-0.16(18.06-6)=16.13℃ 三、混凝土拌合物经运输到浇筑时的温度计算 T2= T1-(a×t i+0.032n)×(T1+Th)——(公式3) T2—混凝土拌合物经运输到浇筑时温度(℃) t i—混凝土拌合物自运输到浇筑时的时间(h) n—混凝土拌合物转运次数 Th—混凝土拌合物运输时的环境温度(℃) a—温度损失系数(h-1) 当混凝土用搅拌车运输时:a=0.25 根据公式3 T2=16.13-(0.25×0.6+0.032×2)(16.13+5)=11.6℃ 四、考虑模板和钢筋的吸热影响,混凝土浇筑成型时的温度 计算: T3=(C1×M1×T1-C2×M2×T2-C3×M3×T3)/(C1×M1+C2×M2+C3×M3)——(公式4) T3—混凝土浇筑成型时的温度(℃) C1、C2、C3—混凝土、模板、钢材的比热容[kj/(kg.k)] 混凝土的比热容取1 kj/(kg.k) 钢材的比热容取0.48 kj/(kg.k)

围护结构热工性能简化权衡判断计算表.

附表7 围护结构热工性能简化权衡判断计算表 建筑面积 建筑面积(A 0) 窗 墙 面 积 比 屋顶透明部分与屋顶总面积之比 中庭屋顶透明部分与中庭屋顶面 积之比 原设计建筑 南 东 西 北 建筑外表面积 建筑体积 体形系数 参照建筑 规定值 设计值 规定值 设计值 调整后设计建筑 围 护 结 构 传 热 量 计 算 体形系数S 计算项目 i ε 原设计建筑 参照建筑 调整后设计建筑 S ≤0.30 0.30

建筑热工计算的补充说明

建筑热工计算的补充说明一、热工计算方法补充说明

3 朝向窗墙面积比M 1 1) 地下室为非采暖空间时,±0.00以下的建筑物垂直外立面不参与计算。 2) 地下室为采暖空间时,±0.00以下与室外空气接触的建筑物垂直外立面参与计算(包括:±0.00至室外地平、至窗井底部、至下沉庭院地平的外墙和门 窗)。 4 建筑物体形系数S 1) 没有地下室,或有地下室但地下室为非采暖空间时,建筑物外表面积及其所包围的空间从首层地面(±0.00)算起,±0.00以下不参与计算。 2) 有地下室且地下室为采暖空间时 (1)参与计算的建筑物外表面积F Σ,为地上和地下所有与大气接触的围护结构外表面积的总和(其中凸窗和封闭式阳台计算方法见上述1、2)。 (2)参与计算的建筑物体积0V ,为±0.00以上体积上V 和±0.00以下计算体积’ 下V 两部分之和。 (3)±0.00以下计算体积’下V 按下式确定: 下 下 ’ 下 ’下 V f f V 式中:’ 下f ——±0.00以下与室外空气接触的垂直外立面面积(包括:±0.00至室外地平、至窗井底部、至下沉庭院地平的外立面); 下 f ——±0.00以下垂直外立面总面积(包括与室外空气接触和与土壤接触的外立面); 下 V ——±0.00以下 下 f 包围的总体积。 5 当建筑物各部分层数不统一(阶梯式错层)时,该建筑热工参数限值可按面积所占比例最大部分的层数统一确定取值。 6 采用附录权衡判断表B.1.3.-2进行温差传热量计算时, 楼梯间和封闭外走廊的屋面、地面(或楼板)不单独计算,简化为与户内部分统一计算,即室内外温差均为17.9℃。

混凝土入模温度计算

混凝土入模温度计算 依据国家行业标准JGJ104-97标准中的有关规定,混凝土的热工计算如下进行: 一、混凝土配合比及其它有关数据 底板C40P16配比: 材料名 称 项目水泥水砂石 掺 合料 膨 胀剂 泵 送剂 品种及规格P.O42.5 中 砂 碎 石 粉 煤灰 UE A EP 液 产地 秦皇岛 浅野 密 云 三 河 三 河 天 津 本 站 用量(kg/m3)330180750 103 130 4014.0 其它有关数据如下:水温20℃、水泥温度65℃、砂子温度25℃、石子温度25℃、砂子含水率6.0%、石子含水率0%、搅拌机棚内温度28℃、环境温度30℃、采用混凝土罐车(搅拌车)运输、从混凝土出站到工地所需时间约为1.0h。 二、混凝土拌合温度的计算 ) (9.0 2.4 ) ( ) ( ) ( 2.4 ) ( 92 .0 2 1 g sa ce w g g sa sa g g g sa sa sa g g sa sa w w g g sa sa ce ce m m m m m m c T m T m c m m m T T m T m T m T + + + + - + + - - + + + = ω ω ω ω ω ω 式中 T0——混凝土拌合物温度(℃);m w——水用量(kg);m ce——水泥用量(kg); m sa——砂子用量(kg); m g——石子用量(kg); T w——水的温度(℃); T ce——水泥的温度(℃); T sa——砂子的温度(℃); T g——石子的温度(℃); ωsa——砂子的含水率(%);ωg——石子的含水率(%); c1——水的比热容(kJ/kg·K); c2——冰的溶解热(kJ/kg)。 当骨料温度大于0℃时,c1=4.2,c2=0;

科技馆金属屋面热工计算书

建设单位:扬州美科置业有限公司 工程名称:扬州市科技馆金属屋面工程 热工性能计算书 计算: 校对: 审核: 江苏华磊装饰幕墙工程有限公司 2014年9月25日

目录 一、计算说明 (3) 二、屋面采光顶热工性能计算书 (6) 三、屋面铝镁锰板热工性能计算书 (19)

计算说明 (一)本计算概况: 气候分区:夏热冬冷地区 工程所在城市:扬州 (二)参考资料: 《夏热冬冷地区居住建筑节能设计标准》JGJ134-2010 《民用建筑热工设计规范》GB50176-93 《公共建筑节能设计标准》GB50189-2005 《公共建筑节能设计标准》DGJ32/J 96-2010 《建筑玻璃应用技术规程》JGJ 113-2009 《建筑门窗玻璃幕墙热工计算规程》(JGJ/T151-2008) (三)计算基本条件: 1.计算实际工程所用的建筑门窗和玻璃幕墙热工性能所采用的边界条件应符合相应的建筑设计或节能设计标准。 2.设计或评价建筑门窗、玻璃幕墙定型产品的热工参数时,所采用的环境边界条件应统一采用规定的计算条件。 3.以下计算条件可供参考: (1)各种情况下都应选用下列光谱: S(λ):标准太阳辐射光谱函数(ISO 9845-1); D(λ):标准光源(CIE D65,ISO 10526)光谱函数; R(λ):视见函数(ISO/CIE 10527)。 (2)冬季计算标准条件应为: 室内空气温度 T in=20 ℃ 室外空气温度 T out=-20 ℃ 室内对流换热系数 h c,in= W/ 室外对流换热系数 h c,out=16 W/ 室内平均辐射温度 T rm,in=T in 室外平均辐射温度 T rm,out=T out 太阳辐射照度 I s=300 W/m2 (3)夏季计算标准条件应为: 室内空气温度 T in=25 ℃ 室外空气温度 T out=30 ℃ 室内对流换热系数 h c,in= W/ 室外对流换热系数 h c,out=16 W/ 室内平均辐射温度 T rm,in=T in 室外平均辐射温度 T rm,out=T out 太阳辐射照度 I s=500 W/m2 (4)计算传热系数应采用冬季计算标准条件,并取I s= 0 W/m2。 (5)计算遮阳系数、太阳能总透射比应采用夏季计算标准条件,并取T out=25 ℃。 (6)抗结露性能计算的标准边界条件应为: 室内环境温度 T in=20 ℃ 室外环境温度 T out=0 ℃或 T out=-10 ℃或 T out=-20 ℃ 室内相对湿度 RH=30% 或 RH=60% 室外对流换热系数 h c,out=20 W/

混凝土热工计算步骤及公式

冬季混凝土施工热工计算 步骤仁 出机温度T,应由预拌混凝土公司计算并保证,现场技术组提出混凝土 到现场得出罐温度要求。 计算入模温度T 2: (1) 现场拌制混凝土采用装卸式运输工具时 T 2=T-AT y (2) 现场拌制混凝土采用泵送施工时: T 2=T-AT b (3) 采用商品混凝土泵送施工时: T 2=T-AT-AT b 其中,AT y . 分别为采用装卸式运输工具运输混凝土时得温度降低

与采用泵管输送混凝土时得温度降低,可按下列公式计算: ATy= ( a ti+O> 032n) X (L- Ta) 3.6 I)w 叫= =4u)x x AT. x x d h C r x p r x D7 0.04 + — L L L 式中: T 2——混凝土拌合物运输与输送到浇筑地点时温度(°C) △ Ty——采用装卸式运输工具运输混凝土时得温度降低CC) △Tb——采用泵管输送混凝土时得温度降低(°C) AT.——泵管内混凝土得温度与环境气温差(°C),当现场拌制混凝土 采用泵送工艺输送时:AL= T-「;当商品混凝土采用泵送工艺输送时:△ T F T- T- Ta T a ——室外环境气温(°C) t.——混凝土拌合物运输得时间(h) t2——混凝土在泵管內输送时间(h) n ——混凝土拌合物运转次数 Q ——混凝土得比热容[kj/(kg ?K)] p c ——混凝土得质量密度(kg/m 3) 一般取值2400 X b ——泵管外保温材料导热系数[W/ (ni ?k)] d b ---泵管外保温层厚度(m) D L ——混凝土泵管内径(m) D w ——混凝土泵管外围直径(包括外围保温材料)(m) CD ——透风系数,可按规程表A. 2. 2-2取值 a ——温度损失系数(h"1);采用混凝土搅拌车时:a 二0、25;采用开敞式 大型自卸汽车时:a 二0、20;采用开敞式小型自卸汽车时:a 二0、30;采用封 闭式自卸汽车时:a=:o 、1;采用手推车或吊斗时:a 二0、50 步骤2:考虑模板与钢筋得吸热影响,计算成型温度T3 CdiuT 2 + Cfin(Tf + Csin^Ts C(nk + Cjnif + C.v/n.v Cc --- 混凝土比热容(kj/kg ?K)普通混凝土取值0、96 C f --- 模板比热容(kj/kg ?K)木模2、51,钢模0、48 C s ——钢筋比热容(kj/kg ?K)o 、48 me --- 每混凝土重量(kg) 2500 m f --- 每m 3混凝土相接触得模板重量(kg) T3=

围护结构热工性能及权衡计算--软件说明

围护结构热工性能的权衡计算 ―――软件说明 当进行围护结构热工性能权衡计算时,需要应用动态计算软件。由中国建筑科学研究院建筑物理研究所开发的建筑能耗动态模拟分析计算软件,适用于办公建筑及其它各类公共建筑的建筑节能设计达标评审。其计算内核为美国劳伦斯伯克力国家实验室(Lawrence Berkeley National Laboratory)开发的DOE-2程序,可以对建筑物的采暖空调负荷、采暖空调设备的能耗等进行全年8760小时的逐时能耗模拟。 在标准宣贯和使用过程中,大量采取能耗分析软件的主要原因在于:标准对性能化设计方法的要求以及权衡判断(Trade-off)节能指标法的引入。 首先,在标准中设置了两种指标来控制节能设计,第一种指标称为规定性指标,第二种指标称为性能性指标。规定性指标规定建筑的围护结构传热系数、窗墙比、体形系数等参数限值,当所设计的建筑能够符合这些规定时,该建筑就可判定为符合《标准》要求的节能建筑。规定性指标的优点是使用简单,无需复杂的计算。但是规定性指标也在一定程度上限制了建筑设计人员的创造性。性能性指标的优点在于突破建筑设计的刚性限制,节能目标可以通过调整围护结构的热工性能等措施来达到。也就是说性能性指标不规定建筑围护结构的各种参数,但是必须对所设计的整栋建筑在标准规定的一系列条件下进行动态模拟,单位面积采暖空调和照明的年能耗量不得超过参照建筑的限值。因此使用性能性指标来审核时需要经过复杂的计算,这种计算只能用专门的计算软件来实现。 同时,从实际使用情况来看,近年来公共建筑的窗墙面积比有越来越大的趋势,建筑立面更加通透美观,建筑形态也更为丰富。因此,传统建筑设计中对窗墙面积比的规定很可能不能满足本条文规定的要求。须采用标准第4.3节的权衡判断(Trade-off)来判定其是否满足节能要求。 图B-1 公建标准权衡判断(Trade-off)评价流程

热工计算汇总

11.热工计算 11.1.计算引用的规范、标准及资料 《建筑幕墙》 GB/T21086-2007 《民用建筑热工设计规范》 GB50176-93 《公共建筑节能设计标准》 GB50189-2005 《民用建筑节能设计标准(采暖居住建筑部分)》 JGJ26-95 《夏热冬暖地区居住建筑节能设计标准》 JGJ75-20031 《居住建筑节能设计标准意见稿》 [建标2006-46号] 《建筑门窗玻璃幕墙热工计算规程意见稿》 [建标2004-66号] 《建筑玻璃应用技术规程》 JGJ113-2003 《玻璃幕墙光学性能》 GB/T18091-2000 《建筑玻璃可见光、透射比等以及有关窗玻璃参数的测定》 GB/T2680-94 11.2.计算中采用的部分条件参数及规定 11.2.1.计算所采纳的部分参数 按《建筑门窗玻璃幕墙热工计算规程意见稿》采用 11.2.1.1.各种情况下都应选用下列光谱: S(λ):标准太阳辐射光谱函数(ISO 9845-1); D(λ):标准光源光谱函数(CIE D65,ISO 10526); R(λ):视见函数(ISO/CIE 10527); 11.2.1.2.冬季计算标准条件应为: 室内环境计算温度:T in =20℃; 室外环境计算温度:T out =0℃; 内表面对流换热系数:h c =3.6W/(m2·K); 外表面对流换热系数:h e =23W/(m2·K); 室外平均辐射温度:T rm =T out 太阳辐射照度:I s =300W/m2;

11.2.1.3.夏季计算标准条件应为: 室内环境温度:T in =25℃; 室外环境温度:T out =30℃; 内表面对流换热系数:h c =2.5W/(m2·K); 外表面对流换热系数:h e =19W/(m2·K); 室外平均辐射温度:T rm =T out ; 太阳辐射照度:I s =500W/m2; 11.2.1.4.计算传热系数应采用冬季计算标准条件,并取I s =0W/m2; 11.2.1.5.计算遮阳系数、太阳能总透射比应采用夏季计算标准条件,并取T out =25℃; 11.2.1.6.抗结露性能计算的标准边界条件应为: 室内环境温度:T in =20℃; 室外环境温度:T out =-10℃或T out =-20℃ 室内相对湿度:RH=30%或RH=50%或RH=70%; 室外风速:V=4m/s; 11.2.1.7.计算框的太阳能总透射比g f 应使用下列边界条件: q in =α·I s q in :通过框传向室内的净热流(W/m2); α:框表面太阳辐射吸收系数; I s :太阳辐射照度=500W/m2; 11.2.2.最新规范《公共建筑节能设计标准》的部分规定11.2.2.1.结构所在的建筑气候分区应该按下面表格取用:

混凝土热工计算步骤及公式(完整资料).doc

【最新整理,下载后即可编辑】 冬季混凝土施工热工计算 步骤1: 出机温度T 1应由预拌混凝土公司计算并保证,现场技术组提出混凝土到现场的出罐温度要求。 计算入模温度T 2: (1)现场拌制混凝土采用装卸式运输工具时 T 2=T 1-△T y (2)现场拌制混凝土采用泵送施工时: T 2=T 1-△T b

(3)采用商品混凝土泵送施工时: T 2=T 1-△T y -△T b 其中,△T y 、△T b 分别为采用装卸式运输工具运输混凝土时的温度降低和采用泵管输送混凝土时的温度降低,可按下列公式计算: △Ty=(αt 1+0.032n )×(T 1- Ta) 式中: T 2——混凝土拌合物运输与输送到浇筑地点时温度(℃) △T y ——采用装卸式运输工具运输混凝土时的温度降低(℃) △T b ——采用泵管输送混凝土时的温度降低(℃) △T 1——泵管内混凝土的温度与环境气温差(℃),当现场拌制混凝土采用泵送工艺输送时:△T 1= T 1- T a ;当商品混凝土采用泵送工艺输送时:△T 1= T 1- T y - T a T a ——室外环境气温(℃) t 1——混凝土拌合物运输的时间(h ) t 2——混凝土在泵管内输送时间(h ) n ——混凝土拌合物运转次数 C c ——混凝土的比热容[kj/(kg ·K)] ρc ——混凝土的质量密度(kg/m 3) 一般取值2400 λb ——泵管外保温材料导热系数[W/(m ·k )] d b ——泵管外保温层厚度(m ) D L ——混凝土泵管内径(m ) D w ——混凝土泵管外围直径(包括外围保温材料)(m ) ω——透风系数,可按规程表A.2.2-2取值 α——温度损失系数(h -1);采用混凝土搅拌车时:α=0.25;采用开敞式大型自卸汽车时:α=0.20;采用开敞式小型自卸汽车时:α=0.30;采用封闭式自卸汽车时:α=0.1;采用手推车或吊斗时:α=0.50 步骤2:考虑模板和钢筋的吸热影响,计算成型温度T3 T3=s s f f c c s s s f f f c c m C m C m C T m C T m C T m C ++++2 C c ——混凝土比热容(kj/kg ·K )普通混凝土取值0.96 C f ——模板比热容(kj/kg ·K )木模2.51,钢模0.48

建筑围护结构热工性能的权衡计算

建筑围护结构热工性能的权衡计算 一、计算参数信息 1.1 热工参数和计算结果 1.2 室内计算参数表

二、能耗计算结果 2.1建筑累计负荷计算结果 根据《公共建筑节能设计标准》(GB50189-2015)第3.4章的要求,并参照本标准附录B的规定进行计算,本建筑的建筑累计负荷如下: 表 7 累计负荷计算结果 2.2 建筑全年空调和采暖耗电量计算 根据《公共建筑节能设计标准》(GB50189-2015)第 3.4章的要求,应按照附录B.0.6所给的公式计算建筑物全年耗电量: 夏热冬冷、夏热冬暖和温和地区: 式中:E——建筑物供暖和供冷总耗电量,(kWh/m2); E C——建筑物供冷耗电量,(kWh/m2); E H——建筑物供热耗电量,(kWh/m2); Q H——全年累计耗热量(通过动态模拟软件计算得到),(kWh); η1——热源为燃煤锅炉的供暖系统综合效率,取0.60; q1——标准煤热值,8.14kWh/ kgce; q2——上年度国家统计局发布的发电煤耗,2008年数据为0.360 kgce/kWh; Q C——全年累计耗冷量(通过动态模拟软件计算得到),(kWh); A——建筑总面积,(m2); SCOPT——供冷系统综合性能系数,取2.50; η2——热源为燃气锅炉的供暖系统综合效率,取0.75; q3——标准天然气热值,取9.87 kWh/m3;

Φ——天然气的折标系数,取1.21 kgce/m3。 依据以上建筑全年累计负荷计算结果与附录 B.0.6条所给参数,计算得到该建筑物的全年空调和采暖耗电量如下: 表 8 全年空调和采暖耗电量 本建筑的单位面积空调和采暖耗电量结果如下: 表 9 全年空调和采暖耗电量指标 能耗分析图表如下: 表 1 能耗分析图表 三、结论 该设计建筑的全年能耗小于参照建筑的全年能耗,因此该项目已达到《公共建筑节能设计标准》(GB50189-2015)的节能要求。

散热量计算公式

一、标准散热量 标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。 那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。 二、工程上采用的散热量与标准散热量的区别 标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。因此,在对工程热工计算中必须按照工程上的散热量来进行计算。 在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,

所对应的计算温差△T=50摄氏度。欧洲标准散热量是在温差△T=50摄氏度的散热量。 那么怎么计算散热器在不同温差下的散热量呢? 散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。△T=(进水温度+出水温度)/2-室内温度。 现在我就介绍几种简单的计算方法 (一)根据散热器热工检测报告中,散热器与计算温差的关系式来计算。 Q=m×△T的N次方 例如74×60检测报告中的热工计算公式(10柱): Q=5.8259×△T1.2829 (1)当进水温度95摄氏度,出口温度70摄氏度,室内温度18摄氏度时: △T=(95摄氏度+70摄氏度)/2-18摄氏度=64.5摄氏度 Q=5.8259×64.51.2829=1221.4W(10柱) 每柱的散热量为122.1W/柱 (2)当进水温度为80摄氏度,出口温度60摄氏度,室内温度20摄氏度时: △T=(80摄氏度+60摄氏度)/2-20摄氏度=50摄氏度 Q=5.8259×501.2829=814.6W(10柱) 每柱的散热量为81.5W/柱 (3)当进水温度为70摄氏度,出口温度50摄氏度,室内温度18摄氏度时:

大体积混凝土热工计算书

大体积混凝土热工计算 1、主墩承台热工计算 主墩承台的混凝土浇筑时正值夏季高温天气(7月~8月), 东莞市累年各月平均气温、平均最高气温见下表: 4.1、砼的拌和温度 砼搅拌后的出机温度,按照下式计算: C W T C W T c ??∑=?∑i 式中:T c --- 砼的拌和温度(℃); W --- 各种材料的重量(kg ); C ---- 各种材料的比热(kJ/kg ?K); T i --- 各种材料的初始温度(℃) 混凝土拌和温度计算表

2、上表温度栏中水泥、粉煤灰、减水剂均为太阳直晒温度,拌合水、砂、碎石为采用降温措施后的温度。 由此可得出采取降温措施的混凝土拌和温度: 26.2491 .260268291.54 ==∑∑= WC WC T T i c ℃ 4.2、砼的浇筑温度 砼搅拌后的浇筑温度,按照下式计算: ) ()n 321c q c j -(A A A A T T T T +???+++?+= 式中:T j --- 砼的浇筑温度(℃); T c --- 砼的拌和温度(℃); T q ---- 砼运输和浇筑时的室外气温,取28℃; A 1~A n --- 温度损失系数 砼装、卸和转运,每次A=0.032; 砼运输时,A=θτ ,τ为运输时间(min ); 砼浇筑过程中A=0.003τ,τ为浇捣时间(min )。 砼出机拌和温度按照计算取值,为26.24℃; 砼运输和浇筑时的室外气温按照平均温度取值28℃; 砼运输罐车运输时间为45min ,砼泵车下料时间约12min ,砼分层厚度为30cm ,每层砼(57.4m 3)从振捣至浇筑完毕预计约2小时。整个承台(分三次浇筑)每次浇筑完毕预计最大用时12小时。 温度损失系数值: 装料:A 1=0.032 运输:A 2=0.0042×45=0.189 砼罐车卸料:A 3=0.032 砼泵车下料:A 4=0.0042×12=0.05 浇捣:A 5=0.003×2×60=0.36 ∑==5 1i i A 0.663 故:) ()n 321c q c j -(A A A A T T T T +???+++?+= = 26.24+(28.0-26.24)×0.663 = 27.41 ℃ 如不计入浇捣影响A 5,则:∑==4 1i i A 0.303 此时:) ()n 321c q c j -(A A A A T T T T +???+++?+= = 26.24+(28.0-26.24)×0.303= 26.77 ℃ 4.3、砼的绝热温升 )()(τ τ-m h e -1?=T T