管道计算

管道计算
管道计算

管路长1000米,落差100米,水流量40立方每小时,求水泵,和管径

流量 Q=40m^3/h = 0.0111 m^3/s

3寸管,内径 D=75mm,管道糙率 n=0.012,

管道摩阻 S=10.3n^2/D^5.33=10.3*0.012^2/0.075^5.33=1469

水泵扬程 H=100+SLQ^2=100+1469*1000*0.0111^2 = 281 m

4寸管,内径 D=100mm,管道糙率 n=0.012, 流速V=4Q/(3.1416D^2)=1.41m/s 管道摩阻 S=10.3n^2/D^5.33=10.3*0.012^2/0.1^5.33=317

水泵扬程 H=100+SLQ^2=100+317*1000*0.0111^2 = 139 m

两种口径的管,差别巨大,应该用4寸管。3寸管水头损失很大,要求扬程太高,不合理。

所以水泵采用流量40立方每小时,扬程140 m左右,据此采购水泵。

若出口为大气压力,则可计算如下:

DN100管道比阻 S=0.001736/D^5.3 = 8.79

流量 Q = 40m^3/h = 0.0111 m^3/s

水头损失 H =SLQ^2 = 8.79*1000*0.0111^2 = 1.08 m

供水断面压力 P = pgH = 1000*9.8*1.08 =10584 Pa

流速仅为0.354 m/s。管径可不必这么大。

工程上的办法是:找个管道水力计算表(一般热工书后附录都有),按实际流量先估计出一个管径查管道水力计算表,得出比摩阻,单位是Pa每米。乘以长度得出沿途阻力,沿途乘以0.5-0.9为局部阻力(根据弯头阀门管件得多少选取,超过200米就选0.5).2个阻力加起来为管道阻力,泵杨程减去管道阻力,在考虑泵出口至管道终点位差,即为管道末端压力。

反复试算管径,直到管道末端压力符合你的工艺要求就可以了。

需要精确的就按水力计算公式计算。

摩阻就是管路阻力=沿程阻力+局部阻力单位是Pa

第九章-水电站的水锤及调节保证计算

第九章水电站的水锤及调节保证计算 本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。 第一节概述 一、水电站的不稳定工况 由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为: (1) 引起机组转速的较大变化 丢弃负荷:剩余能量→机组转动部分动能→机组转速升高 增加负荷:与丢弃负荷相反。 (2) 在有压引水管道中发生“水锤”现象 管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。 导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。 导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。 (3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。 二、调节保证计算的任务 (一) 水锤的危害 (1) 压强升高过大→水管强度不够而破裂; (2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动; (3) 压强波动→机组运行稳定性和供电质量下降。 (二) 调节保证计算 水锤和机组转速变化的计算,一般称为调节保证计算。 1.调节保证计算的任务: (1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据; (2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。 (3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。 (4) 研究减小水锤压强及机组转速变化的措施。

市政管道工程计算规则

市政管道工程计算规则 第八册总说明 一.第八册《市政管道工程》(以下简称本定额)包括土方工程,降水工程,砖石砌体与装修,钢筋与混凝土工程,给水管道铺设及附件安装,给水管道附属工程,排水管铺设,排水管道附属工程,燃气、热力管道铺设及管件安装燃气、热力管道附件制作及安装,管道防水、防腐、绝缘、保温、刷油顶管工程和其它项目等共十三章。 二.无缝钢管管外径≤159mm,铸铁管公称直径≤250mm,其它钢管公称直径≤150mm及混凝土管管径≤400mm的室外管道,按设计要求分别执行第一册《建筑工程》或第五册《给排水、采暖、燃气工程》定额。 三.本定额混凝土子目均不含模板工作内容,另执行第十三章相应定额子目。 四.本定额的模板工程是按钢模与木模综合编制的。 五.本定额中的混凝土、砂浆强度等级是按常用标准列出的,若设计要求与定额不同时允许换算。 补充定额有关规定 一、电力隧(沟)道如采用明挖法施工,按如下规定执行: 1、隧(沟)道净宽度在1600mm以内,执行2001年<北京市建设工程预算定额>第一册(建筑工程)及相关规定; 2、隧(沟)道净宽度在1600mm以外,执行2001年<北京市建设工程预算定额>第八册(市政管道工程)及相关规定. 二、现场经费、企业管理费按市政排水工程的标准执行. 三、采用暗挖法施工的热力隧道工程,应执行本补充定额. 第一章土方工程 说明及工程量计算规则 一.说明 (一)本章包括:人工土方、机械土方、机械运土方等3节共27个子目。 (二)土方工程分机械土方与人工土方两种施工方法。使用中应首先选用机械挖土在机械挖土不能满足施工要求时选用人工挖土。 (三)挖土方定额是按综合土质编制,执行时不得调整。

管道压力降计算

中国石化集团兰州设计院标准 SLDI 233A13-98 中国石化集团兰州设计院

目次 1 单相流(不可压缩流体) (1) 1.1 简述 (1) 1.2 计算方法 (1) 1.3 符号说明 (24) 2 单相流(可压缩流体) (25) 2.1 简述 (25) 2.2 计算方法 (25) 2.3 符号说明 (36) 3 气-液两相流(非闪蒸型) (37) 3.1 简述 (37) 3.2 计算方法 (38) 3.3 符号说明 (48) 4 气-液两相流(闪蒸型) (49) 4.1 简述 (49) 4.2 计算方法 (49) 4.3 符号说明 (57) 5 气-固两相流 (58) 5.1 简述 (58) 5.2 计算方法 (59) 5.3 符号说明 (74) 6 真空系统 (76) 6.1 简述 (76) 6.2 计算方法 (76) 6.3 符号说明 (87) 7 浆液流 (88) 7.1 简述 (88) 7.2 计算方法 (88) 7.3 符号说明 (97)

1 单相流(不可压缩流体) 1.1 简述 1.1.1 本规定适用于牛顿型单相流体在管道中流动压力降的计算.工艺系统专业在化工工艺专业已基本确定各有关主要设备的工作压力的情况下,进行系统的水力计算.根据化工工艺要求计算各主要设备之间的管道(包括管段、阀门、控制阀、流量计及管件等)的压力降,使系统总压力降控制在给定的工作压力范围内,在此基础上确定管道尺寸、设备接管口尺寸、控制阀和流量计的允许压力降,以及安全阀和爆破片的泄放压力等。 1.1.2 流动过程中剪应力与剪变率之比为一常数,并等于其动力粘度的流体称牛顿型流体.凡是气体都是牛顿型流体,除工业上的高分子量液体、胶体、悬浮液、乳浊液外,大部分液体亦属牛顿型流体。 1.2 计算方法 1. 2.1 注意事项 1.2.1.1 安全系数 计算方法中未考虑安全系数,计算时应根据实际情况选用合理的数值。通常,对平均需要使用5~10年的钢管,在摩擦系数中加20%~30%的安全系数,就可以适应其粗糙度条件的变化;超过5~10年,条件往往会保持稳定;但也可能进一步恶化。此系数中未考虑由于流量增加而增加的压力降,因此须再增加10%~20%的安全系数。规定中对摩擦压力降计算结果按1.15倍系数来确定系统的摩擦压力降,但对静压力降和其它压力降不乘系数。 1.2.1.2 计算准确度 在工程计算中,计算结果取小数后两位有效数字为宜。对用当量长度计算压力降的各项计算中,最后结果所取的有效数字仍不超过小数后两位。 1.2.2 管径 1.2.2.1 确定管径的一般原则 a) 应根据设计条件来确定管道直径.当需要时,可增加设计条件下压力降15%~25%的富裕量,但以下情况除外: 1) 有燃料油循环管路系统的排出管尺寸,应考虑一定的循环量; 2) 泵、压缩机和鼓风机的管道,应按工艺最大流量(在设备设计允许的流速下)来确定尺寸,而不能按机器的最大能力来确定管道尺寸; 3) 间断使用的管道(如用于开工的旁路管道)尺寸,应按可能得到的压差来确定。 b) 在允许压力降范围内,应采用经济管径。某些管道中流体允许压力降范围见表1.2.2-1。 c) 某些对管壁有腐蚀及磨蚀的流体,由流速决定管径,其流速见表1.2.2-2。 1.2.2.2 管径计算 计算公式如下: 5.05.0f )( 8.18)( 8.18μρ μ W V d == (1.2.2-1) 式中 d ——管道内直径,mm ; V f ——流体体积流量,m 3/h μ——流体平均流速,m/s; W ——流体质量流量,kg/h ; ρ——流体密度,kg/m 3。 通常可由图1.2.2-1或图1.2.2-2查得管径。

管路阻力计算和水泵选型

2.1水系统管路阻力估算、管路及水泵选择 a)确定管径 一般情况下,按5℃温差来确定水流量(或按主机参数表中的额定水流量),主管道按主机最大能力的总和估算,分支管道按末端名义能力估算。根据能力查下面《能力比摩阻速查估算表》,选定管型。 b)沿程阻力计算 根据公式沿程阻力=比摩阻×管长,即H y=R×L,pa,计算时应选取最不利管路来计算:第一步:采用插值法计算具体的适用比摩阻,比如能力为,范围属于“6<Q≤11”能力段,K r=,进行插值计算。 R=104+()×= pa/m 第二步:根据所需管长计算沿程阻力,假设管长L=28m,则 H y= R×L=×28= pa= kpa c)局部阻力计算 作为估算,一般地,把局部阻力估算为沿程阻力的30-50%,当阀门、弯头、三通等管件较多的时候,取大值。实际计算采用如下公式: Hj=ξ*ρv2/2,ξ---局部阻力系数,ρv2/2---动压 ρv2/2动压查表插值计算,ξ局部阻力系数参考下表取值:

d)水路总阻力计算及水泵选型 水路总阻力包括:所有管道的沿程阻力、阀门、弯头、三通等管件的局部阻力、室外主机的换热器阻力(损失)、室内末端阻力(损失),后面两项与不同的主机型号和末端相关。计算式为: H q=H y+H j+H z+H m+H f H z——室外主机换热器阻力,一般取7m水柱 H m——室内末端阻力 H f——水系统余量,一般取5m水柱; 总阻力计算完成后,就可以根据总阻力选取流量满足要求的情况下能提供不小于总阻力扬程的水泵来匹配水系统。选取水泵时要根据“流量——扬程曲线”来确定,但扬程和流量不能超出所需太大(一般不超过20%),避免导致出现水力失调和运行耗能较高。 水系统的沿程阻力和局部阻力与系统水流量和所采用的管径相关,流量、管径及所使用各种配件的多少决定总阻力,流量取决于主机能力(负荷)及送回水温差,流量确定的情况下,管径越大,总阻力越小,水泵的耗能越小,但管路初投资会增大。 PE-RT地暖管的规格(参考)(红色字的为推荐使用规格、计算基准) ?计算例 现有项目系统图如下:

第三章给水排水管道系统水力计算础

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。 对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。

停泵水锤的计算方法详解

停泵水锤计算及其防护措施 停泵水锤是水锤现象中的一种,是指水泵机组因突然断电或其他原因而造成的开阀状态下突然停车时,在水泵及管路系统中,因流速突然变化而引起的一系列急剧的压力交替升降的水力冲击现象。一般情况下停泵水锤最为严重,其对泵房和管路的安全有极大的威胁,国内有几座水泵房曾发生停泵水锤而导致泵房淹没或管路破裂的重大事故。 停泵水锤值的大小与泵房中水泵和输水管路的具体情况有关。在泵房和输水管路设计时应考虑可能发生的水锤情况,并采取相应的防范措施避免水锤的发生,或将水锤的影响控制在允许范围内。我院在综合国内外关于水锤的最新科研成果并结合多年工程实践的经验,以特征线法为基础开发了水锤计算程序。这一程序可较好地模拟各种工况条件下水泵及输水管路系统的水锤状况,为高扬程长距离输水工程提供设计依据。 1 停泵水锤的计算原理 停泵水锤的计算有多种方法:图解法、数解法和电算法。其基本原理是按照弹性水柱理论,建立水锤过程的运动方程和连续方程,这两个方程是双曲线族偏微分方程。 运动方程式为:

连续方程式为: 式中H ——管中某点的水头 V——管内流速 a——水锤波传播速度 x——管路中某点坐标 g——重力加速度 t——时间 f——管路摩阻系数 D——管径 通过简化求解得到水锤分析计算的最重要的基础方程: H-H0=F(t-x/a)+F(t+x/a) (3) V-V0=g/a×F(t-x/a)-g/a×F(t+x/a) (4) 式中F(t-x/a)——直接波 F(t+x/a)——反射波 在波动学中,直接波和反射波的传播在坐标轴(H,V)中的表现形式为射线,即特征线。它表示管路中某两点处在水锤过程中各自相应时刻的水头H与流速V之间的相互关系。为了方便计算机的计算,将上述方程组变

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

管道设计计算公式(流速规定、泵的选用)

1流速与管径计算公式 水流速度取0.7 m/s,则管径计算值如下: D= 4×Q 3600×π×V = 4×6000 3600×3.14×0.7 =174 mm 空气管道的流速,一般规定为:干、支管为10~15m/s,通向空气扩散装置的竖管、小支管为4~5m/s。 2泵的选型 水管管路的水头损失=沿程水头损失+局部水头损失 沿途水头损失=(λL/d)*V^2/(2g)------------P150(层流、紊流均适用) 局部水头损失=ζ*V^2/(2g) 水管管路的水头损失=沿程水头损失+局部水头损失=(λL/d+ζ)*V^2/(2g) 式中:λ—管道沿途阻力系数;L—管道长度;ζ——局部阻力系数,有多个局部阻力系数,则要相加;d—管道内径, g—重力加速度,V—管内断面平均流速。沿途阻力系数λ和局部阻力系数ζ都可查水力学手册。 λ=64/Re 仅适用于圆管层流。对于紊流,由于运动的复杂性,其规律主要由试验确定,但可在理论上给以某些阐述。P171

沿程水头损失 (1)层流区Re<2320(即lgRe<3.36)λ=64/Re (2)层流转变为紊流过渡区2320<Re<4000(即3.36<lgRe<3.6),试验点散乱,流动情况比较复杂且范围不大,一般不作详细分析。 (3)紊流区Re>4000(即lgRe>3.6)分为紊流光滑区、紊流过渡区、紊流粗糙区。 ①紊流光滑区:不同相对粗糙度△/d试验点均落在直线cd上,说明λ与△/d无关。和层流情况相类似,λ值也仅仅与Re有关。可表示为λ=(Re),但与层流区所遵循的函数关系不同。

②紊流粗糙区:分界线ef右方,λ与Re无关,仅与△/d有关,可表示为λ=(△/d) ③紊流过度粗糙区λ=(△/d,Re)

长输管道基础知识

输油管道工程设计规范》 ( GB50253-2003) 1.输油管道工程设计计算输油量时,年工作天数应按350 天计算。 2.应在紊流状态下进行多品种成品油的顺序输送。 3.当顺序输送高粘度成品油时宜使用隔离装置。 4.埋地输油管道与其他用途的管道同沟敷设,并采用联合阴极保护的管道之间的 距离,最小净距为0.5 米。 5.管道与光缆同沟敷设时,其最小净距不应小于0.3 米。 6.当输油管道需改变平面走向适应地形变化时,可采用弹性弯曲、冷弯管、热煨 弯头。在平面转角较小或地形起伏不大的情况下,首先应采用弹性弯曲。采用热煨弯管时,其曲率半径不宜小于 5 倍管子外径,且应满足清管器或检测器顺利同过的要求。 7.输油管的平面和竖向同时发生转角时,不宜采用弹性弯曲。 8.一般情况下管顶的覆土层厚度不应小于0.8 米。 9.管道敷设采用套管时,输油管与套管之间应采用绝缘支撑。套管端部应采用防 水、绝缘、耐用的材料密封。绝缘支撑间距根据管径大小而定,一般不宜小于 2 米。 10.输油管道沿线应安装截断阀,阀门间距不应超过32 千米。人烟稀少地区可加大间距。 11.当输油管道的设计温度同安装温度之差较大时,宜在管道出土端、弯头、管径 改变处及管道和清管器收发装置连接处,根据计算设置锚固设施,或采取其他稳管措施。 12.输油管道沿线应设置里程桩、转角桩、阴极保护测试桩和警示牌等永久性标志。 13.里程桩应设置在油流方向的左侧,沿管道从起点至终点,每隔1kw 设置1个, 不得间断。阴极保护测试桩可同里程桩结合设置。 14.在管道改变方向处应设置水平转角桩。转角桩应设置在管道中心线的转角处左侧

水锤计算例题9-2

天津大学,水电站249页水锤压力例题9-2 某水电站压力管道长L=400m ,直接自水库引水,上下游水头差120m ,水击波速度a=1000m/s 。阀门全部开启(τ0=1)时,管道流速Vmax=4.5m/s 。(1)设阀门在0.5s 中全部关闭,求阀门断面最大水击压力。(2)设阀门按线性规律关闭,有效关闭时间Ts=4.8s 。①若阀门由全开到全关,求阀门断面最大水击压力。②若阀门由部分开启(τ0)到全关,求阀门断面最大水击压力。 解: 1判断水击类型 计算相长, s a L t r 8.01000 40022=?== (1)阀门在0.5s 中全部关闭, a L t 2<,发生直接水锤,)(4595.48 .910000m v g a H =?==? (2)阀门按线性规律关闭 ①有效关闭时间Ts=4.8s ,阀门由全开到全关,a L t 2> =0.8s ,发生间接水锤。 ②若阀门由部分开启(τ0=0.5)到全关,Ts=4.8s ×0.5=2.4(s ),a L t 2>=0.8s ,发生间接水锤。 2计算管道特性常数ρ、σ 91.1120 8.925.4100020max =???==gH av ρ 32.08.48.95.44000max =??== s T gH Lv σ 3判断何种间接水锤、计算水锤压力值 ①有效关闭时间Ts=4.8s ,阀门由全开到全关,ρτ0=1.91×1=1.91>1,为极限水锤。 采用表9-1中简化公式 38.032 .0232.0222=-?=-=σσξA m ; )(6.4512038.00m H H A m =?==?ξ ②若阀门由部分开启(τ0=0.5)到全关,Ts=4.8s ×0.5=2.4(s ) ρτ0=1.91×0.5=0.96<1,按照第一相水锤近似公式 32.05.091.1132.021201-?+?=-+=σ ρτσ ξA =0.39 )(8.4612039.001m H H A =?==?ξ

管道工程施工图预算工程量计算技巧

管道工程施工图预算工程量计算技巧 随着我国改革开放的深入,社会主义市场经济不断发育成熟,建筑工程造价管理体制也正由传统计划经济模式下的定额管理转向市场经济体制下的管理,而工程量的计算则成为建筑工程造价管理的重要组成部分。工程预算由两个方面组成,一是预算定额中各个工程量子目的预算单价;再就是该项工程子目的工程量。而工程量的计算则是工程预算工作的基础和重要组成部分。 1 计算顺序 确定工程量计算顺序,在划分分项工程项目的基础上,统筹考虑的原则是:先易后难。对后序工程量计算能提供依据的数据及辅助数据应一并预先算出,减少图纸翻阅次数,防止重复计算和漏算,提高计算准确性和速度。因此,确定管道工程施工图预算的自然或物理计量单位的工程量计算顺序显得尤为重要。 (1)自然计量单位的工程量计算顺序 自然计量单位的工程量计算顺序见表1: 表1自然计量单位计算顺序 按上述计算顺序计算自然计量单位的工程量,可进一步熟悉或更好地掌握具体单位工程的设计意图及系统构造,为后序和物理计量单位的工程量快速计算奠定基础。例如,采暖工程计算以"片"为单位的散热器工程量时,应分别统计总片数和总组数及布置相同、建筑开间尺寸相等的标准与非标准的立管根数,除了为计算立支管阀门和手动放风阀数量及散热器除锈刷油工程量提供依据外,又为列式快速计算立支管工程量提供了基础数据,此数据又可服务于施工预算及施工管理工作。即一次算出,多次利用,达到事牛功倍、快速计算之目的。 对于管道间或管廊内的阀门、法兰还应按规格及.数量分别加以标注"其中"字样,以便套用预算单价时执行人工费调整系数。 (2)物理计量单位的计算顺序 物理计量单位的计算顺序见表2。 表2物理计量单位计算顺序

水泵、管道及喷嘴选型计算公式

一、 喷嘴选型 根据要求查雾的池内样本,选10个除磷喷嘴3/8 TDSS 40027kv-lcv(15°R)。 参数:喷角区分40°,额定压力5MPa ,喷量27.7L/min ,喷嘴右倾15°。 二、水泵选型计算 1、水泵必须的排水能力 Q B =20 16.2242024max ?=Q = 19.44 m 3/h 其中,系统需要最大流量16.2)601027.7(10-3max =???=Q m 3/h 2、水泵扬程估算 H=K (H P +H X )= 1.3 ?(178+2)=234 m 其中:H P :排水高度,160+18=178m ;(16mPa ,扬程取160m ) H X :吸水高度,2m ; K :管路损失系数,竖井K=1.1—1.5,斜井?<20°时K=1.3~1.35,?=20°~30°时6K=1.25~1.3,?>30°时K=1.2~1.25,这里取1.3。 查南方泵业样本,故选轻型立式多级离心泵CDL42-120-2,扬程238m ,流量42 m 3/h ,功率45kW ,转速2900r/min 。 三、管路选择计算 1、管径:泵出水管道86.2290042'900'=?== ππV Q d n mm 泵进水管道121.91 90042'900'=?== ππV Q d n mm 其中: Qn :水泵额定流量; 'V 经济流速m/s ;'Vp =1.5~2.2m/s ;='Vx 0.8~1.5m/s ;'dx ='dp +0.025 m ,这里泵进水管流速为1m/s ,泵出水管流速为1.5m/s 。 查液压手册,选泵出水管道内径89mm ,泵进水管道内径133mm 2、管壁厚计算 泵进水口

管径选择与管道压力降计算(一)1~60

管径选择与管道压力降计算 第一部分管径选择 1.应用范围和说明 1.0.1本规定适用于化工生产装置中的工艺和公用物料管道,不包括储运系统的长距离输送管道、非牛顿型流体及固体粒子气流输送管道。 1.0.2对于给定的流量,管径的大小与管道系统的一次投资费(材料和安装)、操作费(动力消耗和维修)和折旧费等项有密切的关系,应根据这些费用作出经济比较,以选择适当的管径,此外还应考虑安全流速及其它条件的限制。本规定介绍推荐的方法和数据是以经验值,即采用预定流速或预定管道压力降值(设定压力降控制值)来选择管径,可用于工程设计中的估算。 1.0.3当按预定介质流速来确定管径时,采用下式以初选管径: d=18.81W0.5 u-0.5ρ-0.5(1.0.3—1) 或d=18.81V00.5 u-0.5(1.0.3—2) 式中 d——管道的内径,mm; W——管内介质的质量流量,kg/h; V0——管内介质的体积流量,m3/h; ρ——介质在工作条件下的密度,kg/m3; u——介质在管内的平均流速,m/s。 预定介质流速的推荐值见表2.0.1。 1.0.4当按每100m计算管长的压力降控制值(⊿Pf100)来选择管径时,采用下式以初定管径: d=18.16W0.38ρ-0.207 μ0.033⊿P f100–0.207(1.0.4—1) 或d=18.16V00.38ρ0.173 μ0.033⊿P f100–0.207(1.0.4—2) 式中 μ——介质的动力粘度,Pa·s; ⊿P f100——100m计算管长的压力降控制值,kPa。 推荐的⊿P f100值见表2.0.2。 1.0.5本规定除注明外,压力均为绝对压力。

水锤计算方法

第一节概述 一、水电站的不稳定工况 机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。 在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为: (1) 引起机组转速的较大变化 由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。反之增加负荷时机组转速降低。 (2) 在有压引水管道中发生“水锤”现象 当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。 (3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。无压引水系统中产生的水位波动计算在第八章已介绍。 二、调节保证计算的任务 水锤压力和机组转速变化的计算,一般称为调节保证计算。调节保证计算的任务及目的是: (1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。 (2) 计算丢弃负荷和增加负荷时的机组转速变化率,并检验其是否在允许范围内。 (3) 选择水轮机调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

管道设计计算公式(流速规定、泵的选用)Word版

1 流速与管径计算公式 水流速度取0.7 m/s,则管径计算值如下: D=√4×Q 3600×π×V =√ 4×6000 3600×3.14×0.7 =174 mm 空气管道的流速,一般规定为:干、支管为10~15m/s,通向空气扩散装置的竖管、小支管为4~5m/s。 2 泵的选型 水管管路的水头损失=沿程水头损失+局部水头损失 沿途水头损失=(λL/d)*V^2/(2g)------------P150(层流、紊流均适用) 局部水头损失=ζ*V^2/(2g) 水管管路的水头损失=沿程水头损失+局部水头损失=(λL/d+ζ)*V^2/(2g) 式中:λ—管道沿途阻力系数;L—管道长度;ζ——局部阻力系数,有多个局部阻力系数,则要相加;d—管道内径, g—重力加速度,V—管内断面平均流速。沿途阻力系数λ和局部阻力系数ζ都可查水力学手册。 λ=64/Re 仅适用于圆管层流。对于紊流,由于运动的复杂性,其规律主要由试验确定,但可在理论上给以某些阐述。P171

沿程水头损失 (1)层流区 Re<2320(即lgRe<3.36)λ=64/Re (2)层流转变为紊流过渡区 2320<Re<4000(即3.36<lgRe<3.6),试验点散乱,流动情况比较复杂且范围不大,一般不作详细分析。 (3)紊流区 Re>4000(即lgRe>3.6)分为紊流光滑区、紊流过渡区、紊流粗糙区。 ①紊流光滑区:不同相对粗糙度△/d试验点均落在直线cd上,说明λ与△/d无关。和层流情况相类似,λ值也仅仅与Re有关。可表示为λ=(Re),但与层流区所遵循的函数

关系不同。 ②紊流粗糙区:分界线ef右方,λ与Re无关,仅与△/d有关,可表示为λ=(△/d) ③紊流过度粗糙区λ=(△/d,Re)

水锤计算

第九章水电站的水锤与调节保证计算 第一节概述 一、水电站的不稳定工况 机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。 在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为: (1) 引起机组转速的较大变化 由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。反之增加负荷时机组转速降低。 (2) 在有压引水管道中发生“水锤”现象 当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。 (3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。无压引水系统中产生的水位波动计算在第八章已介绍。 二、调节保证计算的任务 水锤压力和机组转速变化的计算,一般称为调节保证计算。调节保证计算的任务及目的是: (1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

管道管径的计算 管内流速的选择

关于平台工艺管路设计(三) 本节主题:1.管道管径的计算 2. 管内流速的选择 1.概述 管径的计算在很多资料中都有叙述,一般过程是这样的:首先根据工艺条件明确:管内介质和流量,选择合适的介质流速,然后就可以计算管径了。管径计算公式很简单,其核心问题是正确选择管内流速以及压降的计算,还有管径选择的经济性分析。本节我们只介绍管径的计算和流速的选择,对于管道摩阻将专题做介绍。本节的目标是能够根据项目的不同需求选择合理的管径。 2.管道管径的计算 计算公式:d=式2.1 其中:d——管子内径m; Q——流量m3/s; V——流速m/s; 根据式2.1,只要确定其中的两个参数,就能推导出第三个变量。 3.管内流速的选择 流速的选择要考虑管材质、流体性质、系统使用寿命、使用频率。对于海洋平台上的管路流速,管子流速一般在1~5m/s 之间,如果流速小于1m/s, 液体中的砂或其他固体可能沉积下来。若大于5m/s, 会对一些部位如控制阀,管件等产生喷射冲刷。在此流速范围内,一般摩阻很小。 下面分为液、气、油气混输三种情况介绍: 3.1液体 (1)对于铜镍合金管推荐流速 ≤2” 1.6m/s 4” <2.2m/s 6” <2.5m/s ≥8” <3.0m/s (2)碳钢管内液体推荐流速和压降

3.2 气体 可参见下图选择 3.3油气混输 油气两相流在管内的流动特点不同于单相流,其情况较为复杂。具有流体流态不稳定、流型变化多、管路中常有气液滑脱和积液现象等特点。 一般油气混输管路管内流速介于最小流速和冲蚀流速之间。 (1)最小流速 如果可能,气液两相流管路中的最小流速应该是大约3m/s,这样可以减少分离设备中的段塞流,这样对于有标高变化的长管路尤其重要。 (2)冲蚀流速 当超过冲蚀速度时,由于流体对管壁的撞击而产生冲蚀,其结果是对弯头和三通等会造成损害。由于流体中含砂等固体,是冲蚀问题变得更加复杂。 为了减少流体的冲蚀作用,就要限定流体在管内的流速,依照API RP14E标准,用下面经验公式可计算气液两相流的冲蚀流速: )-0.5 式3.1 Vc=C(ρ m 其中:Vc ——冲蚀流速m/s; C ——经验常数152(用于间断作业);122(由于连续作业) ρm ——在操作情况下气液混合物密度kg/m3; 注意:如果流体中有固体(砂),则流速应该相应减少。 (本节结束,未完待续)整理日期:August 16,2002 Changshilong

简单管水锤计算及演示程序说明-程永光

简单管水击计算及演示程序说明 (武汉水利电力大学水电站教研室,武汉430072) 1 程序名称及使用方法 1.1 程序名称 执行程序Singlep.exe,原代码文件Singlep.dpr和Single.pas。 1.2 使用方法 该程序是用面向对象编程环境Delphi 4.0编制而成的,可直接在Windows环境下运行。使用界面见图1和图2。 程序使用方法:程序启动后,自动进入图1中,首先填入“水库-管道-阀门”系统的原始参数;之后用鼠标单击数据确定接受数据;然后单击进行计算获得结果;接着可击“波动过程”页标进入图2;单击开始演示观察压力变化和传播过程;得到压力极值和压力分布过程。单击打印屏幕可将屏幕上的内容打印出来,单击打印曲线可将阀端压力变化过程线、最大最小压力沿程分布线打印出来。 图1 参数输入界面

图2 结果输出和参数变化过程显示界面 2 程序功能 能对“水库-管道-阀门”这样的简单引水系统的水力过渡过程进行计算和演示。计算功能可满足初步设计要求。演示功能,作为辅助教学手段,可加深学生对水击物理实质的理解。该程序能配合教材,对下列内容进行分析和演示教学: ①水击波的传播和反射; ②直接水击和间接水击; ③一相水击和末相水击; ④起始开度对水击的影响; ⑤开度变化规律对水击压力的影响; ⑥阀门启闭终了后的水击现象。 3 数学模型及参数说明 3.1 数学模型 采用特征线法。特征方程和特征线方程为 C g a dH dt dV dt f V V D dx dt a C g a dH dt dV dt f V V D dx dt a + - ++==+?? ? ????- ++==-?? ?????: : 2020 在特征线上将特征方程积分并整理有 C H C B Q C H C B Q P P P P P M M P + - =-=+:: 由这两式可解出未知量H p 和Q P 。式中

管道通过能力的实用计算公式及其选择

天然气由气田或气体处理厂进入输气干线,其流量和压力是稳定的。在有压缩机站的长输管道两站间的管段,起点与终点的流量是相同的,压力也是稳定的,即属于稳定流动。长输管道的末段,有时由于城镇用气量的不均衡,要承担城镇日用气量的调峰,则长输管道末段在既输气又储气、供气的条件下,它的起点和终点压力,以及终点流量二十四小时都是不同的,属不稳定流动(流动随时间而变)。天然气的温度在进入输气管时,一般高于(也可能低于)管道埋深处的土壤温度。并且随着起点到终点的压力降,存在焦耳-汤姆逊节流效应产生温降,但由于管道与周围土壤的热传导,随着天然气在管道的输送过程,天然气的温度会缓慢地与输气管道深处的地层温度逐渐平衡。所以天然气在输气干管中流动状态,也不完全是等温过程,为便于理解,我们先给出稳定流动下的水力计算基本公式,再介绍沿线温度分布规律和平均温度。 计算公式随地形条件差异而不同。 在平坦地带,由于气体密度低,对于输气管道任意两点间的相对高差小于200 m的管道,可视为水平输气管段。在稳定输送状态下,管道输送量与管道起、终点压力的函数关系如下: 式中Q——管道标准状态下的体积流量,m3/s; C——常数,按此处所取各参数单位时,C值为··s/kg; p1——计算管段起点压力,Pa; p2——计算管段终点压力,Pa; λ——水力摩阻系数; d——管道内直径,m; L——管道计算段长度,m; △*——天然气相对密度; T——管道中天然气平均温度,K; Z——管输平均压力与平均温度下天然气压缩系数。 在地形起伏较大地带,当输气管道沿线任意两点高差大于200m,位差对输气管道流量的影响就不能忽略不计了。在稳定输送状态下,非水平输气管段的基本流量公式为:

(完整版)管道阻力的基本计算方法

管道阻力计算 空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算: ρ λ 242 v R R s m ?= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ; υ——风管内空气的平均流速,m /s ; ρ——空气的密度,kg /m 3; λ——摩擦阻力系数; Rs ——风管的水力半径,m 。 对圆形风管: 4D R s = (5—4) 式中 D ——风管直径,m 。 对矩形风管 )(2b a ab R s += (5—5) 式中 a ,b ——矩形风管的边长,m 。 因此,圆形风管的单位长度摩擦阻力 ρ λ 22 v D R m ?= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下: ) Re 51 .27.3lg( 21 λλ +-=D K (5—7) 式中 K ——风管内壁粗糙度,mm ; Re ——雷诺数。 υvd = Re (5—8) 式中 υ——风管内空气流速,m /s ; d ——风管内径,m ; ν——运动黏度,m 2/s 。 在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。图5—2是计算圆形钢板风管的线解图。它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

管道荷载计算方法

管道荷载计算方法 注意 (1)此设计规定应按照以下说明: 管道设计工作应按照规定执行。 (2)此规定指出工程设计专业必须为管道设计的需要来执行。 在规定基础上管道设计者可以作适当的修改。 2.荷载和外力的设计 2.1通则 当设计下列结构时,应考虑荷载。 各种荷载的联合作用在计算中的应用见2.14条。 2.2结构本体 应计算结构本体和防火材料的重量。 2.3动设备 对于泵、压缩机、马达等设备重量,要尽可能快地从制造商处获取相关数据,其中应包括控制、辅助设备、配管等重量。在对设备直接设在支架上的情况进行计算时,应尽可能快地提交相关动力影响因素。 2.4起重机荷载 起重机的荷重应根据制造商的数据来确定。 2.5容器、塔等 除容器和塔外,还包括过滤器、沉降槽、换热器、冷凝器及其配管。 根据该类设备各种荷载的综合情况,在计算中应包括以下重量/荷载。 (1)空重 这是容器、塔等的静止重量,包括衬里材料、保温、防火、阀门等,应根据制造商提供的数据推导出来。 (2)操作重 操作重是容器、塔等的空重,几在该单元操作过程中最大容量的重量之和。 (3)水压实验荷载 在现场需要对设备进行水压实验时,设计支架结构时应考虑该设备完全充满水的重量。当一个支撑支一台以上的容器时,该支撑应根据以下基础进行设计:在同一时刻,一台容器进行水压实验,而其他容器为空设备或仍处于操作状态中。 2.6活动荷载 (1)活动荷载应根据以下平台或通道的用途分为几个等级 (a)A级 主要用作人行通道,除了人可搬动的物品外,没有其他东西。例如台阶、楼梯平台、管架上人行道、仪表监测平台及阀门操作平台。 (b)B级 用于较轻的阀门、换热器、法兰、类似部件的检修工作,放置拆卸这些部件的工具,若在梁或桁架上放置重物须加小心。 (c)C级 承受特殊荷载。要根据特殊需要进行设计。 (2)活动荷载见表1

相关文档
最新文档