广义相对论的实验验证

广义相对论的实验验证
广义相对论的实验验证

广义相对论的实验验证

(1)厄缶实验

19世纪末,匈牙利物理学家厄缶用扭秤证实了惯性质量与引力质量在极高的精确度下,彼此相等。厄缶实验的设计思想极为简单。扭秤的悬丝下吊起一横杆,横杆两端悬吊着材料不同、重量相同的重物。达到平衡后,使整个装置沿水平旋转180°,若惯性质量与引力质量相等,由于无额外转矩出现,整个装置

将始终保持平衡。最后厄缶以10-9的精度,证实了两种质量的等同。由于利用简单而巧妙的实验得到精度

极高的测量结果,厄缶获得德国格廷根大学1909年度的本纳克(Benecke )奖。

1933年6月20日,爱因斯坦在英国格拉斯哥大学作题为《广义相对论的来源》的讲话,表示他提出等效性原理的当时。并不知道厄缶实验。尽管如此,这并不能贬低厄缶实验的意义,它应该作为全部广义相对论的重要奠基石。鉴于这一实验的精确度直接影响广义相对论理论的可靠性,以后几十年来,人们对这一实验的兴趣有增无减。1960~1966年,狄克(Robert Henry ,Dicke ,1916~)等人为提高厄缶实验的精度,把厄缶的扭秤横杆改成三角形水平框架,又把石英悬丝表面蒸镀铝膜以避免静电干扰,并将整个装

置置于真空容器中,使实验的精度推进了两个数量级,达到(1.3±1.0)×10-11。1972年,前苏联的布拉

金斯基(Braginsky )和班诺夫(Panov )对厄缶实验又做了重大的改进。他们采用电场中的振荡法,旋转

由激光反光光斑记录在胶片上,使实验结果又在狄克的基础上提高了两个数量级,即9×10-13。

(2)水星近日点进动的观测

在经典力学这座坚固的大厦中,牛顿力学犹如擎天大柱,已经经受住了两个世纪的考验。把引力作为力的思想似乎根深蒂固。随着时间的推移,牛顿力学的成功事例在不断地增多。1705年哈雷(Edmund Halley ,1656~1742)用牛顿力学计算出24颗彗星的结果,并指出在1531年、1607年和1688年看到的大彗星,实际上是同一颗,这就是后人所称的哈雷彗星。克雷洛(Alxis Claude Clairaut ,1713~1765)在仔细地研究了哈雷的报告后,又根据牛顿力学计入了木星与土星对彗星轨道的影响,预言人们将在1758年圣诞节观测到这颗彗星,果然它如期而至。后来人们又先后在1801年、1802年、1804年以及1807年发现木星与土星轨道间有四颗小行星,它们的轨道也都与牛顿引力理论的计算结果相符。19世纪40年代,法国的勒威耶(Urbain Jean Jeseph Leverrier ,1811~1877)、英国的亚当斯(John Couch Adems ,1819~1892)分别对天王星的轨道偏差做了计算,由此导致了海王星的发现,这又是牛顿力学的一次辉煌的胜利。 尽管牛顿力学获得一次又一次的巨大成功,人们还是发现有一个现象不能由它得到解释。从1859年起,勒威烈接受了阿拉戈的建议。开始把观测的重点放在众星的微小摄动上。他的观测与计算表明,水星的近日点每百年的进动量大约比牛顿引力理论计算值多出40弧秒。1845年,他提出,水星的反常运动是受到一颗尚未发现的行星的影响,他称这颗行星为“火神星”,但是始终未能从观测中发现这颗火神星。1882年.美国天文学家纽科姆(Simon Newcomb ,1835~1909)对水星的进动又做了更加详细的计算。计算结果表明,水即B 点的进动量应为43″/百年。开始,他认为这是发出黄道光的弥散物质使水星的运动受到了阻尼,后来又有人企图用电磁理论作出解释,但是都没有获得成功。

1915年,爱因斯坦的广义相对论建立后,史瓦西(Karl Sahwarzschild ,1873~1916)很快地找到了球对称引力场情况下的引力场方程解,后来被称为史瓦西解,或史瓦西度规。爱因斯坦认为太阳的引力场适用于史瓦西解,由此应该对水星的近日点进动作出解释。他认为,水星应按史瓦西场中的自由粒子方式运动;其轨迹就是按史瓦西度规弯曲的空间中的测地线。按这种假设计算,水星每公转一周,它的近日点的进动角应为)1(242222

2

e c T a -=πε,其中a 为水星公转轨道的半长轴,e 为椭圆轨道的偏心率,T 为水星年周期。当把水星年折合为地球年以后,计算出水星近日点的近动角为43″/百年。这一结果恰好与纽科姆的结果相符,它不但解决了牛顿引力理论多年的悬案,而且为广义相对论提供了有力的证据,它成为验证广义相对论的三大有名的实验判据之一。

在获得这个实验判据的当时。正是爱因斯坦废除他原来的引力场方程,并建立新的场方程后的不久。

得到这个相符合的结果,使他非常兴奋。在1915年12月15日,爱因斯坦在写给波兰的一位老同事的信中说:

“现寄上我的论文数篇,您从中将看出,我又一次推倒了我用纸牌搭起的‘小房子’,并且又搭了一所新的;至少中间那一层是新的。观测证明,确实存在的水星近日点进动得到了解释,这使我感到非常高兴。同样使我感到高兴的是,引力定律的广义协变原理终于取得了完满的结果。”

(3)光线的引力场弯曲

牛顿在所发表的《光学》一书中,曾提出几个问题让后人思考。在其中的第一个疑难中,他问道:物体对遥远的光不起作用吗?难道它的作用不能使光线弯曲吗?在19世纪初,有人利用牛顿的引力理论,计算出光通过太阳的表面时,大约应该有0.85弧秒的弯曲,这是按重物在太阳附近平抛关系算出来的结果。 1911年6月,爱因斯坦在《引力对光线传播的影响》一文中,也预言了光线经过太阳附近的弯曲效应。然而这种弯曲不是出自于引力的“力”作用。而是由于引力的空间弯曲效应引起的,所以它应与牛顿引力的光线弯曲作用有所不同。按广义相对论的空间引力弯曲理论计算,光在太阳的史瓦西场中,其运动将遵守测地线方程。当光粒子经过太阳表面时,一个远离太阳这一引力中心的观测者所观测到的偏转角应为0

24r c GM =δ,其中G 为万有引力常量,c 为光在真空中的速度,r 0为太阳的半径,也是光粒子路径到太阳质量中心的最近距离。理论的计算给果应为1″..75,相当于按牛顿引力理论计算值的2倍。在提出这一预言的同时,爱因斯坦还提出了观测方法。“由于在日全食时,可以看到太阳附近天空的恒星,理论的这一结果可以同经验进行比较。”他希望天文学家们对这一结果进行实地考察。

当时正值战争时期,由于荷兰持中立立场,再加上爱因斯坦、洛仑兹、埃伦费斯特以及德西特之间多年的友谊,使爱因斯坦的论文经他们传送,迅速地越过英吉利海峡,由德西特最后递交到英国皇家学会。当时爱丁顿(Arthur Stanley Eddington ,1882~1944)教授任英国皇家天文学会的秘书,他亲自阅读了这些论文,并仔细地加以审定。爱因斯坦曾在他关于引力场方程的最后一篇通讯报导中说:“任何一个人,只要对这一理论有着充分的理解,就很少能从它那不可思议的理论魔法中逃脱出来。”爱丁顿确实被它那诱人的魁力所吸引了。在这以后的两年中,爱丁顿怀着激情给伦敦物理学会写了一篇《关于相对论引力理论的报告》,曾获1983年度诺贝尔物理学奖的钱德拉塞卡( Subrahmayran Chandrasekhar ,1910~)曾称这篇报告“不仅条理清晰,而且简明扼要,至今对初学者也不愧是一篇优秀的读物”。

爱丁顿对广义相对论的热情很快地使他的密友、同事、皇家天文学会的戴孙(Frank Dyson )受到感染,他们为1919年日食间的考察积极筹划。当时,战争已经持续了两年多的时间,英国颁布了征兵法,爱丁顿年仅34岁,正符合英国战时的征兵条件。戴孙及当时剑桥的挚友如拉莫尔(Joseph Larmor )、纽沃尔( H .F .Newal )教授等人,为获得爱丁顿的缓役多方活动,直至上书到内务部,再加上戴孙通过他与英国海军部的密切关系,才得到豁免,但附上一个条件,即如果战争在1919年5月(日食发生期间)结束,爱丁顿应保证在那时带领一支考察队外出做日食考察。

1919年5月29日,恰好有一次日食发生。英国皇家学会和皇家天文学会联合派出了两支考察队,分别由爱丁顿与克劳姆林(C .D .Crommelin )教授带领,分赴几内亚湾的普林西比岛与巴西的索布腊尔两地进行观测。关于这次考察,爱丁顿有过这样的回忆:“巴西组日食时天气理想,只是因为一些偶然情况,他们的观测结果在几个月之后才得到处理,但最终是他们提供了有决定意义的证明。我当时在普林西比,日食那天,层云密布,还下着雨,几乎是没什么希望了。接近全食阶段,太阳才开始隐隐约约地露面。我们的工作按计划进行,希望情况不会像看上去那么坏。全食终了之前,云层一定是变薄了,因为在多次失败中,我们还是得到两张所需要的星像底片。把它们和太阳处于其它位置上时对同一星场所拍摄的底片进行比较,它们的差异将显示因光线在太阳附近经过时的弯曲现象造成的恒星表观位移……

我们预先就准备在观测现场对这些底片进行测量,这并不是完全出于性急,而是担心回国途中会出现什么意外,所以立即对其中一张成功的底片进行了仔细的研究。……日食后的第三天,当计算工作最后完成时,我已经知道爱因斯坦的理论经受位了这次检验,这种崭新的科学思想一定会被大家所接受。”

经过分析与比较,两支考察队的观测结果分别是α= 1″.61上0″.30和α=1″.98±0″.12。理论的预

期值基本上与观测值相符。

11月6日,英国皇家学会和皇家天文学会联合举行了发布会,发布这次远征队的考察结果。戴孙爵士请求第一个发言,他说:“认真研究过这些底片之后,我要说,底片肯定了爱因斯坦的预言。”大会主席汤姆孙认为“这是牛顿时代以来,所取得的关于引力论的最重要的成果,它已不是发现一个外围的岛屿,而 是找到了整个科学思想的新大陆,它与爱因斯坦密切相关,所以应该在皇家学会的会议上宣布。这个结果是人类思想的最伟大的成就之一。”几周以后,汤姆孙又补充说:“物质使光偏斜,是牛顿提出的第一个疑难问题。提出疑问本身就是一项十分重要的成就。当观测的数值支持了爱因斯坦的引力定律时,它就更加重要了。”

(4)光谱线的引力红移

早在1907年,爱因斯坦设想把相对性原理推广到加速参照系,并由此建立等效性原理时,由于考虑了引力与加速参照系的惯性力等效,直接得到了三条重要的结论。其中之一就是来自太阳表面的光波波长将比地球上同类物质发光的波长长大约两百万分之一倍。这一预言在该年发表的论文《关于相对论原理和由此得出的结论》中提出。

1911年,爱因斯坦在《引力对光传播的影响》的论文中,再次给出引力红移的公式:

8200102-?=-=-c

φννν 利用史瓦西的解也可以得出同样的结果。爱因斯坦的这一结果恰与1909年由法布里(Charles Fabry ,1367~1945)、泊松(Boisson )等人由观测谱线精细结构测出的潜线红移的数量级相同。但在当时,他们误认为这是由于大气吸收层压力影响造成的。

1925年,美国威尔孙山天文台的亚当斯(W .S .Adams ,1876~1956)观测天狼星伴星A 的谱线,所得出的红移量与广义相对论的预言基本上相符。在60年代,对太阳引力红移观测的最好结果是理论预言值的。ν=1.05土0.05倍。白矮星的引力场很强,其引力红移量要大得多。但是如何确定自矮星的引力势却十分困难。1971年,格林斯坦(J .L .Greenstein ,1909~)等人利用衍射技术,测出天狼星伴星A 的红移量510)530(-?±=?νν

。而理论值为(28土1)×10-5,相对偏差小于 7%。以上利用天文观测引

力红移的方法,始终存在着一个困难,这就是由于引力红移量往往要比由相对运动产生的多普勒频移小,致使两者混在一起,难以用观测法区分。

1958年,德国物理学家穆斯堡尔(Rudolf Ludwig Mossbauer ,1929~)发现,当自由原子核发射或吸收γ光子时,由于受到反冲,反冲能量E K 将是激发态能量Ee 与基态能量Eg 之差,这就使光的发射谱与吸收谱偏差2E K 的能量。但是,如果原子核被束缚在晶体点阵上,光子发射或吸收时,整个晶体反冲,会使反冲能量明显地减小,所以可以得到分辨率极高的γ射线共振吸收。穆斯堡尔效应发现不久,就有人想到利用其分辨率极高的特点,来检验广义相对论对引力红移预言。

1959年,美国的庞德(Robert Vivian Pound ,1919~)和雷布卡(G .Rebka )设计了一个在地面观测引力红移的实验。这一实验的设计思想是:地面上的引力颇移与重力势有关,若将发光源放在地面上高度为 h 处,射到地面上引起的频移将为c

gh =?νν

,当h 在几十米范围时,相应的频移量虽然极小,用穆斯堡尔效应还是可以观测到的。庞德等人把57Co γ放射源放在哈佛大学态佛逊物理实验室的22.6米高层上,

把57Fe 的吸收体和闪烁计数器放在底层,预计引力频移不大于2.5×10-15,比57Fe 的14.4keV 的辐射频览

1.13×10-12要窄得多。为了测量这一微小的效应,他们在放射源上加一简谐驱动,使放射源以声频做上下方向的简谐振动,使微小的引力颇移与较大的多普勒频率叠加,再从计数器的变化中,求出引力频移。他们得到的结果是510)26.057.2(-?±=?νν

与理论值2.

46×10-5的比值是γ=1.05±0.10。 后来,庞德与斯尼德尔又改进了上述实验,他们加设了恒温装置,增进了控制系统和电子系统的稳定性,加大了放射源的强度。使在1965年的实验与理论结果的比值为γ=0.990±0.0076,偏差小于1%。

30年代以后,由于原子与原子核物理的飞速发展,人们发现原子的能级跃迁所辐射的电磁波频率相当稳定,它们极为精确地与原子的微观结构相对应。利用这一特性,可以制成性能优异的原子钟。原子钟的构想刚一出现,美国物理学家拉比(Isidor Isaac Rabi,1898~)就提出用原子钟测量引力红移的方案。他们认为测量放在山顶与山脚下两台原子钟的频率,再进行比较,即可以判断出引力红移的数值。

到了70年代,拉比的实验构想有了实现的条件。1971年,哈菲尔(J.C.Ha1ele)和基丁(R.E.Keating)把两台铯钟分别放在民航机上携带登空,在1万米高空沿赤道环行一周,一台由西向东,另一台方向相反,然后再把两台艳钟的计时频率与放在地面上的参考钟进行比较。从结果中除去由于运动产生的多普勒效应的因素。经修正后,所得到的由重力势不同产生的频移结果为:自东十西的实验值为(125±21)×10-9秒,相应的理论值为(144±14)×10-9秒,自西一东的实验值为(177±12)×10-9秒,相应的理论值为(179±18)×10-9秒,理论值与观测值相比,均在10%以内相符。

1977年,阿里(C.O.Alley)用蜘钟做了类似的实验,符合情况在2%以内。1980年,外索特(R.F.C.Vessot)等人用“探索号”火箭将氢原子钟发射到1万公里高空,落回地面后,再与地面氢原子钟相比乱其理论值与实验值的偏差不大于±7×10-5。

利用气垫导轨验证牛顿第二定律

利用气垫导轨验证牛顿第二定律 ----医学院43210309 林敏 【摘要】:气垫导轨是为研究无摩擦现象而设计的力学实验设备,在导轨表面分布着许多小孔,压缩空气从这些小孔中喷出,在导轨和滑块之间形成了月0.1mm 厚的空气层,即气垫,由于气垫的形成,滑块被托起,使滑块在气垫上作近似无摩擦的运动。利用气垫导轨,再配以光电计时系统和其他辅助部件,可以对做直线运动的物体(即滑块)进行许多研究,如测定速度、加速度、验证牛顿第二定律,研究物体间的碰撞,研究简谐运动的规律等。 【Abstract】:Using the mattress guide, photoelectric timing system and other auxiliary parts. According to the object to do straight-line movement (i.e. the slider), we can do a lot of researches, such as measuring the velocity, acceleration and proving Newton's second law. In addition, it also can research object collisions, study the law of simple harmonic oscillator and so on. 【关键词】气垫导轨、通用计数器、测速的试验方法、牛顿第二定律、控制变量法、导轨调平 实验回顾 【实验目的】 1.熟悉气垫导轨和MUJ-613电脑式数字毫秒计的使用方法。 2.学会测量滑块速度和加速度的方法。 3.研究力、质量和加速度之间的关系,通过测滑块加速度验证牛顿第二定律。

广义相对论基础

广义相对论基础 Introduction to General Relativity 课程编号:S070200J15 课程属性:学科基础课学时/学分:60/3 预修课程:大学理论物理、高等数学 教学目的和要求: 本课程为物理学、天文学研究生的学科基础课,同时也是为今后有可能接触到引力理论的其它学科研究生的学科基础课。主要介绍爱因斯坦的广义相对论。使学生具有在今后接触到引力场问题时,能通过阅读有关书籍文献对更深入的问题进行了解的能力。本课强调弄清物理和几何图像。本课不涉及引力场量子化、引力和其它作用之统一以及以抽象数学工具表现时空几何等问题。本课也扼要对广义相对论的观测和实验检验,黑洞问题和宇宙学问题进行简要地介绍。 内容提要: 第一章张量分析基础 张量代数,联络,协变微商,测地线方程,Killing矢量。 第二章引力场方程 引力与度规,引力红移,黎曼曲率张量,Bianchi恒等式,引力场方程。 第三章场方程的应用(Ⅰ) 西瓦兹解,西瓦兹场中质点的运动,光线偏折,引力透镜效应,雷达回波,0Kruskal坐标和黑洞,Keer度规。 第四章场方程的应用(Ⅱ) 宇宙学原理,共动坐标系,Robertson-Walker度规,宇宙学红移,标准宇宙学模型简介。 主要参考书: 1. R, Adler, M.Bagin,M.Schiffer,Introduction to General Relativity(第二版),McGraw-Hill Book Company,New York,1975. 2. 俞允强,《广义相对论引论》,北京大学出版社,北京,1997。 3. S. Weinberg,Gravitation and Cosmology,John Wiley Sons,Inc.,New York,1972. 撰写人:邓祖淦(中国科学院研究生院) 撰写日期:2001年09日

15[1].4_广义相对论简介_学案(新人教版选修3-4)2

15.4 广义相对论简介学案 ★知识目标 1.了解广义相对性原理和等效原理。 2.了解广义相对论的几个结论。 ★教学重点 广义相对性原理和等效原理。 ★教学难点 理解广义相对论的几个结论。 ★知识梳理 一、超越狭义相对论的思考 爱因斯坦思考狭义相对论无法解决的两个问题: 1、引力问题,万有引力定律不满足洛伦兹变换,无法纳入狭义相对论的理论框架; 2、非惯性系问题,狭义相对论只适用于惯性系。它们是促成广义相对论的前提。 二、广义相对性原理和等效原理 把相对性原理从“任何惯性系平权”推广到“包括非惯性系在内的任意参考系(即包括惯性系和非惯性系)平权”。 三、广义相对论几个结论以及相关实验验证 1、光线经过强引力场中发生弯曲 2、引力红移 3、水星轨道近日点的进动 四、关于的宇宙大爆炸理论 大爆炸宇宙学:多方分析表明,我们的宇宙是在约200亿年以前从一个尺度很小的状态发展演化而来的。 ★随堂检测 1. 和问题难以用狭义相对论解决,催促了广义相对论的诞 生。 2.广义相对论认为,在任何参考系中,物理规律都是_____________。 3.等效原理的基本内容是一个均匀的_____________场与一个做__________________运动的参考系是等价的。 4.广义相对论告诉我们,____________的存在使得空间不同位置的____________出现差别,物质的____________使光线弯曲。 5.下列属于广义相对论结论的是 ( ) A.尺缩效应 B.时间变慢

C.光线在引力场中弯曲 D.物体运动时的质量比静止时大大 6、简答:从广义相对论的两个基本原理出发,可以直接得到一些“意想不到”的结论。请大家阅读教材,说明得到了哪些结论这些解论的实验验证是什么? 7、查阅相关资料了解,宇宙发展演化的过程。 参考答案:1、引力问题,非惯性系问题 2、相同的 3、引力,匀加速 4、引力场,时间进程,引力 5、C 6、1:第一个结论,物质的引力使光线弯曲。20世纪初,人们观测到了太阳引力场引起的光线弯曲。观测到了太阳后面的恒星。 2:第二个结论,引力场的存在使得空间不同位置的时间进程出现差别。例如在强引力的星球附近,时间进程会变慢。天文观测到了引力红移现象,验证了这一结论的成立。 7、略

高中生物验证性实验和探究性实验专题

高一生物探究性实验专题 一、背景叙述 高中生物实验分两种类型,验证性实验和探究性实验,由于后者更能体现探究能力、实验设计能力和运用生物学知识和方法分析和解决实际问题能力;更能体现科学态度、科学精神和创新意识,每次考试都有相当比重。由于探究实验知识教材中并没有系统的整理,使同学们在做这方面题时感到无所是从。为解决这一问题,现将有关实验设计的基本理论、实验设计的思路方法和常见的类型作一介绍,以期增加理论知识,提高分析问题和解决问题的能力之目的。 二、高一生物必修一分子与细胞中所涉及的实验 实验1使用高倍显微镜观察几种细胞 实验2检测生物组织中的还原糖、脂肪和蛋白质 实验3观察DNA和RNA在细胞中的分布 实验4体验制备细胞膜的方法 实验5用高倍显微镜观察叶绿体和线粒体 实验6比较过氧化氢在不同条件下的分解 实验7绿叶中色素的提取和分离 实验8细胞大小与物质运输的关系 探究1植物细胞的吸水和失水 探究2影响酶活性的条件 探究3探究酵母菌细胞呼吸的方式 探究4环境因素对光合作用强度的影响 三、探究实验的基本内容 探究性实验一般包括:提出问题、作出假设、设计实验、进行实验并观察并记录结果(有时需收集数据)、分析结果得出结论和表达和交流六个基本内容。 (一)提出问题 人们对事物作缜密观察以后,常常由于好奇心或想作进一步的了解而提出问题,虽然任何人都能提出问题,但只有意义的问题才值得探讨,问题即为实验的题目,是实验要达到的具体目标,例如“探究植物细胞在什么条件下吸水和失水”“探究影响酶活性的条件”“酵母菌在有氧还是无氧条件下产生酒精”“光照强度对光合作用的影响” (二)作出假设 根据已有的知识和经验,对提出的问题作出尝试性的回答,也就是作出假设。假设一般分为两个步骤:第一步,提出假设;第二步,做出预期(推断)。一个问题常有多个可能的答案,但通常只有一个是正确的。因此,假设是对还是错,还需要加以验证,即依据假设或预期,设计实验方案,进行实验验证。 (三)设计实验 A、实验原则: 1、单一变量原则 实验过程中可以变化的因素称为变量。按性质不同,通常可分为三类:自变量、因变量和无关变量 自变量,指实验中人为改变的变量。因变量,指实验中随着自变量的变化而引起的变化和结果。通常,自变量是原因,因变量是结果,二者具有因果关系。实验的目的在于获得和解释这种前因后果。例如,在“温度对酶活性”的实验中,所给定的低温(冰块)、适温(37℃)、高温(沸水浴)就是实验变量。而由于低温、适温、高温条件变化,唾液淀粉酶水解淀粉的活

广义相对论简介

广义相对论简介 引子 由牛顿力学到狭义相对论,基本观念的发展是,其一:由一切惯性系对力学规律平权到一切惯性系对所有物理规律平权;其二:由绝对时空到时空与运动有关。 爱因斯坦进一步的思考:非惯性系与惯性系会不平权吗?物质与运动密不可分,那么时空与物质有什么关系?关于惯性和引力的思考,是开启这一迷宫大门的钥匙,最终导致广义相对论的建立。 §1 广义相对论的基本原理 一、等效原理 1. 惯性质量与引力质量 实验事实:引力场中同一处,任何自由物体有相同的加速度。 根据上述事实及力学定律,可得任一物体的惯性质量 与引力质量 满足 常量,与运动物体性质无关,选择合适的单位,可令 = = , 即惯性质量与引力质量相等。从而,在引力场中自由飞行的物体,其加速度必等于 当地的引力强度 。 2. 惯性力与引力 已知在非惯性系中引入惯性力后,可应用力学规律,而惯性力。在 此基础上,讨论下述假想实验。 1) 自由空间中的加速电梯(如图1) 以 为参考系,无法区分ma 是惯性力还是引力。因此,也可以认为是在引力场中 匀速运动的电梯。 2) 引力场中自由下落的电梯S*(如图2) 以S*为参考系,无法区分是二力平衡 还是无引力。因此,也可认为S*是 自由空间中匀速运动的电梯。 以上二例表明,由 = , 可导出惯性力与引力的力学效应不可区分, 或者说,一加速参考系与引力场等效。当然,由于真实引力场大范围空间内不均匀, 图 图1 图 2

因此,这种等效只在较小范围空间内才成立,我们称之为局域等效。 3. 等效原理 弱等效原理:局域内加速参考系与引力场的一切力学效应等效。 强等效原理:局域内加速参考系与引力场的一切物理效应等效。 广义相对论的等效原理是指强等效原理。 4.对惯性系的再认识——局域惯性系 按牛顿力学的定义,惯性定律成立的参考系叫惯性系。恒星参考系是很好的惯性 系,不存在严格符合此定义的真正的惯性系。惯性系之间无相对加速度。 按爱因斯坦的定义,狭义相对论成立的参考系,或(总)引力为零的参考系叫惯 性系。因此,以引力场中自由降落的物体为参考的局域参考系是严格的惯性系,简 称为局惯系。引力场中任一时空点的邻域内均可建立局惯系,在此参考系内运用狭 义相对论。同一时空点的各局惯系间无相对加速度,不同时空点的各局惯系间有相 对加速度。 二、广义相对性原理 原理叙述为:一切参考系对物理规律平权,即物理规律在一切参考系中的表述形 式相同。 为了在广义相对性原理的基础上建立广义相对论理论,爱因斯坦所做的进一步工 作是使引力几何化,即把引力场化作时空几何结构加以表述。对广义相对论普遍理 论的研究数学上涉及黎曼几何、张量分析等,超出本简介范围,下面只作浅显的说 明。 §2 引力场的时空弯曲 一、弯曲空间的概念 从高维平直空间可观测低维平直空间与弯曲空间的差异。 平面——二维平直空间内:测地线(即两点间距离的极值线)为直线,三角形内 角和=,圆周长=。 球面——二维弯曲空间:测地线为弧线,如图。三角形(PMN)的内角和>, 圆周长<。 故通过测量可判定空间弯曲。(如图3) Array二、引力场的空间弯曲 讨论爱因斯坦转盘(如图4) 相对惯性系S以角速度均匀 转动的参考系。由S系可推知 系中的测量结果(狭义相对论) 图 3

验证牛顿第二定律实验2

验证牛顿第二定律实验2 一.填空题(共10小题) 1.(2016秋?安顺期末)某实验小组采用图1所示的装置探究“牛顿第二定律”即探究加速度a与合力F、质量M的关系。实验中,小车碰到制动装置时,钩码尚未到达地面。 (1)为了把细绳对小车的拉力视为小车的合外力,要完成的一个重要步骤是; (2)为使图示中钩码的总重力大小视为细绳的拉力大小,须满足的条件是钩码的总质量小车的总质量(填“大于”、“小于”、“远大于”或“远小于”)。(3)一组同学在做小车加速度与小车质量的关系实验时,保持钩码的质量一定,改变小车的总质量,测出相应的加速度。采用图象法处理数据。为了比较容易地检查出加速度a与小车的总质量M之间的关系,应作出a与的图象。 (4)甲同学根据测量数据作出的a﹣F图象如图2所示,说明实验中存在的问题是。 2.(2016秋?通渭县校级期末)在验证牛顿第二定律的实验中,测量长度的工具是;测量时间的工具是.实验中小盘和砝码的总质量m与车和砝码的总质量M间必须满足的条件是. 3.(2016秋?宿州期末)某同学运用“验证牛顿第二定律的实验”的装置,设计了如下实验: A.实验装置如图甲所示,一端系在滑块上的轻质细绳绕过转轴光滑的轻质滑轮另一端挂一质量为m=50g的钩码,用垫块将长木板有定滑轮的一端垫起.调

整长木板的倾角,直至轻推滑块后,滑块沿长木板向下做匀速直线运动;B.保持长木板的倾角不变,取下细绳和钩码,接好纸带,接通打点计时器的电源,让滑块沿长木板滑下,打点计时器打下的纸带如图乙所示,相邻两个计数点之间还有4个打点未画出,打点计时器接频率为50Hz的低压交流电源,(g取9.8m/s2).回答下列问题: (1)纸带的(“A端”或“E端”)与滑块相连. (2)根据纸带可得:滑块的加速度大小a=m/s2.(保留3位有效数字)(3)不计纸带与打点计时器间的阻力,滑块的质量M=kg.(保留3位有效数字) 4.(2017春?曹妃甸区校级期末)某小组“验证牛顿第二定律”的实验装置如1图,长木板固定在水平桌面上,一端装有定滑轮;木板上有一滑块,其一端与电磁打点计时器的纸带相连,另一端通过跨过定滑轮的细线与托盘连接 (1)该小组研究加速度和拉力关系时,得到的图象将会是如图2中的

大学物理实验报告范例(验证牛顿第二定律)

大学物理实验报告范例(验证牛顿第二定律)

怀化学院

1 、 速度测量 挡光片宽度Δs 已知,用计时测速仪测出挡光片通过光电门时的挡光时间Δt,即可测出平均速度,因Δs 很小,该平均速度近似为挡光片通过光电门时的瞬时速度,即: 瞬时速度:t s dt ds t s v t ??≈=??=→?lim MUJ-5B 计时仪能直接计算并显示速度。 2、 加速度测量

(1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/0.0058=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。 2、由数据记录表4,可得a 与M 的关系如下:

广义相对论的理解

11、广义相对论的几 个疑难问题 1、暗物质的本质:现代宇宙学观测表明宇宙中存在暗物质和暗能量。但是它们的起源仍然是个谜。我们能找到的普通物质仅占整个宇宙的4%,各种测算方法都证实,宇宙的大部分是不可见的。要说宇宙中仅仅就是暗色尘云和死星体是很容易的,但已发现的有力证据说明,事实并非如此。正是对宇宙中未知物质的寻找,使宇宙学家和粒子物理学家开始合作,最有可能的暗物质成分是中微子或其它两种粒子:neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据认为,这三种粒子都不带电,因此无法吸收或反射光, 但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。 天文学家已经证明:宇宙中的天体从比我们银河系小100万倍的星系到最大星系团,都是由一种物质形式所维系在一起的,这种物质既不是构成我们银河系的那种物质,也不发光。这种物质可能包括一个或更多尚未发现的基本粒子组成,该物质的聚集产生导致宇宙中星系和大尺寸结构形成的万有引力。同时,这些粒子可能穿过地面实验室。 美国能源部LANL实验室的液体闪烁体中微子探测器、加拿大Sudbury中微子观测站和日本超级神冈加速器实验的最新结果给出 有力的证据:中微子以各种形式“振荡”,因此必定会具有质量。虽然质量很小,但宇宙中大量的中微子加起来可使总的质量达到相当高。美国费米国家实验室新的加速器实验MiniBooNE和MINOS将研究中微子震荡和中微子质量。 尚未发现的其它粒子有可能存在,例如一种称为超对称的新对称理论预言有一种大的新类型的粒子,其中有些可解释暗物质。现正在费米实验室TeV能级加速器进行的和计划在CERN正建造的大型强子对撞机(LHC)上开展的实验,以及地下低温暗物质寻找和空间利用伽马射线大面积天体望远镜所进行的实验,目的都是要寻找超对称粒子。 阿尔法磁谱仪(AMS)安装在国际空间站上,寻找反物质星系和

如何上好“验证性实验”

如何上好“验证性实验” 在青岛版小学科学实验操作中,经常会遇到验证性的实验,那么什么是验证性实验呢?它又有什么特点呢? 所谓验证性实验就是学生在实验猜想的基础上,自行设计出实验方案,再由学生通过实验观察和操作,验证猜想,并获得新知的实验方式。 它的特点是:在这种实验中并不能产生很多的新知识,注重的是通过自行设计实验来验证猜想,并将实验后的结论与猜想进行对照,从而获得新知。 为了更好的上好验证性实验,我从以下三个方面提出了自己的想法。 1 “预热”――实验猜想 猜想是实验的一部分,它是一个实验开始的“预热”阶段,没有猜想的实验是一个不完整的实验。对实验进行猜想是科学课的一个重要环节,他可以让学生对这个实验的过程、结果以及实验过程中应该注意的事项进行一个大体的“预测”。 为了让猜想更具条理性、可操作性,可以将实验猜想,设置为表格的形式。例如,在上《浮与沉》一课时,可将猜想设置为以下形式:

这里需要注意的是,猜想和实验应该分开,猜想的时候不能实验。许多老师没有强调好这一点,学生们在猜想的时候,同时进行实验,结果与我们的实验预期目标大相径庭。 2 实验过程 经历了实验的猜想,学生们特别想知道自己的猜想是否正确,教师要抓住机会,趁热打铁,引起学生对实验的向往与热情。 2.1 实验器材的介绍。 小学科学中的有些实验器材非常简单,学生一看就明白,对于这样的实验,教师可直接放手让学生进行实验。而有些实验器材,学生头一次接触,或者实验操作中有一定的危险性,这样的话,就需要教师来讲解它们的用途,以便学生在实验操作中,正确的使用它们。 2.2 设计实验方案。 让学生根据要研究的问题,小组合作设计一个好的实验方案。有了方案,学生在实验过程中就会有的放矢,就会知道自己要去干什么,如何去研究,知道如何去使用教师提供的实验器材等。 具体做法:可让学生以小组为单位先行设计,然后进行汇报,在汇报过程中,教师要加以指导,使之最合理化、科学化、规范化。 2.3 设计一个完整有效的实验报告单。

量子科学实验

量子科学实验 一、背景及科学意义 根据国务院第105次常务会议审议通过的“中国科学院创新2020规划”,中国科学院启动实施系列战略性先导科技专项,量子科学实验卫星(以下称量子卫星)所属空间科学战略性先导科技专项是首批启动的先导专项之一。在2008年立项的中科院重大创新项目“空间尺度量子实验关键技术”的基础上,经过近一年的科学目标与有效载荷配置论证、工程立项综合论证,于2011年12月23日正式立项启动。 量子科学实验卫星工程将借助于卫星平台,一方面将在国际上首次实现千公里级的无条件安全的量子通信,促进广域乃至全球范围量子通信网络的最终实现;另一方面,将是国际上首次在宏观大尺度上对量子理论本身展开实验检验,在更深层次上为认识量子物理的基础科学问题、拓宽量子力学的研究方向做出重要贡献。量子科学实验卫星所发展起来的技术,还将为在空间尺度对广义相对论效应、量子引力等物理学基本原理的深入检验奠定基础,促进整个物理学的发展。 量子科学实验卫星总重量631公斤,将由“长征二号丁”运载火箭在酒泉卫星发射中心发射,运行于500公里太阳同步轨道,轨道倾角97.37°,设计在轨运行寿命2年。有效载荷有量子密钥通信机、量子纠缠发射机、量子纠缠源及实验控制与处理机和高速相干激光通信机。卫星配置两套独立的有效载荷指向机构,通过姿控指向系统协同控制,可与地面上相距千公里量级的两处光学站同时建立量子光链路,光轴指向精度优于3.5urad。 二、科学目标 1、进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破。 2、在空间尺度进行量子纠缠分发和量子隐形传态实验,开展空间尺度量子力学完备性检验的实验研究。 三、研制历程

《验证牛顿第二定律》实验

《验证牛顿第二定律》实验 【重点知识提示】 1.实验目的、原理 实验目的验证牛顿第二定律,即物体的质量一定时,加速度与作用力成正比;作用力一定时,加速度与 质量成反比.实验原理:利用砂及砂桶通过细线牵引小车做加速运动的方法,采用控制变量法研究上述两组 关系.如图4—6所示,通过适当的调节,使小车所受的阻力忽略,当M 和m 做加速运动时,可以得到 g m M m a += m M M mg T +?= 当M>>m 时,可近似认为小车所受的拉力T 等于mg . 2.平衡摩擦力..... :在长木板的不带滑轮的 一端下面垫上一块薄木板,反复移动其位置, 直至后面的纸带连好并不挂砂桶的小车刚好在斜面上保持匀速 运动为止. 3.注意事项 该实验原理中T=m M M mg +?,可见要在每次实验中均要求............M>>m ....,.只有这样,才能使牵引小车的牵引力近似等于砂及砂桶的重力. 在平衡摩擦力时,垫起的物体的位置要适当,长木板形成的倾角既不能太大也不能太小,同时每次改变M 时,不再重复平衡摩擦力. 【例1】 在《验证牛顿第二定律》的实验中,在研究作用力一定时加速度与质量成反比的结论时,下列说法中错误的是 ( ) A .平衡摩擦力时,应将装砂的小桶用细绳通过定滑轮系在小车上 B .每次改变小车质量时,不需要重新平衡摩擦力 C .实验时,先放开小车,再接通打点计时器电源 D .小车运动的加速度,可从天平测出装砂小桶和砂的质量m 及小车质量M ,直接用公式a=M mg 求出(m<

实验:验证牛顿第二定律习题及详解

实验:验证牛顿第二定律 1.“验证牛顿运动定律”的实验中,以下说法正确的是( ) A.平衡摩擦力时,小盘应用细线通过定滑轮系在小车上 B.实验中应始终保持小车和砝码的质量远远大于小盘和砝码的质量 C.实验中如果用纵坐标表示加速度,用横坐标表示小车和车内砝码的总质量,描出相应的点在一条直线上时,即可证明加速度与质量成反比 D.平衡摩擦力时,小车后面的纸带必须连好,因为运动过程中纸带也要受到阻力 解析:平衡摩擦力时,细线不能系在小车上,纸带必须连好,故A错D对;小车和砝码的总质量应远大于小盘和砝码的总质量,故B对;若横坐标表示小车和车内砝码的总质量,则a-M图象是双曲线,不是直线,故C错.答案: BD 2.(2011年三明模拟)用如图甲所示的装置做“验证牛顿第二定律”实验,甲同学根据实验数据画出的小车的加速度a和小车所受拉力F的图象为图中的直线Ⅰ,乙同学画出的a-F图象为下图中的直线Ⅱ.直线Ⅰ、Ⅱ在纵轴或横轴上的截距较大,明显超出了误差范围,下面给出了关于形成这种情况原因的四种解释,其中可能正确的是( ) A.实验前甲同学没有平衡摩擦力 B.甲同学在平衡摩擦力时,把长木板的末端抬得过高了 C.实验前乙同学没有平衡摩擦力 D.乙同学在平衡摩擦力时,把长木板的末端抬得过高了 解析:由直线Ⅰ可知,甲同学在未对小车施加拉力F时小车就有了加速度,说明在平衡摩擦力时,把木板的末端抬得过高了,B正确,A错误;由直线Ⅱ可知,乙同学在对小车施加了一定的拉力时,小车的加速度仍等于零,故实验前乙同学

没有平衡摩擦力或平衡摩擦力不足,C正确,D错误. 答案:BC 3.在“探究加速度与物体质量、物体受力的关系”实验中,某小组设计了如图所示的实验装置.图中上下两层水平轨道表面光滑,两小车前端系上细线,细线跨过定滑轮并挂上砝码盘,两小车尾部细线连到控制装置上,实验时通过控制装置使两小车同时开始运动,然后同时停止. (1)在安装实验装置时,应调整滑轮的高度,使__________.在实验时,为减小系统误差,应使砝码盘和砝码的总质量________(选填“远大于”、“远小于”或“等于”)小车的质量. (2)本实验通过比较两小车的位移来比较小车加速度的大小,能这样比较,是因为________. 解析:(1)在安装实验装置时,应调整滑轮的高度,使细线与水平轨道平行,在实验时,为使砝码和盘的总重力近似等于细线的拉力,作为小车所受的合外力,必须满足砝码和盘的总质量远小于小车的质量. (2)因为两小车同时开始运动,同时停止,运动时间相同,由s=1 2 at2可知,a 与s成正比. 答案:(1)小车与滑轮之间的细线与轨道平行远小于 (2)两车从静止开始匀加速直线运动,且两车运动的时间相同,其加速度与位移成正比 4.如图为“用DIS(位移传感器、数据采集器、计算机)研究加速度和力的关系”的实验装置.

广义相对论的学习总结

广义相对论的学习总结 1.引言 1.1前言 经过过去一年对广义相对论的学习,基本对广义相对论的基本原理和运用有了比较完整的认识。这篇文章是为了总结自己学习的体会,尽量用自己的语言谈谈对广义相对论的理解。由于作者水平有限,也为了文章的简洁,所以省去数学推导,仅保留基本的数学公式和方法说明。 广义相对论是爱因斯坦一大理论成果,可以解释宏观世界一切物体的运动,可以在一切坐标系下运用,本身又保持了相当完美的对称性和简洁性。随着空间探测技术的发展,广义相对论的许多结论都得到了证明,而广义相对论和量子力学构成了现代物理的两大支柱。 1.2导语 在具体介绍广义相对论的内容之前,我想用自己的语言,对广义相对论的思想和研究问题步骤做一个小的总结和介绍。总的来说,广义相对论是建立在四个假设之上,通过这四个假设,爱因斯坦认为惯性场和引力场等效,以及所有参考系的平权性。然后爱因斯坦把引力场认为是一种几何效应。是由于质量在空间上的分布不均匀,导致空间的空间扭曲。 在数学上,用张量来代表物理量,以满足物理规律在所有参考系下都成立。用黎曼几何来刻画弯曲空间,联络来描述引力强度,曲率

张量来描述空间弯曲,度规张量来描述引力势。 接下来便是构建场运动方程。我们可以用惠曼的名言总结道:“物质告诉时空如何弯曲,时空告诉物质如何运动。”按照爱因斯坦的想法,引力是由于质量空间分布不均匀造成的几何效应。所以爱因斯坦场方程左边应该是反映时空的几何性质的张量,右边是能动张量。再继续利用能量守恒定律,便可以推出爱因斯坦场方程。 应用爱因斯坦的场方程,得到了很多新奇的结论和实验预言,并且以“水星进动”和“引力红移”为代表的实验验证了广义相对论的正确性。 广义相对论还预言了引力弯曲效应极大情况下黑洞的存在。 而广义相对论作为宇宙学的理论基础,特别是近几十年观测技术的进步,使得宇宙学建立起了相对完整的理论系统。 2.基本假设 广义相对论建立在以下假设下。 2.1等效原理 广义相对论用的是强等效原理。 引力场与惯性场的的一切物理效应都是局域不可分辨的。 2.2马赫原理 惯性力起源于物质间的相互作用,起源于受力物体相对于遥远星系的加速运动,而且与引力有着相同或相近的物理根源。

爱因斯坦广义相对论

爱因斯坦广义相对论 广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。 如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。 进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。 我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。 在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。 广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。 广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。 爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广

关于验证牛顿第二定律实验的典型例题

关于验证牛顿第二定律实验的典型例题 2013.11 典型例题1——在“验证牛顿第二定律”实验中,研究加速度与力的关系时得到如图所示的图像,试分析其原因. 分析:在做关系实验时,用砂和砂桶重力mg代替了小车所受的拉力F,如图所示: 事实上,砂和砂桶的重力mg与小车所受的拉力F是不相等的.这是产生实验系统误差的原因,为此,必须根据牛顿第二定律分析mg和F在产生加速度问题上存在的差别.由图像经过原点知,小车所受的摩擦力已被平衡.设小车实际加速度为a,由牛顿第二定律可得: 即 若视,设这种情况下小车的加速度为,则.在本实验中,M保持不变,与mg(F)成正比,而实际加速度a与mg成非线性关系,且m越大,图像斜率越小。理想情况下,加速度a与实际加速度a差值为 上式可见,m取不同值,不同,m越大,越大,当时,,,这就是 要求该实验必须满足的原因所在. 本题误差是由于砂及砂桶质量较大,不能很好满足造成的. 点评:本实验的误差来源:因原理不完善引起的误差,本实验用砂和砂桶的总重力mg代替小车的拉力,而实际小车所受的拉力要小于砂和砂桶的总重力,这个砂和砂桶的总质量越接近小车和砝码的总质量,误差越大,反之砂和砂桶的总质量越小于小车和砝码的总质量,由此引起的误差就越小.因此满足砂和砂桶的总质量m远小于小车和砝码的总质量M的目的就是为了减小因实验原理不完善而引起的误差.此误差可因 为而减小,但不可能消去此误差. 典型例题2——在利用打点计时器和小车做“验证牛顿第二定律”的实验时,实验前为什么要平衡摩擦力?应当如何平衡摩擦力?

分析:牛顿第二定律表达式中的F,是物体所受的合外力,在本实验中,如果不采用一定的办法平衡小车及纸带所受的摩擦力,小车所受的合外力就不只是细绳的拉力,而应是细绳的拉力和系统所受的摩擦力的合力.因此,在研究加速度a和外力F的关系时,若不计摩擦力,误差较大,若计摩擦力,其大小的测量又很困难;在研究加速度a和质量m的关系时,由于随着小车上的砝码增加,小车与木板间的摩擦力会增大,小车所受的合外力就会变化(此时长板是水平放置的),不满足合外力恒定的实验条件,因此实验前必须平衡摩擦力. 应如何平衡摩擦力?怎样检查平衡的效果?有人是这样操作的;把如图所示装置中的长木板的右端垫高一些,使之形成一个斜面,然后把实验用小车放在长木板上,轻推小车,给小车一个沿斜面向下的初速度,观察小车的运动情况,看其是否做匀速直线运动.如果基本可看作匀速直线运动,就认为平衡效果较好.这样操作有两个问题,一是在实验开始以后,阻碍小车运动的阻力不只是小车受到的摩擦力,还有打点计时器限位孔对纸带的摩擦力及打点时振针对纸带的阻力.在上面的做法中没有考虑后两个阻力,二是检验平衡效果的方法不当,靠眼睛的直接观察判断小车是否做匀速直线运动是很不可靠的.正确的做法是。将长木板的末端(如图中的右端)垫高一些,把小车放在斜面上,轻推小车,给小车一个沿斜面向下的初速度,观察小车的运动,当用眼睛直接观察可认为小车做加速度很小的直线运动以后,保持长木板和水平桌面的夹角不动,并装上打点计时器及纸带,在小车后拖纸带,打点计时器开始打点的情况下,给小车一个沿斜面向下的初速度,使小车沿斜面向下运动.取下纸带后,如果在纸带上打出的点子的间隔基本上均匀,就表明小车受到的阻力跟它的重力沿斜面的分力平衡. 点评:(1)打点计时器工作时,振针对纸带的阻力是周期性变化的,所以,难以做到重力沿斜面方向的分力与阻力始终完全平衡,小车的运动也不是严格的匀速直线运动,纸带上的点子间隔也不可能完全均匀,所以上面提到要求基本均匀. (2)在实验前对摩擦力进行了平衡以后,实验中需在小车上增加或减少砝码,因此为改变小车对木板的压力,从而使摩擦力出现变化,有没有必要重新平衡摩擦力?我们说没有必要,因为由此引起的摩擦力变化 是极其微小的,从理论上讲,在小车及其砝码质量变化时,由力的分解可知,重力沿斜面向下的分力和 垂直斜面方向的分力(大小等于对斜面的压力),在斜面倾角不变的情况下是成比例增大或减小的,进 而重力沿斜面方向的分力和摩擦力f成比例变化,仍能平衡.但实际情况是,纸带所受阻力,在平 衡时有,而当和f成比例变化后,前式不再相等,因而略有变化,另外,小车的轴与轮的摩擦力也会略有变化,在我们的实验中,质量变化较小,所引起的误差可忽略不计. 典型例题3——用如图甲所示的装置研究质量一定时加速度与作用力的关系.实验中认为细绳对小车的作用力F等于砂和桶的总重力,用改变砂的质量的办法来改变对小车的作用力F,用打点计时器测出小车的加速度a,得出若干组F和a的数值,然后根据测得的数据作a—F图线.一学生作出如图乙所示的图线,发现横轴上的截距OA较大,明显地超出了偶然误差的范围,这是由于实验中没有进行什么步骤?

验证牛顿第二定律—气垫导轨实验(一)

中国石油大学(华东)现代远程教育 实验报告 课程名称:大学物理(一) 实验名称:验证牛顿第二定律――气垫导轨 实验(一) 实验形式:在线模拟+现场实践 提交形式:提交书面实验报告 学生:学号: 年级专业层次: 学习中心:

提交时间:年月日 一、实验目的 1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。 3.掌握在气垫导轨上测定速度、加速度的原理和方法。 4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。 5.掌握验证物理规律的基本实验方法。 二、实验原理 1.速度的测量 一个作直线运动的物体,如果在t~t+Δt时间通过的位移为Δx(x~x+Δx),则该物 体在Δt时间的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度 (1) 实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。但在一定误差围,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。2.加速度的测量 在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。 (1)由测量加速度 在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为 (2) 根据式(2)即可计算出滑块的加速度。 (2)由测量加速度 设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为

爱因斯坦《狭义与广义相对论浅说》

狭义与广义相对论浅说 爱因斯坦 .

第一部分狭义相对论·············································································································· ····································································································································································································································· ················································································································································································································· ······································································································· ················································································· ····································································· ············································································································ ············································································································ ························································································································································································································· ··························································································· ······················································································· ······································································································· ··························································································· ······································································································· ··································································································· ·········································································································· ························································································································································································································· ········································ ····························· ······················································································· ·························································································································································································· ················································ ······················································ ······················································································· ···································································· ··················································································· ··················································································· ···························································· ····················································································································································································································· ······························································································· ··············································································· ······························································································· ····························································································· ····················································································· ····························································································· ······································································· (4) 1.几何命题的物理意义 4 2.坐标系 5 3.经典力学中的空间和时间7 4.伽利略坐标系8 5.相对性原理(狭义)8 6.经典力学中所用的速度相加定理10 7.光的传播定律与相对性原理的表面抵触10 8.物理学的时间观12 9.同时性的相对性14 10.距离概念的相对性15 11.洛伦兹变换16 12.量杆和钟在运动时的行为19 13.速度相加定理斐索实验20 14.相对论的启发作用22 15.狭义相对论的普遍性结果22 16.经验和狭义相对论25 17.闵可夫斯基四维空间27 第二部分广义相对论29 18.狭义和广义相对性原理29 19.引力场31 20.惯性质量和引力质量相等是广义相对性公设的一个论据32 21.经典力学的基础和狭义相对论的基础在哪些方面不能令人满意34 22.广义相对性原理的几个推论35 23.在转动的参考物体上的钟和量杆的行为37 25.高斯坐标41 26.狭义相对论的空时连续区可以当作欧几里得连续区43 27.广义相对论的空时连续区不是欧几里得连续区44 28.广义相对性原理的严格表述45 29.在广义相对性原理的基础上解引力问题47 第三部分关于整个宇宙的一些考虑49 30.牛顿理论在宇宙论方面的困难49 31.一个“有限”而又“无界”的宇宙的可能性50 32.以广义相对论为依据的空间结构53 附录54 一、洛伦兹变换的简单推导54 二、闵可夫斯基四维空间(“世界”)57 三、广义相对论的实验证实58 (1)水星近日点的运动59 (2)光线在引力场中的偏转60 (3)光谱线的红向移动62 四、以广义相对论为依为依据的空间结构64 五、相对论与空间问题65

相关文档
最新文档