复杂管道水锤计算

复杂管道水锤计算
在实际工程中,常见的是复杂管路系统,共有三种类型 (1)串联管:管壁厚度、直径和材料随水头增加自上而下逐 段改变。 (2)分岔管: 这在分组供水和联合供水中经常遇到。 (3)蜗壳和尾水管: 装有反击式水轮机的管道系统,应考 虑蜗壳和尾水管的影响,而且其过流特性与孔口出流不 一样,流量不仅与作用水头有关,而且与水轮机的机型 和转速有关。

一、串联管水锤的简化计算
等价水管法: 把串联管转化为等价的简单管来计算 等价原则: 管长、相长、管中水体动能与原管相同

设一根串联管的管道特性为:
L1,V1,c1; L2,V2,c2; …… ;Ln,Vn,cn
(1) (2) 等价管的总长为:
L=
∑L
i =1
n
i
根据管中水体动能不变的要求:
LVm=L1V1+L2V2+……+LnVn=∑LiVi , + + ∑
由此可得加权平均流速:
Vm =
(3)
∑ LV
i =1
n
i i
L
根据相长不变的要求,水锤波按平均波速由断面A传到断面B所需的时
间等于水锤波在各段传播时间的总和, 即
L L1 L2 Ln Li = + + LL + =∑ cm c1 c2 cn i =1 ci
n
cm =
L

n
i =1
Li ci

对于间接水锤,管道的平均特性常数为
a mVm ρm = 2gH 0 g
LVm σ m= gH 0Ts
2L tr = am
求出管道平均特性常数后,可按简单管的间接水锤计 算公式求出复杂管道的间接水锤值。

二、分岔管的水锤压力计算
分岔管的水锤计算方法之一是截肢法。 特点:当机组同时关闭时,选取总长为最大的一根支管, 将其余的支管截掉,变成串联管道,然后用各管段中实际流 量求出各管段的流速,再用加权平均的方法求出串联管中的 平均流速和平均波速,最后采用串联管的简化公式相应地求 出水击值。

三、蜗壳、尾水管水锤压力计算
(1) 首先将蜗壳视作压力水管的延续部分,并假想把导叶移 至蜗壳的末端,尾水管也作为压力管道的一部分,把压力管 道、蜗壳和尾水管组合视为一串联管,再将该串联管简化 为等价简单管进行计算。 设压力水管、蜗壳及尾水管长度、平均流速和水锤波速分别 为LT、VT、cT;Lc、Vc、cc;Lb 、Vb、cb,

L=LT+Lc+ Lb
Vc + Lb Vb)/L
Vm=( LT VT +Lc
LT Lc Lb a m = L /( + + ) aT a c a b

(2) 以管道、蜗壳、尾水管三部分水体动能为权,将水击锤力 值
ξ 进行分配,求出压力管道、蜗壳末端和尾水管进口的
LTVT = ξ ( LT + Lc + Lb )Vm
水锤压力。 压力水管末端最大压力上升相对值为: ξ 蜗壳末端最大水锤压力上升相对值:
T
LT VT + LcVc ξc = ξ ( LT + Lc + Lb )Vm LbVb yb = ξ (LT + Lc + Lb )Vm
尾水管进口处压力下降相对值为:
注:尾水管在导叶或阀门之后,水击现象与压力管道相反。

(3) 求出尾水管的负水锤后,应校核尾水管进口处的真空 度Hr,以防水流中断。
Vb2 H r = H s + yb H 0 + < 8 ~ 9m 2g
式中
Hs — 水轮机的吸出高度; Vb — 尾水管进口断面在出现yb时的流速。
注:对于中高水头水电站:压力管道较长,蜗壳和尾水 管的影响较小,通常可略去不计。 对于低水头水电站:必须考虑蜗壳和尾水管的 影响 ,而尾水管的影响往往较蜗壳更为显著。

第六节
机组转速变化计算
水轮机调节机构开始关闭导叶,水轮机的引用流量逐渐减小, 机组出力逐渐下降,同时在引水系统产生水锤压力。当关闭到空 转开度时,出力变为零,导叶关闭过程中所产生的能量,完全被 机组转动部分所消耗,造成机组转速的升高。 在机组调节过程中,转速变化通常以相对值表示,称为转速变 化率β。
丢弃负荷: 增加负荷:
n max ? n0 β= n0 n 0 ? n min β = n0

一、机组转速变化率计算近似公式
(一) 列宁格勒金属工厂公式
丢弃负荷时:
365 N 0Ts1 f β = 1+ ?1 2 2 n0 GD
365 N 0Ts1 f β = 1? 1? 2 n0 GD 2
增加负荷时

(二)《长江流域规划办公室》公式
列宁格勒工厂公式未考虑迟滞时间,我国“长办”提 出修正公式。当水电站突丢负荷后,由于调速系统惯性 的影响,导叶经过一小段迟滞时间Tc以后才开始关闭动 作,机组转速经历Tc和升速时间Tn。(Tn定义为水轮机出 力自N0降到零时的历时)后达到最大值nmax。
365 N 0 β = 1+ 2 ( 2Tc + Tn f ) ? 1 2 n 0 .GD

第七节
调节保证计算标准和改善调 节保证的措施
一、调节保证计算标准和计算条件
所谓调节保证计算标准,是指水锤压力和转速变 化在技术经济上合理的允许值。 这种标准在技术规范中有所规定,但这是在一定时 期和一定技术水平和经济条件下制定的,应用时应结 合具体情况加以确定。

(一) 水锤压力的计算标准
1.压力升高 水锤压力的最大升高值相对值:ξmax=(Hmax-H0)/H0 当H0>100m时, ξmax=0.15~0.30 当H0=40~100m时,ξmax=0.30~0.50 当H0<40m时, 2.压力降低 在压力引水系统的任何位置均不允许产生负压,且 应有2~3m水柱高的余压,以保证管道尤其是钢管的稳 定和防止水柱分离。尾水管进口的允许最大真空度为 8m水柱高。
ξmax=0 50~0 70 max=0.50 0.70

(二) 转速变化的计算标准
限制机组转速过大的变化主要是为了保证机组正常运行和 供电的质量。在丢弃全负荷的情况下,主要是防止机组强度 破坏、振动和由于过速引起过电压而造成发电机电气绝缘的 损坏。 最大转速变化值相对值βmax=(nmax-n0)/n0表示。考虑到目 前国内机组的设计、制造、运行等情况,其允许值βmax可按 以下情况考虑: 1.当机组容量占电力系统总容量的比重较大,且担负调频 任 务时, βmax宜小于45%; 2.当机组容量占电力系统总容量的比重不大或担负基荷时 , βmax宜小于 %;对斗叶式水轮机, βmax宜小于 %。 宜小于55%;对斗叶式水轮机, 宜小于30%。 注:当大于上述值时,应有所论证。

(三) 调节保证的计算条件
1.水锤压强计算条件 管道中的最大内水压强一般控制在以下两种工况: (1) 上游最高水位时电站丢弃负荷。 此时电站流量和水锤压强都不是最大值,但由于管道 中的静水压较高,叠加的结果可能成为控制工况。 (2) 设计水头下电站丢弃负荷。 管道中的静水压较低,但电站的流量和水锤压力较大 ,叠加的结果也可能成为控制工况。

管道中的最小内水压强一般控制在以下两种工况
(1) 上游最低水位时电站丢弃负荷。 导叶关闭后的正水锤经水库和导叶反射而成的负水锤; (2)上游最低水位时,电站最后一台机组投入运行。
2.转速上升率的控制工况
设计水头+水电站丢弃全负荷。

二、减小水锤压强的措施
(一) 缩短压力管道的长度 缩短压力管道长度,使从进水口反射回来的水 锤波能够较早地回到压力管道末端,从而减小 水锤值。 从管道特性系数σ=LVmax/gH0Ts中可看出,减 小L可以减小 σ ,在较长的引水系统中,设置 调压室,是缩短压力管道的常用措施。

二、减小水锤压强的措施
(二) 减小压力管道中的流速
减小流速可减小压力管道中单位水体的动量,从而减 小水击压力。但是水电站在运行中要求流量是一定的 ,要减低流速势必要加大管径,增加管道造价。因此 用加大管径办法降低水击压强,往往是不经济的,但 在一定条件下,如果适当加大管径后便可不设调压室 ,还是比较合理的。

二、减小水锤压强的措施
(三) 延长有效的关闭时间 延长有效的关闭时间Ts,可降低水锤压力,但 使机组转速变化率β值增加,甚至超过允许值 ,要解决这个矛盾,可采取以下措施: 1.反击式水轮机设置减压阀(空放阀): 在蜗壳的进口附近装设减压阀。 注:减压阀在机组增加负荷时不起作用

减压阀装置示意图 减 阀装 意图

第四节 水锤计算的特征线法

第四节水锤计算的特征线法 前面介绍了水锤计算的解析法。解析法的优点是应用简便,但难以求解较为复杂锤问题。水锤计算的特征线法原则上可以解决任何形式的边界条件问题,可以较合理应水轮机的特性,能较方便地计人摩阻的影响,也便于用数字计算机计算。 特征线法有两种,一种以ζ-v(或H-V)为坐标场,一种以x-t为坐标场,两法的结果是一致的。 图14-12 简单管示意图 一、以ζ-v为坐标场的特征线法 图14-12表示一特性沿管长不变的水管,P为管中任意一点,距A点和B点的距离分为和。根据基本方程式(14-5)和式(14-6)可导出求解P、B、A三点水锤压强时征线方程。 (一)任意断面P的水锤求解 根据基本方程式(14-5)和式(15一6),P点在时刻t的压强和流速变化为 式中上标“P”表示地点,下标“t”表示时间,例如,表示P点在时刻t的水头,余类推。对于某一确定的断面P,为一常数,为便于书写,在波函数F和f中略去了。 对于A点,在时刻可写出下列相似的方程 因F是由A向P传播的反向波,故。由于水管特性不变,。考虑以上关系,将式(a)和式(b)两组方程相减,得 以上二式消去f,并将ζ=△H/Ho、v=V/Vmax和ρ=cVmax/2gHo。 对于B点,在时刻可以写出与式(b)相似的方程

因f是由B向P传播的正向波,故,将式(c)与(a)两组方程相减,以上法处理,得 从形式上看,式(14-35)是反x向写出的,称之为反向方程,在ζ-v坐标场上是一根斜率为2ρ的直 线,如图14-13中的线;式(9-36)是顺x向写出的方程,成为正向方程,在ζ-v坐标场上是一根斜率为-2ρ的直线,如图14-13中的线。 图14-13 ζ-v坐标场上得特征线 在式(14-35)和式(14-36)中,如已知A点在时刻和B点在时刻的压强和流速 ,即可求出P点在时刻t的压强和流速。和为图14-13中Pt的坐标值,可用 和两条直线的交点求出。用特征线法求解压强和流速的方法就是过去广为采用的水锤计算的图解法。 (二)进口B点的水锤求解 已知P点在时刻t的压强和流速,列出PB间反向方程 压力水管进口为水库或平水建筑物,,故由上式可确定未知量。 (三)管末A点的水锤求解 已知P点在时刻t的压强和流速,列出PA间的正向方程

第九章-水电站的水锤及调节保证计算

第九章水电站的水锤及调节保证计算 本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。 第一节概述 一、水电站的不稳定工况 由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为: (1) 引起机组转速的较大变化 丢弃负荷:剩余能量→机组转动部分动能→机组转速升高 增加负荷:与丢弃负荷相反。 (2) 在有压引水管道中发生“水锤”现象 管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。 导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。 导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。 (3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。 二、调节保证计算的任务 (一) 水锤的危害 (1) 压强升高过大→水管强度不够而破裂; (2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动; (3) 压强波动→机组运行稳定性和供电质量下降。 (二) 调节保证计算 水锤和机组转速变化的计算,一般称为调节保证计算。 1.调节保证计算的任务: (1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据; (2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。 (3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。 (4) 研究减小水锤压强及机组转速变化的措施。

冷热水管道中的水锤现象

冷热水系统中的水锤现象 意大利卡莱菲公司北京办事处舒雪松 冷热水管道中的水锤现象指管道中的水流在极短的时间内迅速地停止或加速,因此所造成的有力的冲击。比如说,在迅速关闭水龙头,或水泵起停时,经常听到‘嘭’一声短暂的闷响。这就是典型的‘水锤现象’。这种冲击的能量来自于管道内水流速度突然的改变。 ‘水锤’这一名词来源于古代的一种兵器‘攻城槌’,它运用于攻克城墙或城门,它造成的冲击力与水锤现象类似。 图1 ‘攻城槌’由一个长木棒制成,在木棒的顶端有一个铁锤,它能产生的冲击力大小取决于操作武器的士兵的力量。(见图1) 而水锤力量的大小却由很多因素决定。 管道中静止的水只具有‘潜能’,即由它的定额所决定的能量。当定额降低并接近海平面时,其潜能减弱并消失。如果假定海平面为‘0’,高于海平面的海拔高度‘z’,物体质量为m,那么它所具备的能量为mgz:其中‘g’为重力加速度(9.81m/s2)。 如果管道中的水以一定的速度‘v’流动,在潜能上又加入了动能,约为1/2 mv2。这种运行的能量来源于mv, 它代表了水的运动量,即组成水的每一滴水的运动量总和。 就如前面提到的一样,当猛然关闭阀门或水泵时,水的流速突然变为零(v=0),其动能也消失(1/2 mv2=0)同样它的运动量也消失(mv=0)。

但是,水所具备的能量不可能就这样瞬间溶解,它改变为‘压力波’,以声速在管道内传送。这就是‘水锤现象’。它所产生的高压能超过100bar ,而其延续的时间也就仅百分之几秒。由于其速度如此快捷,管道上的压力表根本无法显示出管道系统内这种瞬间弹性的压力波动。 理论上说,水不能被压缩,但为了更好地解释高压的产生,我们必须承认水是能被压缩的,如同气体一样。根据Hoorce 定律,如果将1立方米水压缩1bar ,它体积将减少 50cm 3。当关闭一段管道末端的阀门时(如图2所示)。与阀门接触的水受到压缩,通俗地说, 水‘缩短’了。因此它的部分动能改变为压力能量。这时,其压力由P 变为P+△P ,△P 即是超出的压力。压力波沿着管道相反的方向传送到管道的起点,如水箱。在这儿,水箱的水受到膨胀。如果管道长度L (m )为阀门上游管道长度,c 为运动速度(m/s )(紊流传送的速度)。压力波到达管道起点的时间t=L/c (s)。这种情况下,管道内的水流是静止的(v=0)而且是被压缩的。 我们假设管道的起点为一个水箱的入口处,当压力波到达这个假定的入口处截面时,在入口处的水箱一端压力为Px+△P 。一部分可以忽略不计的水从管道回到水箱,这样一来,在水箱至阀门之间产生了负压一△P 。这个负压经过同样的L/c 的时间到达阀门。因此从关闭阀门到负压回到阀门共用时间tc=2 L/c ,称为‘持续时间’。 但是在阀门这儿又出现了一△P 的不平衡,此负压向上游方向延伸。因此在水箱与阀门之间又产生了压力波。这个时间段为3 L/C 。所有这些往返的压力波都在约百分之几秒内完成,如同前面讲到的一样。 如何界定关闭阀门的方式是否会造成水锤呢?我们将关闭的方式分为‘猛烈’式和‘平缓式’。通常说来, ‘猛烈关闭’的方式会带来水锤使压力升高。 当关闭的时间tc<2 L/c 时,这属于‘猛烈’关闭,当tc>2 L/c 时属于‘平缓’关闭。如果是猛烈关闭,超压(或负压)的最高值并不是出现在整个管道长度L (即水箱至阀门关闭处),而是出现在从阀门关闭处开始的Lx=L —(ctc/2)。经过这一段长度后,超压(或负压)将沿程逐渐降低(或增加)。(如图2所示)。如果关闭是‘瞬间的’,以上的压力值将会出现在整个管道内。 值得注意的是,猛烈地关闭阀门会造成超压,猛烈地开启阀门会造成降压。两者都会产生水锤现象。 区别只

灌溉系统中水锤的解决方案

灌溉系统中水锤的防治办法 供水管道总会产生一阵阵有节奏的异响,作为工程人员我们应知道,这是水锤现象会危害我们的管网及设备,必须尽早处理及时预防。 一、何为水锤现象? 在有压力管路中,由于某种外界原因(如阀门突然关闭、水泵机组突然停机)使水的流速突然发生变化,从而引起水击,这种水力现象称为水击或水锤。液体在管内流动时,它具有动能,当液体突然停止,它的运动能量必须被消除。这时能量变成自停止点开始的高压波,以近声音的传播速度沿管路系统来回传递,使管内液体膨胀并撞击管路,发出刺耳的噪声。 也就是说:快速地开泵、停泵、开关阀门,使水的流速发生急剧变化,就是产生水锤现象的基本原因。 二、水锤的危害 水锤效应有极大的破坏性:由于水锤的产生,使得管道中压力急剧增大至超过正常压力的几倍甚至十几倍、几十倍,其危害很大,严重时会引起管道的破裂,影响生产和生活。压强过高,将引起管子的破裂,反之,压强过低又会导致管子的瘪塌,还会损坏阀门和固定件。 水锤现象可以破坏管道、水泵、阀门、并引起水泵反转,管网压力降低等。 三、常见水锤现象的原因分析及对策 既然管道系统内水的流速的急剧变化是产生水锤的基本原因,我们有必要对此展开深入地探讨,以便寻求应对之策。 1.各种阀门突然开启或关闭,水泵机组突然停机或开启 将响应太快调整为响应迟钝,比如延长开阀和关阀时间,选择开关动作迟钝的阀门,或者选择关键点位安装止回阀。 2.输水管道中水流速度过大;管道过长,且地形变化大 降低输水管线的流速,可在一定程度上降低水锤压力,但会增大输水管管径,增加工程投资。 输水管线布置时应考虑尽量避免出现驼峰或坡度剧变。 减少输水管道长度,管线愈长,水锤值愈大。高山地区灌溉可选择截断管道减压的方式,解决管道铺设过长的问题。也可采用增加专用阀门的方式进行水锤的消除。 采用水力控制阀:一种采用液压装置控制开关的阀门,一般安装于水泵出口,该阀利用机泵出口与管网的压力差实现自动启闭,阀门上一般装有活塞缸或膜片室控制阀板启闭速度,通过缓闭来减小水锤冲击,从而有效消除水锤。 采用快闭式止回阀:该阀结构是在快闭阀板前采用导流结构,停泵时,阀板同时关闭,依靠快闭阀板支撑住回流水柱,使其没有冲击位移,从而避免产生停泵水锤。

停泵水锤的计算方法详解

停泵水锤计算及其防护措施 停泵水锤是水锤现象中的一种,是指水泵机组因突然断电或其他原因而造成的开阀状态下突然停车时,在水泵及管路系统中,因流速突然变化而引起的一系列急剧的压力交替升降的水力冲击现象。一般情况下停泵水锤最为严重,其对泵房和管路的安全有极大的威胁,国内有几座水泵房曾发生停泵水锤而导致泵房淹没或管路破裂的重大事故。 停泵水锤值的大小与泵房中水泵和输水管路的具体情况有关。在泵房和输水管路设计时应考虑可能发生的水锤情况,并采取相应的防范措施避免水锤的发生,或将水锤的影响控制在允许范围内。我院在综合国内外关于水锤的最新科研成果并结合多年工程实践的经验,以特征线法为基础开发了水锤计算程序。这一程序可较好地模拟各种工况条件下水泵及输水管路系统的水锤状况,为高扬程长距离输水工程提供设计依据。 1 停泵水锤的计算原理 停泵水锤的计算有多种方法:图解法、数解法和电算法。其基本原理是按照弹性水柱理论,建立水锤过程的运动方程和连续方程,这两个方程是双曲线族偏微分方程。 运动方程式为:

连续方程式为: 式中H ——管中某点的水头 V——管内流速 a——水锤波传播速度 x——管路中某点坐标 g——重力加速度 t——时间 f——管路摩阻系数 D——管径 通过简化求解得到水锤分析计算的最重要的基础方程: H-H0=F(t-x/a)+F(t+x/a) (3) V-V0=g/a×F(t-x/a)-g/a×F(t+x/a) (4) 式中F(t-x/a)——直接波 F(t+x/a)——反射波 在波动学中,直接波和反射波的传播在坐标轴(H,V)中的表现形式为射线,即特征线。它表示管路中某两点处在水锤过程中各自相应时刻的水头H与流速V之间的相互关系。为了方便计算机的计算,将上述方程组变

Hammer软件在输水管道水锤分析中的应用

Hammer软件在市政管道中的应用 田文军(Bentley 软件(北京)有限公司) 摘要:本文介绍了水锤的基本概念,危害和工程中的预防。根据建设工程中的问题提出预防水锤发生的措施,以提高供水系统的运行安全和可靠性,进而降低投资成本简化运行。并通过Bentley Haestad HAMMER 展示电算法在水锤预防当中的应用。 关键词:Hammer 水锤供水系统长距离输水爆管建设成本运行管理水力计算计算机模拟 1.水锤危害及其防控 1)水锤的定义 水锤是指在压力管道中由于液体流速的急剧变化,造成管中的液体压力显著、反复、迅速地变化,(例如水泵骤停、突然关闭阀门),由液体的压缩性和管道的弹性引起的输送系统中的压力波动,在压力急剧升高的位置产生破坏。水锤的破坏力惊人,对管网的安全平稳运行是十分有害的,容易造成爆管事故。 防止水锤爆管事故的方法有:输水系统中加调压装置,改变管网布置和构成,以达到改变水锤冲击波频率和强度的目的。 2)水锤的危害 水泵启动和停机、阀门启闭、工况改变以及事故紧急停机等动态过渡过程造成的输水管道内压力急剧变化和水锤作用等,常常导致泵房和机组产生振动。由于水锤的产生,使得管道中压力急剧增大至超过正常压力的几倍甚至十几倍,其危害很大,会引起管道的破裂,影响生产和生活。因此必须在长距离压力管段输送系统中安装安全装置。 水锤有正水锤和负水锤之分,它们的危害有: 正水锤时,管道中的压力升高,可以超过管中正常压力的几十倍至几百倍,以致管壁产生很大的应力,而压力的反复变化将引起管道和设备的振动,管道的应力交变变化,将造成管道、管件和设备的损坏。 负水锤时,管道中的压力降低,应力交递变化,出会引起管道和设备振动。同时负水锤时,管中产生不利的真空,造成水柱断流,和再次结合形成的弥合水锤,对管道破坏更为严重。 目前我国泵站相关设计规范(室外给水设计规范GB50013-2006;泵站设计规范GB/T 50265-97)中对水锤防护的计算已经做以相应的规定。 3)管道系统设计和规划中的水锤因素 工程师在设计给水管网过程中需要考虑预算和技术因素,包括运行成本、概算、建设地点和地形条件等因素。在设计管网和消除水锤设备中需要不断进行复杂的风险评估和方案比选,以降低建设成本和运行风险。通常管线规划在平坦地区。在这些系统中需要调整管线平面走向和剖面位置,防止管道在高点积气或压力过低。

管道水锤破坏的消除措施

管道水锤破坏的消除措施 [摘要]介绍了给水管道的水锤形成的各种原因及分类,针对水锤的形成原因提出了不同的水锤防护措施,并分析其工作原理,保证供水管道系统的正常运行,有很好的借鉴作用。 [关键词]给水管道;管道施工;水锤事故;预防措施 1.引言 社会经济的发展,人们生活水平的提高,要求我们城市供水系统的正常运作也要得到相应的保证。在城市管道事故中管道水锤现象是比较常见但是危害又相对较大的管道破坏形式。因此,对水锤破坏进行相关的分析并提出一些有效的防治措施具有很大的实际意义。 2.水锤 2.1水锤的定义。水锤是有压管道中的非恒定流现象。当阀门或水泵突然的打开,使水的流速突然发生变化,从而引起压强急剧升高和降低的交替变化,这种变化以一定的速度向上游或下游传播,并且在边界上发生反射,这种水力现象称为水锤。交替升降的压强称为水锤压强。 2.2水锤产生的原因和分类。水锤产生的主要物理原因是液体具有惯性和可压缩性,水锤现象的实质可归纳为由于管道内水体流速的改变,导致水体的动量发生改变而引起作用力变化的结果。一般说来,输水管道系统中的过渡过程的起因大体有:启泵和停泵,机组转速发生变化或运行不稳定、动力故障;空气进入水泵或管道系统,泵内发生回流,阀门启闭,线路分流、激流等。其中以事故停机引起的水锤破坏尤为的严重。从不同的角度划分,水锤主要分为以下几种:(1)依照理论分析可以分为刚性水锤和弹性水锤;(2)按关阀历时和水锤相位的关系可以分为直接水锤和简介水锤;(3)按外部成因可以分为启动水锤、关阀水锤和停泵水锤;(4)按水锤发生的不同输水道可以分为封闭管道的水锤、明渠中的水锤和明满交替的水锤;(5)按水锤波动的现象分为水柱连续的水锤和水柱分离的水锤现象。 2.3水锤的危害。水锤有极大的破坏性。由于水锤产生的瞬时压强可达管道中正常工作压强的几十倍甚至于数百倍,这种大幅度的压强波动,可导致管道系统强烈振动产生噪声,可能破坏管道、水泵、阀门,并引起水泵反转,管网压力降低等。 3.水锤的消除措施 针对上述水锤形成的机理分析,笔者通过结合工程实践提出几种管道施工过程中经常用到的防护措施。

管道水锤

能源环境 管道水锤破坏的消除措施 中色十二冶金建设有限公司(山西河津) 段效坚 【摘 要】介绍了给水管道的水锤形成的各种原因及分类,针对水锤的形成原因提出了不同的水锤防护措施,并分析其工作原理,保证供水管道系统的正常运行,有很好的借鉴作用。 【关键词】给水管道;管道施工;水锤事故;预防措施 1.引言 社会经济的发展,人们生活水平的提高,要求我们城市供水系统的正常运作也要得到相应的保证。在城市管道事故中管道水锤现象是比较常见但是危害又相对较大的管道破坏形式。因此,对水锤破坏进行相关的分析并提出一些有效的防治措施具有很大的实际意义。 2.水锤 2.1水锤的定义。水锤是有压管道中的非恒定流现象。当阀门或水泵突然的打开,使水的流速突然发生变化,从而引起压强急剧升高和降低的交替变化,这种变化以一定的速度向上游或下游传播,并且在边界上发生反射,这种水力现象称为水锤。交替升降的压强称为水锤压强。 2.2水锤产生的原因和分类。水锤产生的主要物理原因是液体具有惯性和可压缩性,水锤现象的实质可归纳为由于管道内水体流速的改变,导致水体的动量发生改变而引起作用力变化的结果。一般说来,输水管道系统中的过渡过程的起因大体有:启泵和停泵,机组转速发生变化或运行不稳定、动力故障;空气进入水泵或管道系统,泵内发生回流,阀门启闭,线路分流、激流等。其中以事故停机引起的水锤破坏尤为的严重。从不同的角度划分,水锤主要分为以下几种:(1)依照理论分析可以分为刚性水锤和弹性水锤;(2)按关阀历时和水锤相位的关系可以分为直接水锤和简介水锤;(3)按外部成因可以分为启动水锤、关阀水锤和停泵水锤;(4)按水锤发生的不同输水道可以分为封闭管道的水锤、明渠中的水锤和明满交替的水锤;(5)按水锤波动的现象分为水柱连续的水锤和水柱分离的水锤现象。 2.3水锤的危害。水锤有极大的破坏性。由于水锤产生的瞬时压强可达管道中正常工作压强的几十倍甚至于数百倍,这种大幅度的压强波动,可导致管道系统强烈振动产生噪声,可能破坏管道、水泵、阀门,并引起水泵反转,管网压力降低等。 3.水锤的消除措施 针对上述水锤形成的机理分析,笔者通过结合工程实践提出几种管道施工过程中经常用到的防护措施。 3.1空气罐防护。空气罐是一内部充有一定量压缩气体的金属水罐装置,一般情况下载在水泵出口附近的管道上安装。在因事故停泵后,管道中的压力降低,罐内空气迅速膨胀,在空气压力作用下下层水体迅速补充给主管道,防止水柱分离;倒泻水流会使得水泵进入水轮机工况后,泵出口的逆止阀迅速关闭,管中压力上升,出水管中的高压使水流入空气罐中,使罐内空气压缩,从而减小管道中的压力上升。为防止管道中产生过低的压力,入流量和出流量相等时差压孔口水头损失比值应控制在2:5:1左右。 3.2进排气阀。长距离输水管道在开始输水、停止输水和流量调节及事故停泵的不同工况下,需将管内空气排出或将管外空气补进管内,使压力管道系统不受气体、水锤负压等危害而安全运行的主要防护措施之一。可以把它的作用归纳为三方面:一是是管道发生水锤事故产生负压时,能及时的补充空气,不致负压过大而水柱分离;二是管道在运行情况下,能随时排出水中逸出的气体,避免气体的聚集、扩散而使输水量下降、管道漏水或引发气爆型水锤;三是空管道充水时及时排除管内空气,以免产生气阻而引发启泵水锤。 3.3单向调压塔防护。单向调压塔是一种用于防止产生水柱分离的经济可靠的防护措施,常设于容易产生负压的部位。这种调压塔由一个水塔与辅助支管、阀件等组成。水塔通过逆止阀与泵站主管道相连接,逆止阀的启闭由出水管道的压力控制。水泵起动时,逆止阀处于关闭状态,并补水管立即向水塔充水:当水位达到正常水位后,补水管出口的浮球阀关闭,自动保持塔里面的水位。非正常的停泵后,当出水管道压力下降到调压塔正常水位以下时,逆止阀将会迅速打开,通过辅助支管向主管道进行补水,防止管道因压力降低而产生水柱分离的现象,也很大程度降低了调压塔的高度。但是在实际应用工程中如果应用单向调压塔防护时应注意两点:(1)调压塔对于出水管道的保护范围是有限的,一般是相当于塔内最高水位以下的管道部分。如果在此高程以上的管道还可能产生水柱分离,则应根据管道的纵断面及最低压力线情况装设两个或多个调压塔。(2)补水后,调压塔应能迅速充水,准备下一次动作。因此,补水管应设计有足够的直径,水塔顶端的球阀应动作可靠。 3.4其他防护介绍。在常用的水锤防护措施中还有防爆膜、止回阀加旁通管、水锤消除器等几种,接下来将分别作简单的介绍。 1)防爆膜。防暴膜是在需要保护的管道上用一支管连接,并在其端部用一塑性金属膜片密封,当管中升压超过预定值时,膜片爆破,泄掉一部分高压水,以保证主管道的安全,起到水锤防护的效果。一般用于小流量、高扬程的泵站,作为其他防护措施的后备保护。2)惯性飞轮。在水泵机组主轴上增设惯性飞轮是为了加大水泵机组转动部分的转动惯量,以延长水泵机组的正转时间,有效避免管路中流速和水压的急剧降低、改善水锤压力猛烈波动状况,从而在一定程度上消弱了负压,防止了水柱分离现象的出现。3)止回阀加旁通管。对管线纵断面有凸部系统,水柱分离通常在某一凸部附近形成,且气穴会在一定范围内逐渐向高处波及,形成气穴流,当管路水流发生倒流后,气穴体积将迅速减小直至溃灭,产生很高的水柱弥合水锤,如能在水柱分离段的末端布置一逆止阀和旁通管,则可减小水柱弥合的升压和减小下游其他部位的水力波动。4)水锤消除器。水锤消除器实际上是具有一定泄水能力、并适合于泵站停泵水锤压力变化过程的安全阀。 4.新型水锤防护设备 以往防止水锤的办法是在压力管道上设置调压水箱、空气室、爆破膜片、水锤消除器、机组装设飞轮等。这些办法都可以在不同程度上防止水锤,但是它们普遍存在着占用厂房面积大,土建工程投资大的问题,而且运行不方便,目前可应用一些新型水锤防护设备。 4.1液控缓闭蝶阀。该阀在断电时可按预定的时间和角度,分快、慢二阶段关闭,能有效地降低管网中压力波动,消除流体在管网中的水锤危害,控制水泵反转,从而保证水泵和管网系统的安全可靠运行。 4.2缓闭止回阀。目的该类阀门有重锤式和蓄能式两种,可以根据需要在一定范围内对阀门关闭时间进行调整。缓闭止回阀克服了普通止回阀的缺点,具有如下特点:(1)泵启动后阀门能及时迅速打开。(2)正常运行时,要求阀瓣有尽可能大的开启角,并能稳定在全开位置。(3)停泵时阀门有优良的关闭特性,在突然停泵时既能阻止水倒流,保护水泵不致发生反转,达到保护水泵的目的;又能使其在关闭的最后阶段实现缓闭,减少突然关闭造成管路中的水锤,达到保护管路的。 5.结论 文章通过分析水锤形成原因,有针对性地提出了切实可行的水锤防护措施,如提出空气罐防护等,同时结合水锤防护的发展趋势,给出了未来水锤防护设备,以为同类工程提供参考借鉴。 参考文献 [1]柯勰,胡云进,万五一.缓闭式空气阀水锤防护效果研究[J].四川建材,2006,27(02):74-75. [2]高润清.水锤的研究与防护[J].价值工程,2007,29(06):101-103. [3]毕延龄.输水系统的水锤及水锤防护[J].建筑技术通讯(给水排水),2011,31(02):46-49.

水锤计算例题9-2

天津大学,水电站249页水锤压力例题9-2 某水电站压力管道长L=400m ,直接自水库引水,上下游水头差120m ,水击波速度a=1000m/s 。阀门全部开启(τ0=1)时,管道流速Vmax=4.5m/s 。(1)设阀门在0.5s 中全部关闭,求阀门断面最大水击压力。(2)设阀门按线性规律关闭,有效关闭时间Ts=4.8s 。①若阀门由全开到全关,求阀门断面最大水击压力。②若阀门由部分开启(τ0)到全关,求阀门断面最大水击压力。 解: 1判断水击类型 计算相长, s a L t r 8.01000 40022=?== (1)阀门在0.5s 中全部关闭, a L t 2<,发生直接水锤,)(4595.48 .910000m v g a H =?==? (2)阀门按线性规律关闭 ①有效关闭时间Ts=4.8s ,阀门由全开到全关,a L t 2> =0.8s ,发生间接水锤。 ②若阀门由部分开启(τ0=0.5)到全关,Ts=4.8s ×0.5=2.4(s ),a L t 2>=0.8s ,发生间接水锤。 2计算管道特性常数ρ、σ 91.1120 8.925.4100020max =???==gH av ρ 32.08.48.95.44000max =??== s T gH Lv σ 3判断何种间接水锤、计算水锤压力值 ①有效关闭时间Ts=4.8s ,阀门由全开到全关,ρτ0=1.91×1=1.91>1,为极限水锤。 采用表9-1中简化公式 38.032 .0232.0222=-?=-=σσξA m ; )(6.4512038.00m H H A m =?==?ξ ②若阀门由部分开启(τ0=0.5)到全关,Ts=4.8s ×0.5=2.4(s ) ρτ0=1.91×0.5=0.96<1,按照第一相水锤近似公式 32.05.091.1132.021201-?+?=-+=σ ρτσ ξA =0.39 )(8.4612039.001m H H A =?==?ξ

水锤

水锤又称水击。水(或其他液体)输送过程中,由于阀门突然开启或关闭、水泵突然停车、骤然启闭导叶等原因,使流速发生突然变化,同时压强产生大幅度波动的现象。长距离输水工程应进行必要的水锤分析计算,并对管路系统采取水锤综合防护计算,根据管道纵向布置、管径、设计水量、功能要求,确定空气阀的数量、型式、口径。 1水锤发生的原因与分类 1.1引起水锤过程的原因 (1)启泵、停泵、用启闭阀门或改变水泵转速、叶片角度调节流量时;尤其在迅速操作、使水流速度发生急剧变化的情况。 (2)事故停泵,即运行中的水泵动力突然中断时停泵。较多见的是配电系统故障、误操作、雷击等情况下的突然停泵。 1.2水锤破坏主要的表现形式 (1)水锤压力过高,引起水泵、阀门和管道破坏;或水锤压力过低,管道因失稳而破坏。 (2)水泵反转速过高或与水泵机组的临界转速相重合,以及突然停止反转过程或电动机再启动,从而引起电动机转子的永久变形,水泵机组的剧烈振动和联结轴的断裂。 (3)水泵倒流量过大,引起管网压力下降,水量减小,影响正常供水。 1.3.水锤的分类与判别 (1)按产生水锤的原因可分为:关(开)阀水锤、启泵水锤和停泵水锤; (2)按产生水锤时管道水流状态可分为:不出现水柱中断与出现水柱中断两类。前者水锤压力上升值△H通常不大于水泵额定扬程HR或水泵工作水头H0称正常水锤;后者当水柱再弥合时,水锤压力上升值较高,常大于HR或H0,是引起水锤事故的重要原因,故称非常水锤。 所谓水柱中断,就是在水锤过程中,由于管道某处压力低于水的汽化压力而产生,即: Pi/γ+Pa/γ≤Ps/γ (1-1) 式中: Pi/γ—管道中某点的压力(M); Pa/γ—大气压力(M); Ps/γ—水的饱和蒸汽压力(绝对压力),在常温下取2-3M; γ—水的容重。 (3)对于关(开)阀水锤,与关(开)阀时间T。有关可分为: 直接水锤: Tc<Tγ(1-2)间接水锤: Tc>Tγ (1-3) 式中:Tγ—水锤相(秒),见公式(1-12)。 1.4水锤特征的计算 1.4.1水锤传播速度

水锤计算方法

第一节概述 一、水电站的不稳定工况 机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。 在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为: (1) 引起机组转速的较大变化 由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。反之增加负荷时机组转速降低。 (2) 在有压引水管道中发生“水锤”现象 当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。 (3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。无压引水系统中产生的水位波动计算在第八章已介绍。 二、调节保证计算的任务 水锤压力和机组转速变化的计算,一般称为调节保证计算。调节保证计算的任务及目的是: (1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。 (2) 计算丢弃负荷和增加负荷时的机组转速变化率,并检验其是否在允许范围内。 (3) 选择水轮机调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

水锤计算

第九章水电站的水锤与调节保证计算 第一节概述 一、水电站的不稳定工况 机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。 在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为: (1) 引起机组转速的较大变化 由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。反之增加负荷时机组转速降低。 (2) 在有压引水管道中发生“水锤”现象 当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。 (3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。无压引水系统中产生的水位波动计算在第八章已介绍。 二、调节保证计算的任务 水锤压力和机组转速变化的计算,一般称为调节保证计算。调节保证计算的任务及目的是: (1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

供水管道系统水锤分析及防护措施

供水管道系统水锤分析及防护措施 发表时间:2019-01-18T09:23:39.167Z 来源:《基层建设》2018年第35期作者:杨俊 [导读] 摘要:水锤现象是引发城市供水系统设备损坏以及管道破裂的根本原因之一,对于水锤现象的防护一直都是供水管道系统设计与建设需要考虑的重点问题。 广州市市政工程设计研究总院有限公司广东省广州市 510030 摘要:水锤现象是引发城市供水系统设备损坏以及管道破裂的根本原因之一,对于水锤现象的防护一直都是供水管道系统设计与建设需要考虑的重点问题。本文作者根据自身研究水锤现象多年的实际经验,对供水管道系统水锤分析及防护措施展开了深入的调研与分析,并给出有效的防护措施,希望能对相关行业起到一定的促进作用。 关键词:供水管道;水锤分析;防护措施 引言: 在进行水锤防护措施的分析时,首先应该对于供水管道系统水锤现象入手,找到水锤现象发生的具体原因,根据不同原因针对性设置对应的水锤防护措施,进而使水锤现象能够得到有效的控制,提升供水管道系统的安全性与稳定性。 一、供水管道系统水锤现象的分析 在供水管道系统运行的过程之中,如果出现了不可预测性的停电现象,或者给水阀门的关闭速度过快时,就会由于水流压力的惯性产生一道非常猛烈的水流冲击波,该冲击波产生而发出的声音类似于锤子在进行敲打的声音,这就是我们所说的水锤现象。水锤现象产生的应力极大,有时候有着很强的破坏力,严重时甚至会破坏供水系统的阀门或者水泵。水锤效应是指水在供水管道的内部,由于供水管道内壁过于光滑,所以水流较为自如,而当管道阀门突然关闭时,水流的流动会发生方向性的紊乱,从而产生内部应力,对于阀门会产生一个压力,由于供水管网的内壁过于光滑,水流在惯性的作用下应力迅速达到最大化,从而产生了强大的破坏作用,这种破坏作用在流体力学之中被称为水锤效应,也就是我们常说的正水锤。在进行供水管网供水管道的建设之中,必须要考虑到水流的水锤现象。与正水锤相对的是负水锤,是因为关闭后的阀门突然打开而造成的水锤现象,这种水锤现象与正水锤现象相比破坏力较小,但也存在着一定的破坏力。如果供水管道系统的电动机组突然启动,也会引发压力的冲击现象以及水锤效应,这种压力增大而产生的冲击波会沿着管道进行传播,非常容易造成管道内部的压力超过负荷,导致管道碎裂以及供水设备的损坏现象,因此,在供水管道系统的修建之中,对于水锤效应的防护也就成为了关键性技术之一[1]。 二、供水管道系统水锤防护措施 (一)降低供水管道之中的水流速度 水流速度是水锤效应破坏力大小的主要因素之一,因此,通过降低供水管道之中水流速度的措施,可以有效的减少水锤效应产生的压力,从而起到防护的作用。降低供水管道水流速度需要增大供水管道的管径或者减少供水管道的供水范围。也可以通过加设泵站的方式来降低水流速度,两个泵站之间应该通过吸水井相连。在水锤的计算过程之中可以发现,停泵造成的水锤现象应力大小是与泵站整体的几何扬程相关联的,也就是说,几何扬程越高,那么停泵造成的水锤压力就越大,所以在进行加压泵站的建设过程之中,应该根据当地的实际情况以及对供水管网的实际需求来选择合适的水泵扬程。同时,在供水管道系统的管理过程之中,应该注意事故停泵现象,一旦发生事故停泵后,应该等到止回阀后管道已经充满水后再进行水泵的启动,同时,启动水泵时阀门不建议完全打开,否则会造成供水管网的重大水锤事故。这里要注意的是,采用降低供水管道水流速度的防护措施,会增大输水管的管径,从而提升给水工程的整体造价,设计防护措施时应该根据工程资金来进行合适的供水管径选择[2]。 (二)恒压控制技术的应用 所谓的恒压控制技术,即是通过PLC自动化控制技术,对于供水管网的水泵进行整体的速度调控,从而实现供水管网系统的自动化控制。这套控制技术能够对于系统内部的水压进行检测和调节,通过检测到的管网压力系数,反馈到水泵的速度调节系统进而控制供水管网内部的水流流量,从而使水压维持在一定的数值,达到恒压供水控制的效果,从而避免产生过大的水流压力波动,进而减少水锤现象发生的几率。 (三)水锤消除器的安装 水锤消除器的安装是针对停泵水锤现象发生而应用的设备。这种设备一般安装在整个系统的出水管道附近,通过将管道内部的水压转化为水锤消除装置的动力来实现水锤消除器的自动化作业,也就是说,当供水管道系统内部的水压高于水锤消除器的临界值时,其排水口会自动打开,通过放水来减少管道内部的压力,从而达到平衡管道内部压力的作用。水锤消除器一般分为两种,一种是机械式水锤消除器,其发生一次动作之后需要人为的调整才能进行恢复,另一种是液压式消除器,这种消除器可以在进行作业后自动完成恢复操作,不需要人工的干预。 (四)缓闭止回阀的安装 缓闭止回阀是水锤防护措施之中应用较多的装置,能够有效的消除停泵水锤的现象,然而由于在缓闭止回阀进行动作时,会出现一定的水量倒流的现象,所以其供水管网之中必须设置溢流管。缓闭止回阀分为两种,一种是重锤式缓闭止回阀,另一种是蓄能式缓闭止回阀。这两种阀门可以根据供水管网的实际需求对阀门的开关时间进行精密调整。一般情况下,停电后的三到七秒之内,阀门会关闭百分之70到80之间,剩余的百分之20到30的关闭时间可以根据水泵内部的压力以及供水管网的实际情况进行调整,一般时间在10秒到30秒之间。这里要注意的是,如果管路之中存在着驼峰现象而发生弥合水锤的情况,缓闭止回阀就很难起到消除水锤现象的作用了[3]。 (五)单向调节塔的设置 单向调节塔是一种防止供水管网内部水柱拉断而形成弥合水锤现象的有效措施,需要在供水系统泵站附近的适当位置进行修建,其高度应该低于该处的供水管道内部的压力。当供水管道内部的压力低于单向调节塔的水位时,单向调节塔会自动向管网系统进行补水,进而防止供水管道内部的水柱被拉断。这里要注意的是,单向调节塔能够有效的防止弥合水锤现象的发生,但是对于停泵现象以外发生的水锤现象的降压作用十分有限,而且单向调节塔的阀门性能要有着绝对的保证,否则一旦阀门失灵,则会发生比较严重的水锤现象。(六)旁通管的设置 旁通管的作用在于当供水管道系统在进行正常运行时,因为水泵压水的侧水压比吸水侧的水压要高,所以整个止回阀会处于关闭状

水击(水锤)

水击:又名水锤,在有压管道系统中,由于某一管路元件工作状态的改变,使液体流速发生急剧变化,同时引起管内液体压强大幅度波动的现象。它是有压管道非恒定流问题中的一种。管道中任一段面的流速、压强、液体的密度及管道直径,不仅与空间位置而且与时间有关。它可能导致管道系统强烈震动、噪声和空蚀,甚至使管道严重变形或爆裂。管道系统中阀门的急剧关闭及开启、水泵突然停机,以及在水电站运行过程中,由于电力系统负荷的改变而迅速启闭导水叶或闸阀等,都会产生水击。 具体到蒸汽管道,主蒸汽管道内疏水不彻底,残存有少量凝结水,高温蒸汽遇冷凝结,体积缩小,产生局部真空,水滴高速冲向真空区域,从而产生水击。还有疏水管道内压力小于冷凝水的饱和压力造成了二次汽化,也是水击的原因。 解决的措施: 1.按规程进行通汽操作,暖管之前打开疏水阀疏水,特别注意要缓慢开启阀门。 2.保持正常的疏水,及时排除冷凝水,避免汽水共存而发生水击。 3.稍微提高冷凝管操作压力,避免二次汽化。

水击 water hammer 有压管道中,液体流速发生急剧变化所引起的压强大幅度波动的现象。管道系统中闸门急剧启闭,输水管水泵突然停机,水轮机启闭导水叶,室内卫生用具关闭水龙头,都会产生水击。 水击可导致管道系统的强烈震动,间接水击的计算需要知道流速随时间变化的关系,产生噪声和气穴。掌握水击压强的变化规律对输水管道的设计,对消减水击的破坏作用,有很大的实际意义。水击的基本问题是最大压强的计算,最大压强一般出现在发射波断面(如阀门处)。 水锤 water hammer 又称水击。水(或其他液体)输送过程中,由于阀门突然开启或关闭、水泵突然停车、骤然启闭导叶等原因,使流速发生突然变化,同时压强产生大幅度波动的现象。 水锤效应是一种形象的说法.它是指给水泵在起动和停车时,水流冲击管道,产生的一种严重水击。由于在水管内部,管内壁是光滑的,水流动自如。当打开的阀门突然关闭或给水泵停车,水流对阀门及管壁,主要是阀门或泵会产生一个压力。由于管壁光滑,后续水流在惯性的作用下,水力迅速达到最大,并产生破坏作用,这就是水利学当中的“水锤效应”,也就是正水锤。相反,关闭的阀门在突然打开或给水泵启动后,也会产生水锤,叫负水锤,但没有前者大。 由水锤产生的瞬时压强可达管道中正常工作压强的几十倍甚至于数百倍。这种大幅度压强波动,可导致管道系统强烈振动,噪声,并可能破坏阀门接头。对管道系统有很大的破坏作用。为防止水锤需正确设计管道系统,防止流速过高,一般设计管子流速应小于3m/s,并需控制阀开、闭速度。 因开泵、停泵、开关阀门过于快速,使水的速度发生急剧变化,特别是突然停泵引起的水锤,可以破坏管道、水泵、阀门,并引起水泵反转,管网压力降低等。水锤效应有极大的破坏性:压强过高,将引起管子的破裂,反之,压强过低又会导致管子的瘪塌,还会损坏阀门和固定件。在极短的时间里,水的流量从零猛到额定流量。由于流体具有具有动能和一定程度的压缩性,因此在极短的时间内流量的巨大变化将引起对管道的压强过高和过低的冲击。压力冲击将使管壁受力而产生噪声,犹如锤子敲击管道一样,故称为水锤效应。

简单管水锤计算及演示程序说明-程永光

简单管水击计算及演示程序说明 (武汉水利电力大学水电站教研室,武汉430072) 1 程序名称及使用方法 1.1 程序名称 执行程序Singlep.exe,原代码文件Singlep.dpr和Single.pas。 1.2 使用方法 该程序是用面向对象编程环境Delphi 4.0编制而成的,可直接在Windows环境下运行。使用界面见图1和图2。 程序使用方法:程序启动后,自动进入图1中,首先填入“水库-管道-阀门”系统的原始参数;之后用鼠标单击数据确定接受数据;然后单击进行计算获得结果;接着可击“波动过程”页标进入图2;单击开始演示观察压力变化和传播过程;得到压力极值和压力分布过程。单击打印屏幕可将屏幕上的内容打印出来,单击打印曲线可将阀端压力变化过程线、最大最小压力沿程分布线打印出来。 图1 参数输入界面

图2 结果输出和参数变化过程显示界面 2 程序功能 能对“水库-管道-阀门”这样的简单引水系统的水力过渡过程进行计算和演示。计算功能可满足初步设计要求。演示功能,作为辅助教学手段,可加深学生对水击物理实质的理解。该程序能配合教材,对下列内容进行分析和演示教学: ①水击波的传播和反射; ②直接水击和间接水击; ③一相水击和末相水击; ④起始开度对水击的影响; ⑤开度变化规律对水击压力的影响; ⑥阀门启闭终了后的水击现象。 3 数学模型及参数说明 3.1 数学模型 采用特征线法。特征方程和特征线方程为 C g a dH dt dV dt f V V D dx dt a C g a dH dt dV dt f V V D dx dt a + - ++==+?? ? ????- ++==-?? ?????: : 2020 在特征线上将特征方程积分并整理有 C H C B Q C H C B Q P P P P P M M P + - =-=+:: 由这两式可解出未知量H p 和Q P 。式中

第三节水锤计算的解析法

第三节水锤计算的解 析法 -CAL-FENGHAI.-(YICAI)-Company One1

第三节水锤计算的解析法 一、直接水锤和间接水锤 (一)直接水锤 若水轮机开度的调节时间≤ 2L/c,则在水库反射波到达水管末端之前开度变化已经结束,水管末端只受因开度变化直接引起的水锤波的影响,这种现象习惯上称为直接水锤。由于水管末端未受水库反射波的影响,故基本方程式(14-5)和式(14-6)中的函数f(t-x/c),用以上二式消去F(t+x/c)的直接水锤公式 从式(14-13)可以看出,当开度关闭时,管内流速减小,括号内为负值,△H为正,发生正水锤,反之,当开启时,△H为负,发生负水锤。直接水锤的压强界与流速变(V -Vo )和水管特性(反映在波速c 中)有关,而与开度的变化速度、变化规律和水管长度无关。 若管道中的初始流速Vo=5m/s,波速c=1000m/s,在丢弃全负荷时若发生直接水锤,△H将达510m,因此在水电站中直接水锤是应当绝对避免的。 (二)间接水锤 若水轮机开度的调节时间>2L/c,则在开度变化终了之前水管进口的反射波已经到达水管末端,此反射波在水管末端将发生再反射,因此水管末端的水锤压强是由向上游传播的水锤波F和反回水管本端的水锤波f叠加的结果,这种水锤现象习惯上称为间接水锤。显然,间接水锤的计算要比直接水锤复杂得多。间接水锤是水电站中经常发生的水锤现象,也是我们要研究的主要对象。 二、水锤的连锁方程 利用基本方程求解水锤问题,必须利用已知的初始条件和边界条件。 初始条件是水轮机开度未发生变化时的情况,此时管道中为恒定流,压强和流速都是已知的。 对于图14-1的简单管,边界条件是利用A、B两点。B点的压强为常数,令ζ=△H/Ho,则=0,水锤波在B点发生异号等值反射。 A点的边界条件较为复杂,决定于节流机构的出流规律。从《水力学》中我们知道水斗式水轮机喷嘴的边界条件可表达为

相关文档
最新文档