3-第三讲-交流电弧的过零熄灭和重燃理论和自能式灭弧室的开断原理

3-第三讲-交流电弧的过零熄灭和重燃理论和自能式灭弧室的开断原理
3-第三讲-交流电弧的过零熄灭和重燃理论和自能式灭弧室的开断原理

第三讲 交流电弧的过零熄灭和重燃理论和自能式灭弧室的开断原理

1. 交流电流过零熄弧

工业交流电每半周电流要过零一次,交流电流总是在电流过零时熄灭的,

这与直流电弧不同,熄灭交流电弧比熄灭直流电弧要容易得多。交流电弧过零的详细过程分下列两种情况来说明:

1.1 用图1(a )所示的电阻电路来分析。由于电弧电压远低于电源电

压,也就是说电源电压足以维持电弧燃烧而不致发生强制熄弧,因此电弧电流i 与电源电压u 同时过零,见图1(b ),0t 是产弧时刻,此时断口间产生电弧电压a u 。由于电源电压u 远远地大于电弧电压a u ,电弧电流i 仍近似于为正弦波,因此它与电弧电压a u 同时过零。电流过零详细情况见图2。

图1 电阻分析电路的电弧电流过零

图2 实际电弧电流h i 与电弧电压h u 同时过零

1.2 用图3所示的电感电路来分析。图中,u 是电源电压,令

wt E u m cos =,(m E 是电源电压的幅值),L 是分析电路中的电感,QF 表示断口,n R 表示电弧电阻,电弧电压h h h R i u =(h u 随h i 改变正负号)。h i 是电路电流(即电弧电流)

图4表示此时电弧电流的变化曲线。图4中e 表示电源电压随时间变

化的曲线(瞬时值),h i 是电弧电流的瞬时值。h i 可分解为两个分量组成:一

个分量是滞后于电源电压e 90°的的正弦电源分量wt wL E i m sin =';另一个分量是随时间线性(假设电弧电阻是恒定值)变化的分量 )(α-=''wt wL u i h ,α表示起始燃烧时刻的相位角,π和2π表示一个半波和一个周波的相位角。

由电路数学分析得出i i i h ''-'=。

实际电弧电流h i 比其正弦电流分量i '过零提前过零1wt 相位角,这是由于

在电感电路中,由于有电弧压降存在而导致了实际电弧电流h i 比电弧电压h u 提前过零,其提前过零的相位角是ξ,ξ的数值为若干μs 至数十μs 数量级。 电流过零详细情况见图5。

图3 电感分析电路

图4 电感分析电路中电弧电流的变化曲线

图5 电感分析电路中实际电弧电流h i 比电弧电压h u 提前过零

断路器短路开断时,既有负荷电阻,又有负荷电感,负荷的功率因数是

0.2左右,因此电弧电流过零的情况介于上述两种情况之间。

对频率为50Hz 的交流电路,电流每秒有100次零值,因此不管开关的

熄弧能力如何差,电流都要过零,至少是暂时地熄灭。如电流过零后,弧隙未复燃,电弧就熄灭;反之,如发生复燃,则电弧此次过零时不能熄灭,至少需燃烧至电弧电流下次过零时再熄灭。

2. 交流电弧的熄灭与重燃理论

交流电弧电流过零这一段时间中,弧隙从导体逐渐变成介质,交流电弧

的熄灭主要决定于这一过程。对于交流电弧的熄灭和重燃过程存在着两种理论:弧隙介质恢复理论(电击穿理论)和能量平衡理论(热击穿理论)。

弧隙介质强度恢复理论是斯列宾提出的,认为电弧的重燃是由于外加电

场将间隙击穿的结果。这个理论认为:电弧电流过零后,弧隙已是介质,不存在电导。因此在弧隙上发生的电压恢复过程和介质强度恢复过程是互不影响和制约的。而电弧过零后的熄灭和重燃取决于这两个过程哪一个恢复得快。如果介质强度始终大于弧隙上的恢复电压,就不再发生击穿,电弧最终熄灭。因此,交流电弧的熄灭条件是:电流过零后,弧隙介质恢复强度在任何时刻始终高于弧隙上的恢复电压。

而实际上,从电流过零时刻开始,在弧隙上发生两个作用相反而又有联

系的过程:即电压恢复过程和介质强度恢复过程。

当交流电弧最后熄灭时,在弧隙上的电压应当等于电源电势。因此,当

电流过零电弧熄灭时,弧隙上电压从熄弧电压上升变化到相应于电源电动势的瞬时值,这一变化过程就称为弧隙上电压恢复过程。

在电压恢复过程中,恢复电压由两个分量组成:即工频恢复电压和暂态

恢复电压。在电弧熄灭时刻,在首先灭弧的一相触头上出现的工频电压有效值称为弧隙上(或为断路器触头上)的工频恢复电压。

暂态恢复电压是指电弧熄灭后,断路器一相触头上的暂态电压,它可以

是周期性的(单频或几个频率)或非周期性的,这决定于电路的特性、断路器的特性(它的电导和电容)及电弧熄灭时立即出现在断路器触头上的工频恢复电压瞬态值。周期性暂态恢复电压的振荡是以工频恢复电压作为轴心而进行的。

在电流过零电弧熄灭时。弧隙有或大或小的介质强度,并随着去游离程

度而继续上升。这就是间隙介质强度恢复过程。介质强度恢复过程能说明电弧熄灭过程和开断电器熄灭能力的特性。介质强度恢复过程决定于电弧间隙的内部过程,如间隙中能量的变化、灭弧介质的种类和状态、触头的状态和运动等:并且也与线路参数有关,电弧电流过零前的状态对它也有影响。电弧的开断过程主要是将弧隙中的能量移去,使去游离加强。开关电器灭弧装置的主要作用就在于将电弧开断,移去电弧的产物,将热的导电气体变成能承受线路电压的绝缘介质。

按照斯列宾的理论。电弧的熄灭或重燃决定于这两个过程中哪一个过程

恢复得快。如图6中曲线1j u 与曲线hf u 所示,介质强度始终大于弧隙上的恢复电压,就不再发生击穿,电弧最终熄灭。反之,若在某一时刻恢复电压大于介质强度,如图6中2j u 与曲线hf u ,它们相交于A 点,则弧隙将击穿而重燃,加在弧隙上的电压又转变为电弧电压h u 。这种理论只能用来解释电弧电流超前过零,弧隙电导预先消失的重燃现象,并不能普遍适用。

图6 弧隙介质强度j u 与恢复电压hf u 曲线

必须指出,在斯列宾提出介质强度恢复理论时,认为电压恢复过程与介质恢复过程是彼此无关的。但事实上由于弧隙剩余电流的作用,这两个过程是相互联系的。

弧隙能量平衡理论是克西提出的,认为电弧重燃不是电流过零后简单的电压击穿,而是电路和弧隙之间的能量平衡的性质。当弧隙中所产生的热能大于散出的热能时,弧隙就会因热击穿而使电弧重燃。这个理论认为在交流电流过零电弧暂时熄灭时,弧隙温度较高,热游离还未停止,弧隙仍是一个具有一定电导的通道,尚未恢复为真正的介质。因此在恢复电压作用下,就出现弧后电流,电源继续向弧隙输送能量,因而可能引起电弧的重燃。他们认为所有紧接于电流过零点后的重燃现象均是由于有显著的弧后电流而发生的,只有经过一定延时后的重燃才是没有先期的弧后电流,而由电击穿引起的重燃。

热击穿的观点考虑了电弧的热过程,并且指出弧隙上的电压恢复过程和介质强度恢复过程并不是相互独立的,而是通过弧隙的残余电阻而相互联系和影响的。这种观点使对交流电弧的熄灭和重燃有了进一步的了解。然而这个理论也有局限性,它对于那些弧隙电导预先消失和因电击穿而发生重燃并不能做出确切的解释。

两种理论的根本不同点在于:电弧电流过零前后是否有剩余电流。在斯列宾提出理论时,尚不知有剩余电流,而克西则是剩余电流的基础上提出其理论。

在理想的开关电器中,在电弧燃炽时,弧隙电阻等于零,而在电弧熄灭后,弧隙电阻就立刻等于无限大。事实上,在交流电流自然过零前的几百s ,电流已接近于零,弧隙上已有相当的电阻,而在电流过零电弧熄灭时,弧隙还是有个相当大电阻的导体。正因为熄弧后间隙有剩余电导的存在,在恢复电压的影响下,弧隙中有电流通过,这一电流叫做剩余电流,或称弧后电流。剩余电流就等于恢复电压与剩余电导的乘积关系。通常用两个参数来表示剩余电流的特性,及剩余“热”的作用;而且还存在着可以由弧隙电击穿后转变成热击穿而引起重燃,或在弧后电流消失后再发生电击穿而重燃,它们的转化条件就是弧隙中能量的大小。

能量平衡理论不仅是对电弧的熄灭过程,还是对电弧的燃炽过程,都能够比较全面地解释电弧的现象。它对电弧理论的发展和应用有重大的意义。

但并不是所有开断过程都出现剩余电流,所以电流过零后能量平衡理论不是各种情况都适用的。

3 自能式灭弧室的开断原理

将电弧产生的高压高温的六氟化硫气体引入热膨胀室,在大喷口打开后利用它来吹弧,从而熄灭电弧,此时辅助压气室中的六氟化硫被排放,从而减小了操作功。而在开断小电流时,由于电弧本身产生的能量不足不能熄弧,此时利用辅助压气室中产生的较高压力的六氟化硫气体来吹弧并熄灭电弧。自能式灭弧室的优点是可以使断路器配用弹簧操动机构。

自能式灭弧室的工作原理见附图7至图11。

-

-可编辑修改

-可编辑修改-

-可编辑修改-

裂变反应堆的工作原理

裂变反应堆的工作原理 为了深入讨论与核能有关的技术和发展趋势,我们必须对核电站所基于的原理--核反应堆中子物理、反应堆热工水力学、反应堆控制和反应堆安全等方面的基本知识,有一个初步的了解。 一、反应堆中子物理 (-)中子与原子核的相互作用 在反应堆的心脏____堆芯中,大量的中子在飞行,不断与各种原子核发生碰撞。碰撞的结果,或是中子被散射、改变了自己的速度和飞行方向;或中子被原子核吸收。如果中子是被铀-235这类核燃料吸收,就可能使其裂变。下面我们较详细地进行介绍。 1.散射反应 中子与原子核发生散射反应时,中子改变了飞行方向和飞行速度。能量比较高的中子经过与原子核的多次散射反应,其能量会逐步减少,这种过程称为中子的慢化。散射反应有两种不同的机制。一种称为弹性散射。在弹性散射前后,中子——原子核体系的能量和动量都是守恒的。任何能量的中子都可以与原子核发生弹性散射。另一种称为非弹性散射。中子与原子核发生非弹性散射,实际上包括两个过程。首先是中子被原子核吸收,形成一个复合核。但这个复合核不是处于稳定的基态,而是处于激发态。很快它就会又放出一个中子,并且放出γ射线,回到稳定的基态。非弹性散射的反应式如下: n X X n X A Z A Z A Z 10 **110)()(+→→++ γ+↓→X A Z 并非所有能量的中子都能与原子核发生非弹性散射。中子能量必须超过一个阈值,非弹性散射才能发生。对于铀-238原子核,中子能量要高于45千电子伏,才能与之发生非弹性散射。非弹性散射的结果也是使中子的能量降低。在热中子反应堆中,中子慢化主要依靠弹性散射。在快中子反应堆内,虽然没有慢化剂,但中子通过与铀-238的非弹性散射,能量也会有所降低。 2.俘获反应 亦称为(n ,γ)反应。它是最常见的核反应。中子被原子核吸收后,形成一种新核素(是原核素的同位素),并放出γ射线。它的一般反应式如下: γ+→→+++)()(1*110X X n X A Z A Z A Z 反应堆内重要的俘获反应有: 这就是在反应堆中将铀-238转化为核燃料钚-239的过程。类似的反应还有: 这就是将自然界中蕴藏量丰富的钍元素转化为核燃料铀-233的过程。 3.裂变反应 核裂变是堆内最重要的核反应。铀-233、铀-235、钚-239和钚-241等核素在各种能量的中子作用下均能发生裂变,并且在低能中子作用下发生裂变的概率更大,通常被称为易裂变核素。而钍-232、铀-238等只有在中子能量高于某一值时才能发生裂变,通常称之为可裂变同位素。目前热中子反应堆内主要采用铀-235作核燃料。铀裂变时一般产生1 0 1

高压真空开关电弧熄灭与重燃的原理与特点

高压真空开关电弧熄灭与重燃的原理与特点! 高压真空开关电弧熄灭与重燃的原理与特点 游离是在外加电压和电弧电流作用下,电子和离子不断产生的过程,也就是电弧的产生和维持的过程。与此同时,在弧柱中还存在着电子和离子消失(减少)的过程,使电弧电流减少,以致使电弧熄灭,称为去游离。在稳定燃烧的电弧中,这两个过程处于动态平衡。如果游离现象大于去游离现象,电弧将继续炽热燃烧;如果去游离大于游离,电弧越来越弱,最后熄灭。因此使去游离大于游离就是电弧熄灭的基本原理。 一、去游离的方式主要是复合与扩散 (1)复合 弧隙中带正电或带负电的质点,在运动中彼此结合形成中性质点的过程,称为复合。电子的运动速度约为离子运行速度的1000倍,因此,电子和离子的直接复合可能性很小。但是,电子在碰撞时先附着在中性质点上形成负离子,然后与运动速度大致相等的正离子相互吸引、接触而形成中性质点(中性分子)。 复合过程的快慢,主要决定于离子运动的速度。使弧柱场强减小,降

低电弧温度,增大气体压力,升高气体密度等,均可减小离子运动速度,增加离子间接触机会,加强复合。 (2)扩散 扩散是弧柱中的自由电子及正离子由于热运动从弧柱内逸出进入周围介质的一种现象。电弧中的高温自由电子和正离子由密集的空间向周围密度小、温度低的介质扩散,并与介质中带异性电的质点结合,形成中性分子。电弧与周围介质温度差以及离子浓度差愈大,扩散作用愈强。 采用冷的、新鲜的、未游离的气体吹动电弧,可使电弧在周围介质中移动,加强与新鲜介质接触,一方面带走电弧的热量,另一方面增大电弧与周围介质的温差,加强扩散,有利于灭弧。 电弧熄灭与否,取决于游离与去游离两个因素作用的结果。当弧柱中去游离大于游离时,电弧中离子减小,电弧电阻增加,电流减小,最后电弧趋于熄灭。 二、交流电弧的熄灭 交流电流每半个周期经过一次零值。此时,电源停止向弧隙输入能量,而弧隙由于不断散出热量,温度下降,热游离作用迅速减弱,电弧暂时熄灭。但是由于弧隙的温度很高,热游离尚在继续,在弧隙电压的作用下,弧隙仍有电流通过,电源仍向弧隙输入能量,使弧隙温度升高,热游离加强。 若输入能量大于散出能量,即弧隙中游离过程大于去游离过程,电弧将重燃。这种由于热游离而引起电弧的重燃称热击穿。反之,如果电

高压开关柜中真空负荷开关的结构和工作原理

高压开关柜中真空负荷开关的结构和工作原理 目前,国内高压开关柜市场上最常用的负荷开关是真空负荷开关和SF6负荷开关。今天,山西开关柜厂家锦泰恒着重介绍一下真空负荷开关的结构和工作原理。 真空负荷开关是利用真空灭弧室作为灭弧装置的负荷开关,开断电流大,适宜于开关柜中频繁操作。其灭弧室较真空断路器的灭弧室简单、管径小。真空灭弧室固定在隔离刀上,真空断口与隔离断口串联。熄弧由真空灭弧室完成,主绝缘由隔离断口承担。关合时,隔离刀关合真空灭弧室快速关合;开断时,真空灭弧室先分断后隔离刀打开,通过换向装置,隔离刀继续运动至接地位置。灭弧断口与隔离断口的配合有两种结构,即联动和联锁。 1.联动式结构的负荷开关。ZFN-□-RD(□表示各种电压等级)型真空负荷开关采用联动式结构,将开断时的灭弧与绝缘功能分开,隔离刀承担绝缘功能。如图1所示,由一个操作手柄,通过特殊设计的

传动系统同时操作真空灭弧室和串联的外隔离刀,以保证这两个端口按正常程序动作。为了减小负荷开关的高度,真空灭弧室2固定在了隔离刀1上。主轴4可操作隔离操作轴3和真空灭弧室操作轴5。合闸时,轴3带动隔离刀先合,真空灭弧室在过中弹簧的作用下后合;分闸时,真空灭弧室在过中弹簧的作用下快速分闸后,隔离刀接着分开。 2.联锁式结构的负荷开关。FZN21-12D系列户内式真空负荷开关采用联锁式结构,将真空灭弧室与隔离刀两功能单元通过机械连锁保证两元件按正常程序动作。其结构如图2所示,主要由隔离开关1、真空灭弧室2、接地开关4组成。其中,真空灭弧室由弹簧机构3操动。真空灭弧室既能关合、开断各种电流,又能承受绝缘实验电压。隔离开关只在真空开关检修时打开。隔离开关与接地开关用一个操作手柄联动操作,以保证两者之间的操动机构,整台真空负荷开关具有两个操作手柄,既可以电动,也可手动。弹簧机构采用了电动弹簧过

真空灭弧室的基本结构及工作原理

一、真空灭弧室基本结构 组成真空灭弧室的主要结构件为绝缘外壳、动静盖板、触头、波纹管、屏蔽罩、动静导电杆、导向套等,分别根据相应的功用选用不同的材料,采用真空钎焊工艺将相应的零部件封接成密闭的真空腔室,借助真空优良的绝缘性能与熄弧性能,在切断电源后能迅速熄弧并抑制电流, 1、结构简图 1—静端盖板2—主屏蔽罩3—动静触头4—波纹管 5—动端盖板6—静导电杆7—绝缘外壳8—动导电杆 2、各个主要零部件的作用 1)绝缘外壳 一般选用Al2O3陶瓷管壳。Al2O3陶瓷材料具有优异电绝缘性能、较高的机械强度、高温下不易分解与蒸发等一系列优点,即能保证真空灭弧室在生产及运行过程中的气密性又不易损坏。 2)波纹管

波纹管是真空灭弧室中不可缺少的重要元件。是唯一可动的外壳部分,因此它的作用也称为“动密封”。既能保证灭弧室的密封,又能借助于它来实现触头的相对运动,波纹管的允许伸缩量决定了所能获得的最大触头开距。 波纹管的材料壁厚仅为0.10——0.16mm,开关在每次合分动作时都会使波纹管的波状薄壁产生一次较大幅度的机械变形。由于剧裂而频繁的机械变形很容易使波纹管因疲劳而损坏,最终导致灭弧室漏气而报废。某种程度上,波纹管的疲劳寿命也就决定了真空灭弧室的机械寿命,所以说,整个寿命期间,一定严禁扭伤或划伤波纹管。 波纹管的疲劳寿命还和工作条件的受热温度有关,真空灭弧室在分断大的短路电流后,导电杆的余热传递到波纹管上,使波纹管的温度升高,当温升达到一定程度时,这也会影响波纹管的疲劳强度。 3)触头 真空灭弧室是真空开关的心脏,而触头则是真空灭弧室的心脏,因此触头材料和触头结构等对真空灭弧室的性能影响极大。 ①触头材料主要从开断能力、耐受电压能力、抗电腐蚀性、抗熔焊能力、截流 值、含气量等方面来选择。目前断路器用真空灭弧室的触头材料大都采用铜铬合金,铜与铬各占50%。 ②触头结构对灭孤室的开断能力有很大影响。采用不同结构触头产生的灭弧效 果有所不同的,早期采用简单的圆柱形触头,结构虽简单,但开断能力不能满足断路器的要求,仅能开断10kA以下电流,目前仅有真空负荷开关、高压真空接触器等用真空灭弧室才采用。目前采用较多的有螺旋糟型结构触头、带斜槽杯状结构触头和杯状纵磁结构触头三种,其中以采用杯状纵磁结构触头为主。 4)主屏蔽罩 主屏蔽罩也称为中间屏蔽罩或冷凝屏蔽罩。设置在触头周围,应该正对着触头拉开后的燃弧区。其主要作用是可以阻挡电弧生成物四周喷溅的作用,有助于电弧熄灭后残余等离子体的衰减,防止绝缘外壳受污染。因而主屏蔽罩对真空灭弧室的弧后介质强度恢复速度和开断能力的提高起到很大作用。 5)动静导电杆

3 第三讲 交流电弧的过零熄灭和重燃理论和自能式灭弧室的开断原理

第三讲 交流电弧的过零熄灭和重燃理论和自能式灭弧室的开断原理 1. 交流电流过零熄弧 工业交流电每半周电流要过零一次,交流电流总是在电流过零时熄灭的,这与直流电弧不同,熄灭交流电弧比熄灭直流电弧要容易得多。交流电弧过零的详细过程分下列两种情况来说明: 1.1 用图1(a )所示的电阻电路来分析。由于电弧电压远低于电源电压,也就是说电源电压足以维持电弧燃烧而不致发生强制熄弧,因此电弧电流i 与电源电压u 同时过零,见图1(b ),0t 是产弧时刻,此时断口间产生电弧电压a u 。由于电源电压u 远远地大于电弧电压a u ,电弧电流i 仍近似于为正弦波,因此它与电弧电压a u 同时过零。电流过零详细情况见图2。 图1 电阻分析电路的电弧电流过零 图2 实际电弧电流h i 与电弧电压h u 同时过零

1.2 用图3所示的电感电路来分析。图中,u 是电源电压,令wt E u m cos =,(m E 是电源电压的幅值),L 是分析电路中的电感,QF 表示断口,n R 表示电弧电阻,电弧电压h h h R i u =(h u 随h i 改变正负号)。h i 是电路电流(即电弧电流) 图4表示此时电弧电流的变化曲线。图4中e 表示电源电压随时间变化的曲线(瞬时值),h i 是电弧电流的瞬时值。h i 可分解为两个分量组成:一 个分量是滞后于电源电压e 90°的的正弦电源分量wt wL E i m sin =';另一个分量是随时间线性(假设电弧电阻是恒定值)变化的分量 )(α-=''wt wL u i h ,α表示起始燃烧时刻的相位角,π和2π表示一个半波和一个周波的相位角。 由电路数学分析得出i i i h ''-'=。 实际电弧电流h i 比其正弦电流分量i '过零提前过零1wt 相位角,这是由于在电感电路中,由于有电弧压降存在而导致了实际电弧电流h i 比电弧电压h u 提前过零,其提前过零的相位角是ξ,ξ的数值为若干μs 至数十μs 数量级。 电流过零详细情况见图5。 图3 电感分析电路 图4 电感分析电路中电弧电流的变化曲线

旋片式真空泵的原理与结构

旋片式真空泵的原理与结构 旋片式真空泵是应用转子和可在转子槽内滑动的旋片的旋转运动以取得真空的一种变容机械真空泵。当采用任务液来停止光滑并填充泵腔死隙,分隔排气阀和大气时,即为通常所称的油封旋片真空泵。无任务液时,即为干式旋片真空泵。 在油封旋片真空泵中,国际习气上称皮带传动的为旋片式真空泵,而把泵与电机间接衔接或用联轴器衔接的称为直联旋片真空泵。在每种泵中,又有单级和双级之分。在单级泵中,由于选用的构造方式和参数不同,泵的极限压力和用处也不同。 它们的共同特点是构造较复杂,运用方便,能从大气压力下起动,可间接排人大气,公平质量较小,维护简便,双级泵的极限压力为 6 *10-2~1*10-2Pa,—种单级泵可达4Pa左右,另一种单级泵为50~20 OPa左右。 在泵的构造方面,为了能在停泵时避免返油,有的设有能自动切断油路的止回阀,有的设有进气通道截止阀,有的为了能在泵开气镇运转忽然停电时自动切断气路来坚持泵口处于真空形态而设有油泵和控制构造。在附件方面,有消雾器,气息过滤器,阻挠碎玻璃等杂物用的人口过滤器,灰尘过滤器,蒸汽凝结阱,化学阱,有控制泵温以进步水蒸气抽除率和维护泵的温控水量调理阀。又推出了油过滤器,能监视油温、油压、油质等的电子显示器,甚至可以与计算机联合,停止自动控制,采用强迫光滑和风冷,使泵的延续任务人口压力达10KPA甚至更高,同

一台泵的适用范围因此更大。 双级旋片真空泵,可以普遍用于冰箱、空调机、灯泡、日光灯、瓶胆消费和电子、冶金、医药、化工、滤油机、印刷机械、包装机等工业,可作为分散泵、罗茨泵、分子泵等的前级泵,供电子仪器、医疗仪器等配套和实验研讨使用。由于直联泵没有皮带摩擦的粉尘的净化,体积小、分量轻、资料浪费、功用日趋完善,更被普遍推行使用。 一、抽气原理与构造 旋片式真空泵,它有公平地装在定子腔内的转子及转子槽内的两个或数个旋片,转子与泵壳内外表或相切或相交,转子带动旋片旋转时,旋片借向心力(有的还有弹簧力)紧贴缸壁,把进排气口联系开来,并使进气腔容器周期性扩展而吸气,排气腔容积则周期性地减少而紧缩气体,借气体和油的压力推开排气阀排气,从而取得真空。双级泵由二个单级串联而成,进气压力高时,普通大中型泵,二级可同时排气,进气压力低时,气体由初级排入低级,然后再排出泵外。 由于泵是应用吸气容积的变化来抽吸气体的,其名义抽速可按吸气的几何容积来设计计算。 二、气镇原理与构造 由于真空泵的抽气进程是一紧缩进程,故当有水蒸气之类的可凝性气体时,假如在排出泵腔前到达其饱和蒸汽压力,则会凝结在油中, 使泵油乳化蜕变,光滑密封功能变坏,凝结物在吸气腔中还会重新变成气态,使真空度降低。据引见,当含水超越50%寸,还会毁坏光滑 功能,形成频繁换油和糜费。经过研讨,创造了气镇泵。其原理是,排

户内真空高压真空断路器结构及原理

ZN65-12户内高压真空断路器 一. 概述  断路器作为配电线路中的一个重要元件,承担着线路电力的接通、切断、故障保护等功能。真空断路器以其绝缘强度高,熄弧能力强,没有火灾和爆炸危险等诸多优点而受到电力部门的完全认可,在7.2kV~12kV范围内,真空断路器以占绝对优势,并在很短的时间内会完全取代油(或少油)断路器。 九十年代以来,国外著名的公司纷纷推出新一代12kV真空断路器,如德国SIEMENS公司推出的3AH1~3AH5系列真空断路器,ABB公司推出的VD4型真空断路器,日本三菱公司推出的VK型真空断路器等等。它们显著的特点是:可靠性大为提高,尺寸小巧,外观精美,适合目前电力行业的发展要求。  随着我国电力事业的大力发展,市场迫切需要在性能、可靠性、外观上接近但价格明显低于国外同类产品的真空断路器。根据这一趋势,我厂根据我国电力行业的要求和国际上真空断路器技术发展的最新发展趋势自行研制开发的ZN65A-12型新一代系列户内交流真空断路器,并通过甘肃省经济贸易委员会组织的专家鉴定。本断路器可以使用在交流50Hz (60Hz ),12kV 及以下的电力系统中。 ZN65A –12系列户内高压真空断路器符合GB1984、DL403、GB/T11022、IEC56等标准规定,并在国家高压电器质量监督检验中心和KEMA 试验站通过了严格的型式试验。  二. ZN65A-12/T630 ̄4000-20 ̄63系列交流高压真空断路器技术参数(表1)  表1  数 值 序号 名称 单位 ZN65A -12/20 ZN65A -12/25 ZN65A -12/31.5 ZN65A -12/40 ZN65A -12/63 1 额定电压 kV 12 2 额定电流 A 630 1000 1250 1000 1250 1250 1600 2000 2500 1250 1600 2000 2500 3150 4000 1min 工频耐受电压 42 3 额定绝 缘 水平 冲击耐受电压 kV 75 4 额定短路开断电流 20 2 5 31.5 40 63 5 额定短路关合电流(峰值) 50 63 100(80) 130(100) 160 6 额定动稳定电流(峰值) 50 63 100(80) 130(100 160 7 额定热稳定电流(有效值) kA 20 25 31.5 40 63 8 额定短路开断电流开断次数 次 50 30 20 9 额定短路开断电流的直流分量 ≥35% ≥40% 10 额定热稳定时间 s 4

核聚变反应堆的原理很简单

核聚变反应堆的原理很简单,只不过对于人类当前的技术水准,实现起来具有相当大的难度。 物质由分子构成,分子由原子构成,原子中的原子核又由质子和中子构成,原子核外包覆与质子数量相等的电子。质子带正电,中子不带电。电子受原子核中正电的吸引,在"轨道"上围绕原子核旋转。不同元素的电子、质子数量也不同,如氢和氢同位素只有1个质子和1个电子,铀是天然元素中最重的原子,有92个质子和92个电子。 核聚变是指由质量轻的原子(主要是指氢的同位素氘和氚)在超高温条件下,发生原子核互相聚合作用,生成较重的原子核(氦),并释放出巨大的能量。1千克氘全部聚变释放的能量相当11000吨煤炭。其实,利用轻核聚变原理,人类早已实现了氘氚核聚变---氢弹爆炸,但氢弹是不可控制的爆炸性核聚变,瞬间能量释放只能给人类带来灾难。如果能让核聚变反应按照人们的需要,长期持续释放,才能使核聚变发电,实现核聚变能的和平利用。 如果要实现核聚变发电,那么在核聚变反应堆中,第一步需要将作为反应体的氘-氚混合气体加热到等离子态,也就是温度足够高到使得电子能脱离原子核的束缚,让原子核能自由运动,这时才可能使裸露的原子核发生直接接触,这就需要达到大约10万摄氏度的高温。 第二步,由于所有原子核都带正电,按照"同性相斥"原理,两个原子核要聚到一起,必须克服强大的静电斥力。两个原子核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。 质量轻的原子核间静电斥力最小,也最容易发生聚变反应,所以核聚变物质一般选择氢的同位素氘和氚。氢是宇宙中最轻的元素,在自然界中存在的同位素有:氕、氘(重氢)、氚(超重氢)。在氢的同位素中,氘和氚之间的聚变最容易,氘和氘之间的聚变就困难些,氕和氕之间的聚变就更困难了。因此人们在考虑聚变时,先考虑氘、氚之间的聚变,后考虑氘、氘之间的聚变。重核元素如铁原子也能发生聚变反应,释放的能量也更多;但是以人类目前的科技水平,尚不足满足其聚变条件。 为了克服带正电子原子核之间的斥力,原子核需要以极快的速度运行,要使原子核达到这种运行状态,就需要继续加温,直至上亿摄氏度,使得布朗运动达到一个疯狂的水平,温度越高,原子核运动越快。以至于它们没有时间相互躲避。然后就简单了,氚的原子核和氘的原子核以极大的速度,赤裸裸地发生碰撞,结合成1个氦原子核,并放出1个中子和17。6兆电子伏特能量。 反应堆经过一段时间运行,内部反应体已经不需要外来能源的加热,核聚变的温度足够使得原子核继续发生聚变。这个过程只要将氦原子核和中子及时排除出反应堆,并及时将新的氚和氘的混合气输入到反应堆内,核聚变就能持续下去;核聚变产生的能量一小部分留在反应体内,维持链式反应,剩余大部分的能量可以通过热交换装置输出到反应堆外,驱动汽轮机发电。这就和传统核电站类似了。 核聚变消耗的燃料是世界上十分常见的元素--氘(也就是重氢)。氘在海水中的含量还是比较高的,只需要通过精馏法取得重水,然后再电解重水就能得到氘。新的问题出现了,仅仅有氘还是不够的,尽管氘-氘反应也是氢核聚变的主要形式,但我们人类现有条件下,

真空灭弧室结构及原理

真空灭弧室结构及原理 ◆ 电弧 ◆ 真空和真空度 ◆ 真空电弧 ◆ 交流真空电弧 ◆ 真空击穿 ◆ 灭弧原理 ◆ 真空灭弧室的寿命 1、电弧 电弧或弧光放电是气体放电的一种形式。气体放电在性质上和外观上是各种各样的。在正常状态下,气体有良好的电气绝缘性能。但当在气体间隙的两端加上足够大的电场时,就可以引起电流通过气体。这种现象称为放电。放电现象与气体的种类和压力、电极的材料和几何形状、两极间的距离以及加在间隙两端的电压等因素有关。例如在正常状态下,给气体间隙两端的电极加压到一定程度时,普通空气中电子在电场作用下高速运动,与气体分子碰撞后产生较多的电子和离子,新生的电子和离子又同中性原子碰撞,产生更多的电子和离子,这时,气体开始发光,两电极变为炽热,电流迅速增大。这种性质上的转变称为气体间隙的击穿,其所需的电压称为击穿电压。这时,由于电场的支持,放电并不停止,故称为自持放电。电弧则是气体自持放电的一种形式。电弧具有电流密度大和阴极电位降低的特点。 2、真空和真空度 低于1个大气压的气体状态,都称为真空。描述真空程度的量叫真空度,用该气体的压力大小来表示。 l大气压= 760×133.332Pa=1.013×105Pa(帕斯卡)或0.1013MPa 真空技术中将广阔的真空度范围划分为粗、低、高、超高、极高等区域。其中高真空区域的气体压力为 10-1~10-6Pa,这一区域的后半段,即 1.33 ×10-3~1.33 ×10-6就是真空灭弧室通常采用的真空度范围。

在高真空区域中,单位体积内的气体分子数目大大减少了,气体分子之间碰撞的几率大大减少,气体分子之间的平均距离大大增加。 真空度的高低对灭孤能力有影响。实验表明:灭孤室真空度在10-3Pa 数量级时就能够可靠地灭弧。真空灭弧定制造厂在产品出厂时,提高了灭孤室的真空度,达到 10-5~ 10-6 Pa,待经过20年的使用或贮存期,或多或少产生外部渗气等现象使其真空度下降到10-3Pa范围,仍能保证它的灭孤能力。 3、真空电弧 在真空环境中,气体非常稀薄,残存气体的电离可忽略不记。一对带电触头在这种高真空环境中的分离,便会产生真空电弧。真空电弧是这样产生的:当触头行将分离前,触头上原先施加的接触压力开始减弱,动静触头间的接触电阻开始增大,由于负荷电流的作用,发热量增加。在触头刚要分离瞬间,动静触头之间仅靠几个尖峰联系着,此时负荷电流将密集收缩到这几个尖峰桥上,接触电阻急剧增大,同时电流密度又剧增,导致发热温度迅速提高,致令触头表面金属产生蒸发,同时微小的触头距离下也会形成极高的电场强度,造成强烈的场致发射,间隙击穿,继而形成真空电弧。真空电弧一旦形成,就会出现电流密度在 104A/cm2 以上的阴极斑点,使阴极表面局部区域的金属不断熔化和蒸发,以维持真空电弧。在电弧熄灭后,电极之间与电极周围的金属蒸气密度不断下降直到零,仍然恢复高真空状态。 3.1真空中电弧的形式: 真空中的电弧有两种形式,扩散形电弧和收缩形电弧。 3.1.1扩散型真空电弧: 当真空电弧电流不大时,阴极斑点将不停地运动,通常是由电极中心向边缘运动。当阴极斑点到达边缘,等离子锥便弯曲,接着阴极斑点就突然熄灭,在电极中心又会继续不断地产生新的阴极斑点。如果电流保持不变,阴极表面存在的阴极斑点数基本上维持不变。当电弧电流增大或减小时,阴极斑点也随之增加或减少。这种存在许多阴极斑点的真空电弧,随着阴极斑点的运动不断地向四周扩散,所以叫扩散型真空电弧。

核反应堆及其工作原理

核反应堆及其工作原理 日本地震引发的核泄漏危机使得人心惶惶,网上各种瞎扯的消息铺天盖地,与其在假消息中挣扎,倒不如来普及一下科学知识。核反应堆究竟是什么东西?它的工作原理是怎样的?今天我们就来图解福岛核电站故障。 核反应堆相关词汇表: core 核心 control rod s 控制棒 reactor vessel反应堆 suppression pool 抑压池 primary containment vessel 第一层安全壳(反应堆外壳) secondary containment building 第二层安全壳 turbine涡轮 condenser冷凝器 backup steam generator备用蒸汽发电机 Normal operation 正常状态 In operation since the early 1970s, Japan's Fukushima Daiichi nuclear plant uses six boiling water reactors, which rely on uranium nuclear fission to generate heat. Water surrounding the core boils into steam that drives turbines to generate electricity.

The reactor vessel is surrounded by a thick steel-and-concrete primary containment vessel, equipped with a water reservoir designed to suppress overheating of the vessel. 反应堆由一个钢与混凝土构成的厚实外壳(第一层安全壳)保护着,另外还配有一个蓄水库,防止反应堆过热。The suppression pool is designed to protect the primary vessel if the core gets too hot. Valves release steam into the pool, where it condenses, relieving dangerous pressure. 当核心过热时,抑压池可以起到保护第一层安全壳的作用。这时阀门会打开,水蒸气就能进入抑压池内冷凝,减缓压力过大造成的危险。 Earthquake damage 地震时 The earthquake initiated a rapid shutdown of the reactors, but the disaster cut power to controls and pumps, and the tsunami disabled backup generators. New diesel generators were delivered after batteries used to control the operation of the reactor were exhausted. 周五的地震切断了各种控制系统和水泵的电力供应,而海啸又使备用发电机组无法工作。在控制反应堆运作的电池报废后,不得不启用第二套柴油发电机。 Since the quake hit, fuel rods in the cores of reactor 1, 2 and 3 have overheated because of a lack of cooling water. 自地震以来,由于冷却用水的缺少,1、2、3号反应堆核心中的燃料棒一直处于过热状态。 Control rods were inserted into the cores to stop fission, but cores need several days to cool down. 控制棒已经插入,但是核心需要好几天时间来冷却。

真空泵的结构及原理

幻灯片1 真空泵的结构及原理 河南第一火电建设公司 检修公司信阳项目部汽机专业 幻灯片2 泵型号简介 ●一期真空泵型号:2BE1353-OMY4-Z ●真空泵外观(又称平圆盘式真空泵): 幻灯片3 两侧的平圆盘 幻灯片4 平圆盘式真空泵转子 幻灯片5 被汽蚀的真空泵转子

真空泵的典型结构和工作原理

工作原理

● 该型号真空泵,叶轮上偏心安装,外侧带一对圆盘,侧盖上开有吸气口和排气口,工作时泵内充以 ●一定数量的工作水。 ●当叶轮旋转时,水形成一紧贴壳 ●壁的水环 ●水环内表面与叶轮轮毂表面 ●及两侧盖端面之间形成一个 ●月牙形的工作空间 ●该空间被叶片分隔成若干个 腔室,腔室容积随叶轮回转不断地改变。 幻灯片8 工作过程

● 1.吸入过程 ●右半转,叶间腔室的V增大, ●气体通过吸入口被吸入。 ● 2. 压缩过程 ●左半转,叶间腔室的V缩小, ●气体受到压缩。 ● 3. 排出过程 ●当叶间转到与排出口相通时, ●气体被排出。 ●总结:主要是靠工作腔室的容 ●积的变化来产生吸排汽。 幻灯片9 水环和汽水分离器的作用 ●水环 ●传递能量 ●密封工作腔室 ●吸收气体压缩热

●泵出口常设汽水分离器 ●压缩和水力损失转换成的热量会使部分工作水汽化 ●水通过轴封和排气会流失 ●需连续地向泵内补水 ●补水量应大于损失水量 ● 幻灯片10 动画演绎 幻灯片11 安装过程中各参数 部件名称质量标准 铸件外观检查无铸砂、毛刺、气孔、裂纹, 结合面光洁,无伤痕 泵体结合面检查平整,无毛刺,凹坑轴承与轴承座检查轴承座无裂纹、夹渣、铸砂、气孔等, 油漆清理干净(耐油漆可不清 理) 水平结合面无损伤,紧螺 栓后局部间隙<0.05;油路, 水路疏油孔清洁畅通无泄漏 滚动轴承外观清洁、无锈蚀、无损伤、 内外圈转动灵活,不松旷。 对轮找中心径向、端面≤0.08mm 真空泵检修组装泵轴径向晃度≤0.05 mm 叶轮、轴套端面光洁,无毛刺,与轴线垂直 叶轮与轴套端面接触严密 密封环外观光洁,无变形、裂纹 ≤0.05 mm 叶轮密封环处和轴套外园处 径向晃度 轴与轴套间隙0.03~0.06 mm 密封环与泵壳径向总间隙0.00~0.03 mm 密封环定位销钉锁紧 转子与泵体顶部间隙≥0.50 mm 轴承与轴承室轴向间隙传动侧0.10-0.20自由端,0 固定叶轮的锁母装置完好,紧固可靠 结合面定位销紧密、接触良好 结合面垫料厚度应保证有关部件的紧力 结合面紧固均匀,牢固

真空灭弧室的基本结构和工作原理

真空灭弧室的基本结构和工作原理 真空灭弧室,又名真空开关管,是中高压电力开关的核心部件,其主要作用是,通过管内真空优良的绝缘性使中高压电路切断电源后能迅速熄弧并抑制电流,避免事故和意外的发生,主要应用于电力的输配电控制系统,还应用于冶金、矿山、石油、化工、铁路、广播、通讯、工业高频加热等配电系统。具有节能、节材、防火、防爆、体积小、寿命长、维护费用低、运行可靠和无污染等特点。真空灭弧室从用途上又分为断路器用灭弧室和负荷开关用灭弧室,断路器灭弧室主要用于电力部门中的变电站和电网设施,负荷开关用灭弧室主要用于电网的终端用户。 我公司生产的多种型号的真空灭弧室,按其用途、参数、开断容量可分为断路器用真空灭弧室、负荷开关用真空灭弧室、接触器用真空灭弧室、重合器用真空灭弧室和分段器用真空灭弧室等。 其结构形式均由气密绝缘外壳、导电回路、屏蔽系统、波纹管等部分组成。 1、 气密绝缘系统 由玻璃或陶瓷制成的气密绝缘外壳、动端盖板、定端盖板,不锈钢波纹管组成了气密绝缘系统。为了保证玻璃、陶瓷与金属之间有良好的气密性,除了封接时要有严格的操作工艺外,还要求材料本身的透气性尽量小和内部放气量限制到极小值。不锈钢波纹管的作用不仅能将真空灭弧室内部的真空状态与外部的大气状态隔离开来,而且能使动触头连同动导电杆在规定的范围内运动,以完成真空开关的闭合与分断操作。 2 、导电系统 定导电杆、定跑弧面、定触头、动触头、动跑弧面、动导电杆构成了灭弧室的导电系统。其中定导电杆、定跑弧面、定触头合称定电极,动触头、动跑弧面、动导电杆合称动电极,由真空1.排气管保护罩 2.排气管密封刀口 3.环氧树脂填料 4.定端盖版 5.定导电杆 6.屏蔽筒 7.玻壳(或陶瓷壳) 8.定触头座 9.定触头 10.动触头 11.动触头座 12.动导电杆 13.波纹管 14.均压罩 15.动端盖版 16.导向套

常用灭弧器的工作原理

①少油断路器 少油断路器以变压器油作为灭弧介质及动、静触头之间的绝缘。而用空气、陶瓷或有机绝缘材料作为相与相之间或相与地之间的绝缘。因此,少油断路器油量少、体积小、耗用钢材,价格便宜。目前在我国10~220KV电力系统中得到广泛应用。 其灭弧原理是少油断路器在油中开断电流时,触头间将产生电弧。高温电弧使油急速蒸发和分解。于是电弧便在油蒸汽和油分解的气体气泡中燃烧。油分解的气体中氢气约占70% ~ 80%,而且氢气的热导率非常高,并有很强的扩散作用。氢气和其他冷热气体对弧道产生强烈的冷却和去游离作用,特别是当电流经过零值瞬间,这种作用更加强烈,有利于熄灭电弧。断路器通常采用绝缘材料制成灭弧室,电弧在灭弧室中燃烧,利用灭弧室内升高的压力(可达几十兆帕)使油一方面流动,一方面与电弧接触,则灭弧效果更好。 ②六氟化硫断路器 六氟化硫断路器采用SF6气体作为灭弧介质和绝缘介质,SF6气体具有良好的绝缘性能和灭弧能力,因此在断路器中的应用得到迅速发展。SF6断路器的类型按灭弧方式分,有单压式和双压式;按触头工作方式可分为定开距式和变开距式;按总体结构分,有落地罐式和瓷瓶支柱式。 灭弧原理: 单压式SF6断路器只有一种压力较低的压力系统,既只有0.3~0.6MPa 压力(表压)的SF6气体作为断路器的内绝缘。在断路器开断的过程中,

由动触头带动压力活塞或压气罩,利用压缩气流吹熄电弧。分闸完毕,压气作用停止,分离的动静触头处在低压的SF6气体中 双压式SF6断路器内部有高压区和低压区,低压区0.3~0.5Mpa的SF6气体作为断路器的主绝缘。在分闸过程中,排气阀开启,利用高压区约1.5MPa的气体吹熄电弧。分闸完毕,动、静触头处于低压气体中或高压气体中。高压区喷向低压区的气体,再经气体循环系统和压缩机抽回高压区。 目前我国生产的SF6断路器采用单压式;并且触头多采用变开距结构 ③真空断路器 真空断路器是利用真空(真空度为10-4mm汞柱以下)具有良好的绝缘性能和耐弧性能等特点,将断路器触头部分安装在真空的外壳内而制成的断路器。真空断路器具有体积小、重量轻、噪音小、易安装、维护方便等优点。尤其适用于频繁操作的电路中。 真空灭弧室中电弧的点燃是由于真空断路器刚分瞬间,触头表面蒸发金属蒸汽,并被游离而形成电弧造成的。真空灭弧室中电弧弧柱压差很大,质量密度差也很大,因而弧柱的金属蒸汽(带电质点)将迅速向触头外扩散,加剧了去游离作用,加上电弧弧柱被拉长、拉细,从而得到更好的冷却,电弧迅速熄灭,介质绝缘强度很快得到恢复,从而阻止电弧在交流电流自然过零后重燃。(责任编辑:admin)

各种电弧灭弧原理

各种电弧灭弧原理、条件及措施的比较 1. 开关电弧灭弧的基本原理:首先使触头间的介质成为良好电导率的电弧,进而使电弧冷却,迅速降低其电导率,最终使其转变为良好的绝缘体。 单位体积内的能量平衡: 电源提供的能量=电弧的能量增量— v ?gradp (由对流引起的散热功率)—s (T) (由辐射引起的散热功率)— div Χ?gradT (由广义热传导引起的散热功率) 应根据不同条件、不同场合,提高后三项的散热功率。 2.直流电弧 灭弧条件:稳态电路方程与电弧伏安特性无交点 灭弧措施:(1)拉长电弧→Ua ↗;(2)冷却电弧→Ua ↗(加装灭弧室,选用好的介质);(3)制造电流过零点 3.交流电弧 交流电弧的熄灭措施:实质上是防止电弧重燃:利用电流过零点的有利时机,使U d >Utr 措施:提高U d 及其上升率,同时降低Utr 及其上升率 具体措施:(略) 4.SF 6电弧 灭弧原理:使大量SF 6分子与电弧接触而分解吸热,冷却电弧。 散热方式:以弧柱的热传导和对流换热为主,散热条件良好。 实际上防止重燃的方法:利用电流过零点的有利时机,使U d >Utr 。 gradT div T s gradp v dt dh E ?--?-=χρσ)(2

5.真空电弧 散热方式:以辐射和经电极与屏蔽罩的热传导为主,散热条件较差。只要保持为扩散型电弧,电流过零后,在微秒级内带电粒子即可消散而恢复间隙的绝缘强度。 实际上防止重燃的方法:利用电流过零点的有利时机,使U d >Utr, 纵向磁场的特点: (1)延缓离子贫乏现象、阳极斑点的产生,使集聚电流值提高;(2)降低了电弧电压:一方面:不利于增大电弧电压的灭弧措施; 另一方面,降低了电弧能量,电极的温度可降低,不易形成阳 极斑点。 (3)不能使阳极斑点在阳极表面快速移动,局部熔融严重。 不同形式横向磁场的特点: (1)纵向电流自身产生的角向磁场(自箍缩磁场):有助于形成集聚型电弧。 (2)径向磁场:使电弧在电极表面快速移动,避免局部温度过高; 且可在工频后半周使集聚型电弧转变为扩散型电弧。 (3)抵消或部分抵消自箍缩磁场的角向磁场:使电弧向电极边缘移动而拉长电弧。一方面,电弧电压增高有利于灭弧;另一方面,电弧能量增大使电极温度升高。 (4)X向磁场:在电极的一边(y<0区域)增强自箍缩磁场,在电极的另一边(y>0区域)减弱自箍缩磁场。可利用来产生漂移

常用三种真空泵的原理

常用三种真空泵的原理 水环式真空泵: 液环真空泵工作原理水环真空泵(简称水环泵)是一种粗真空泵,它所能获得的极限真空为 2000~4000Pa,串联大气喷射器可270~670Pa。水环泵也可用作压缩机,称为水环式压缩机,是属于低压的压缩机,其压力范围为1~2×105Pa表压力。水环泵最初用作自吸水泵,而后逐渐用于石油、化工、机械、矿山、轻工、医药及食品等许多工业部门。在工业生产的许多工艺过程中,如真空过滤、真空引水、真空送料、真空蒸发、真空浓缩、真空回潮和真 空脱气等,水环泵得到广泛的应用。由于真空应用技术的飞跃发展,水环泵在粗真空获得方面一直被人们所重视。由于水环泵中气体压缩是等温的,故可抽除易燃、易爆的气体,此外还可抽除含尘、含水的气体,因此,水环泵应用日益增多。 在泵体中装有适量的水作为工作液。当叶轮按图中顺时针方向旋转时,水被叶轮抛向四周,由于离心力的作用,水形成了一个决定于泵腔形状的近似于等厚度的封闭圆环。水环的下部分内表面恰好与叶轮轮毂切,水环的上部内表面刚好与叶片顶端接触(实际上叶片在水环内有一定的插入深度)。此时叶轮轮毂与水环之间形成一个月牙形空间,而这一空间又被叶轮分成和叶片数目相等的若干个小腔。如果以叶轮的下部 为起点那么叶轮在旋转前180°时小腔的容积由小变大,且与端面上的吸气口相通,此时气体被吸入,当吸气终了时小腔则与吸气口隔绝;当叶轮继续旋转时,小腔由大变小,使气体被压缩;当小腔与排气口相通时,气体便被排出泵外。 综上所述,水环泵是靠泵腔容积的变化来实现吸气、压缩和排气的,因此它属于变容式真空泵。 罗茨泵的工作原理: 罗茨泵在泵腔内,有二个“8”字形的转子相互垂直地安装在一对平行轴上,由传动比为1的一对齿轮带动作彼此反向的同步旋转运动。在转子之间,转子与泵壳内壁之间,保持有一定的间隙,可以实现高转速运行。 由于罗茨泵是一种无内压缩的真空泵,通常压缩比很低,故高、中真空泵需要前级泵。罗茨泵的极限真空除取决于泵本身结构和制造精度外,还取决于前级泵的极限真空。为了提高泵的极限真空度,可将罗茨泵串联使用。罗茨泵的工作原理与罗茨鼓风机相似。由于转子的不断旋转,被抽气体从进气口吸入到转子与泵壳之间的空间v内,再经排气口排出。由于吸气后v0空间是全封闭状态,所以,在泵腔内气体没有压缩和膨胀。 但当转子顶部转过排气口边缘,v0空间与排气侧相通时,由于排气侧气体压强较高,则有一部分气体返

(完整版)大工14春《发电厂电气部分》辅导资料四

发电厂电气部分辅导资料四 主题:第二章导体的发热、电动力及开关电器的灭弧原理(第5—9节)学习时间:2014年4月21日—4月27日 内容: 第二章导体的发热、电动力及开关电器的灭弧原理 这周我们将学习第二章中的第5—9节,这部分主要介绍导体短路的电动力、开关电器中电弧的产生及熄灭、弧隙电压恢复过程分析、熄灭交流电弧的基本方法。 第五节导体短路的电动力 定义:电气设备中的载流导体当通过电流时,除了发热效应以外,还有载流导体相互之间的作用力,称为电动力。 计算电动力的目的是:为了校验导体或电器实际所受到的电动力是否超过其允许应力,以便选择适当强度的电气设备。这种校验称动稳定校验。 相关因素:载流导体之间电动力的大小和方向,取决于电流的大小和方向,导体的尺寸、形状和相互之间的位置以及周围介质的特性。 第六节大电流封闭母线的电动力 全连式分相封闭母线,母线由铝管做成,每相母线分别用连续的铝质外壳封闭,三相外壳的两端用短路板连接并接地。 分相封闭母线的优点: (1)不受自然环境和外物的影响,能防止相间短路,同时由于外壳多点接地,保证人员的安全;

(2)短路时母线间的电动力大大减小,可增大支持绝缘子的跨距; (3)壳外磁场大大减弱,减少了母线附近的钢构的发热; (4)外壳可兼作强迫冷却管道,提高母线的载流量; (5)安装、维护工作量小。 主要缺点: (1)母线散热条件较差 (2)外壳产生损耗 (3)有色金属消耗量增加 第七节开关电器中电弧的产生及熄灭 2.7.1 电弧现象 电弧实质是介质被击穿的一种放电现象。 在电弧燃烧期间,电路中的电流仍以电弧方式维持着,电路未真正断开,只有电弧熄灭后,电路才被真正切断。 电弧的主要特征: 1.电弧是一种能量集中、温度很高、亮度很强的放电现象。 2.电弧由阴极区、弧柱区及阳极区3部分组成。 阴极区和阳极区:阴极和阳极附近的区域(约10-4cm)。阴极和阳极区较弧柱温度较低,自由电子的密度小,导电率低,电位梯度大。特别是阴极区,堆积了许多正离子,电位梯度最高。一般在靠近阴极的区间内有近似为常数的压降。 弧柱:在阴极和阳极间的明亮光柱。其温度极高。弧柱的直径很小,一般几毫米。在弧柱周围温度较低、亮度明显减弱的部分称弧焰。 3.电弧是一种自持放电,维持电弧稳定燃烧所需电压很低。

真空断路器灭弧原理

真空断路器灭弧原理 真空断路器是利用真空(真空度为10-4mm汞柱以下)具有良好的绝缘性能和耐弧性能等特点,将断路器触头部分安装在真空的外壳内而制成的断路器。真空断路器具有体积小、重量轻、噪音小、易安装、维护方便等优点。尤其适用于频繁操作的电路中。 真空灭弧室中电弧的点燃是由于真空断路器刚分瞬间,触头表面蒸发金属蒸汽,并被游离而形成电弧造成的。真空灭弧室中电弧弧柱压差很大,质量密度差也很大,因而弧柱的金属蒸汽(带电质点)将迅速向触头外扩散,加剧了去游离作用,加上电弧弧柱被拉长、拉细,从而得到更好的冷却,电弧迅速熄灭,介质绝缘强度很快得到恢复,从而阻止电弧在交流电流自然过零后重燃。 真空灭弧室是真空断路器的灭弧和绝缘部件。主要有动触头、静触头、动端跑弧面、动端法兰、静端法兰、瓷柱、不锈钢支撑法兰、屏蔽罩、动静导电杆、玻壳和波纹管等,经过清洗由玻璃封装、真空焊、亚弧焊、排气等工艺程序处理后封装而成。各主要零部件均密封在玻壳中,玻壳不仅通过动静法兰起到密封作用,还能起到绝缘作用。波纹管系一动态密封的弹性元件,通过真空灭弧室在操动机构的作用下可完成分合闸动作,而又不会破坏其真空度。

真空灭弧室制造成一个整体,不能拆装,损坏后应整体更换。 真空电弧的熄灭是基于利用高真空介质(一般为压强低于10-4mm汞柱的稀薄气体)的绝缘强度及在这种气体中的电弧生成物(带电粒子和金属蒸汽)具有极高的扩散速度,在电弧电流过零后,触头间隙的介质强度可以迅速恢复起来的原理而实现的。燃弧过程中的金属蒸汽和带电粒子在强烈的扩散中为屏蔽罩所冷凝,带三条阿基米德螺旋槽的跑弧面使电弧电流在其流经路线上的触头间产生一个横向磁场,这时电弧电流在主触头上沿切线方向快速移动,从而降低了主触头表面的温度,减少了主触头的烧损,稳定了断路器的开断性能,提高了断路器的寿命。

相关文档
最新文档