DSDV路由协议分析与仿真

毕业设计(论文) 题目DSDV路由协议分析与仿真

学院(全称) 信息科学与工程学院

专业、年级通信工程06级02班

学生姓名学号

指导教师

论文评阅人

重庆交通大学

2010年

前言

物联网的英文名称为“The Internet of Things”,简称:IOT。由该名称可见,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础之上的延伸和扩展的一种网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网的概念是在1999年提出的。最早时期,物联网被称之为传感网。中科院早在1999年就启动了传感网的研究,并已取得了一些科研成果,建立了一些适用的传感网。1999年,在美国召开的移动计算和网络国际会议提出了,“传感网是下一个世纪人类面临的又一个发展机遇”。2003年,美国《技术评论》提出传感网络技术将是未来改变人们生活的十大技术之首。

随着通信技术、嵌入式计算技术和传感器技术的飞速发展和日益成熟,人们研制出了各种具有感知能力、计算能力和通信能力的微型传感器。由许多微型传感器构成的无线传感器网络(WSN)引起了人们的极大关注。由设置在无人值守的监控区域内大量的具有通信与计算能力的微小传感器节点构成的智能自治测控网络系统称为无线传感器网络(Wireless sensor networks)。它包括传感器、感知对象和观察者。人们可以通过传感器网络直接感知客观世界,称为人与自然之间重要的交互方式。

WSN的主要任务是对分布在传感节点监测范围内的数据进行查询,收集和处理,并将最终数据发布给终端节点,方便人们感知客观世界;而路由算法则是WSN中最重要的部分,它用来建立源节点与目的节点之间的路径,实现数据通信。DSDV是对传统的Bellman-Ford路由协议的改进,是一种无环路距离向量路由协议,同时也是一种表驱动主动路由协议。由于其算法简单,同时又具有获取路由的延时小,较适合具有实时要求的应用;引入目的节点序列号,既能区别路由的新旧,又能有效避免路由环路的产生和无限计数的问题;有效减少端到端的时延,从一定程度上满足各种应用对QoS的要求。在此对其进行研究,通过仿真,分析其有点以及存在的问题,并相对应的提出改进办法。

NS2(Network Simulator, version 2)称为网络模拟器,又称网络仿真器。最初由UC Berkeley开发,专门用来研究大规模网络以及当前和未来的网络协议交互行为。由于NS2中所有源代码都开放,因此受到大量研究人员的亲睐,也是目前网络研究领域应用最广泛的网络仿真软件之一。随着越来越多人的研究,其功能更加强大,支持的协议和功能模块也更加丰富。它对有线和无线网络上的TCP、路由和多播等协议的仿真

提供了强有力的支持。由于强大的功能和丰富的模块,网络传输协议、路由队列管理机制、路由算法、业务源流量产生器,以及无线网络的Ad hoc,WLAN和WSN路由,移动IP和卫星通信网络等的仿真模块均已实现。同时通过对局域网的仿真,从而实现了多播以及一些MAC子层协议。因此,考虑到其中多的优点,在本次课题研究中将采用NS2仿真软件进行路由仿真。

本文主要研究目的序列距离矢量路由算法(DSDV),其最初由Charles E.Perkins 等人提出。对DSDV路由原理进行理论分析的同时,并通过网络仿真软件NS2对其进行仿真。由于NS2是一款开放源代码的网络仿真软件,任何人可以获得、使用和修改其源代码,正是如此,世界各地的研究人员每天都在对其功能进行扩展和更新,因此,我们简单介绍了NS2的结构、前后台的连接和仿真的一般流程。最后通过对仿真结果中得到的数据进行分析,并使用相关软件提取出有用数据,进行分析,来更进一步认识和了解DSDV路由协议。

目录

中文摘要................................................................. I 英文摘要................................................................ I I 第1章绪论 (1)

1.1课题背景 (1)

1.2国内外研究现状和发展 (1)

1.3本文研究内容及意义 (3)

第2章无线传感器网络及其路由技术概论 (4)

2.1 无线传感器网络概述 (4)

2.1.1 无线传感器网络定义 (4)

2.1.2 无线传感器网络的特点 (4)

2.1.3 无线传感器网络的应用 (5)

2.2 无线传感器网络的结构 (7)

2.2.1 分层结构 (7)

2.2.2 节点硬件结构 (7)

2.2.3 协议栈 (8)

2.3 路由协议的分类 (8)

2.3.1 按需驱动路由协议 (9)

2.3.2 表驱动路由协议 (11)

2.4 本章小结 (13)

第3章 NS2仿真软件 (15)

3.1 NS2概述 (15)

3.2 NS2结构 (16)

3.3 C++与Otcl的接口 (16)

3.4 Otcl脚本编写 (18)

3.5 NS2仿真流程 (19)

3.6 NS2相关工具介绍 (20)

3.7 本章小结 (21)

第4章 DSDV路由协议分析 (22)

4.1 协议的提出 (22)

4.2 工作原理 (22)

4.2.1 路由表的建立、更新和数据转发之间的关系 (23)

4.2.2 路由表的建立 (23)

4.2.3 路由表的更新 (23)

4.2.4 数据包的转发 (24)

4.3 DSDV相关的关键技术 (24)

4.3.1 避免路由环路 (24)

4.3.2 减少路由波动 (26)

4.3.3 定时器 (27)

4.3.4 序列号机制 (27)

4.4 本章小结 (27)

第5章 DSDV路由仿真 (29)

5.1 总体设计 (29)

5.2 DSDV路由仿真实现 (32)

5.2.1 仿真场景设置 (32)

5.2.2 仿真结果及分析 (33)

第6章总结与展望 (38)

6.1 工作总结 (38)

6.2 未来展望 (38)

致谢 (40)

参考文献 (41)

摘要

无线传感器网络(Wireless Sensor Network,WSN)作为人与自然界进行信息沟通的一种方式,随着目前传感器节点小型化、多样化的发展,正得到越来越广泛的使用,人们对无线传感器网络各方面的研究也成为目前学术界的研究热点。路由协议是无线传感器网络在网络层上的一个关键研究课题,本文着重研究基于路由表的目的序列距离矢量路由协议。

本文在阐述无线传感器网络概念和特点的基础上,引入了无线传感器网络路由,介绍了现有无线传感器网络路由协议,并结合现有无线传感器网络路由协议,实现了一种基于路由表驱动的路由协议(DSDV)。本文详细分析了DSDV路由协议,实现了DSDV路由协议在NS2上的仿真,对在仿真过程中得到的数据进行分析,从中发现网络拓扑和找到路由路径,并对结果加以分析,进一步深化对DSDV路由协议的认识和了解。

关键词:无线传感器网络,路由协议,DSDV,NS2

张志超:DSDV路由协议分析与仿真

ABSTRACT

Wireless sensor network(WSN)is a way that people communicate with nature. Along with the development of the sensor technology,The sensor is now miniaturization and diver- sification. It is being more and more widely used. More attention has been paid to WSN and the research on eaeh aspect of WSN is also an active field in current aeademe. Routing prot- ocol is a key issue on network layer inWSN. This thesis mainly focuses on Destination-Seq- ueneed Distanee-Veetor(DSDV) routing protocol based on routing table.

This thesis describes the concept of WSN on the basis of the characteristics of the introduction of WSN routing,and generally introduces of the existing WSN routing protocol and achieves a routing protocol based on the kinds of routing table-driven in conjunction with existing WSN routing protocols (DSDV). This thesis anlysizes the DSDV routing protocol in detail, and realized simulation of DSDV routing protocols in NS2, and analysis of the data produced during simulation, then to find the routing path. After that, we analysis the results and results to furtherly deepen our understanding of DSDV routing protocols.

Keywords:Wireless sensor networks, Routing protocol, DSDV, NS2

第1章绪论

1.1 课题背景

随着传感器技术、微机电系统、现代网络和无线通信技术等技术的发展,无线传感器网络得到了极大的发展和应用。无线传感器网络涉及众多学科,成为目前IT领域中研究热点之一,也被认为是二十一世纪最重要的技术之一,对人类未来的生活方式产生巨大影响[1]。目前,无线传感器网络的应用已由军事领域扩展到其他许多领域,能够完成诸如灾难预警与救助、家庭健康监测、空间探索、抢险救灾、防恐反恐、生物医疗等传统系统无法完成的任务。可以说二十一世纪无线传感器网络将无处不在。无线传感器网络是由大量无处不在的,具有通信与计算能力的微小传感器节点密集布设在无人值守的监控区域而构成的能够根据环境自主完成指定任务的“智能”自治监测网络系统[2]。无线传感器网络是一种超大规模、无人值守、资源严格受限的全分布系统,采用多跳对等的通信方式,其网络拓扑动态变化,具有自组织、自适应等智能属性。

在研究初期,人们曾经一度认为成熟的Internet技术加上Ad hoc路由机制对无线传感器网络的设计是足够充分的,但进一步研究表明[3]:无线传感器网络与传统无线网络有着明显不同的技术要求,前者以数据为中心,后者以传输数据为目的。无线传感器网络是集成监测、控制及无线通信的网络系统,节点数目更为庞大,节点分布更为密集;由于环境影响和能量耗尽,节点更容易出现故障;环境干扰和节点故障易造成网络拓扑结构的变化;另外,传感器节点具有的能量、处理能力、存储能力和通信能力都十分有限。传统无线网络的首要设计目标是提供高服务质量和高效带宽利用,其次才考虑节约能源;而无线传感器网络的首要设计目标是能源的高效使用,这也是无线传感器网络与传统无线网络的最重要的区别之一。这些不同于传统无线网络的技术要求为无线传感器网络的研究提出了新的挑战,开发专用的通信协议和路由算法就成为了当前无线传感器网络领域内首先需要解决的课题。

1.2 国内外研究现状和发展

WSN的研究起源于20世纪70年代。最早应用于军事领域,例如冷战时期布设在一些战略要地的海底、用于监视苏联潜艇的声音监视系统(Sound Surveilance System,SOSUS)及空中预警与控制系统(Air-borne Warning and Control System,AWACS),这种

张志超:DSDV路由协议分析与仿真

原始的传感器网络通常只能捕获单一信号,传感器节点之间进行简单的点对点通信,网络一般采用分级处理结构。但真正具备现代意义的无线传感器网络研究是从1980年左右的分布式传感器网络项目开始的。该项目由时任美国国防部高级研究计划局信处理技术办公室主任的Robert Kahn主导,其主要目的是验证Arpanet(Intemet的前身)的通信方式能否扩展到无线传感器网络中。20世纪80—90年代,传感器网络的研究主要在军事领域进行,并成为网络中心战中的关键技术,其中比较著名的系统包括美国海军研制的协同交战能力系统,用于反潜的确定性分布系统和高级配置系统,以及远程战场传感器网络系统和战术远程传感器系统。1994年加州大学洛杉矶分校的William J.Kaise教授向美国国防部高级研究计划局提交了研究建议书“Low Power Wireless Integrated Microsensors”,对推动WSN研究有里程碑的意义[4]。1998年G.J.Pottie从网络研究的角度重新阐释了WSN的科学意义[5]。

在90年代之前,WSN的研究多集中在军事方面。1999年9月《商业周刊》将其列为21世纪最重要的21项技术之一后,WSN开始得到越来越多的网络研究者的关注。1999年美国加州大学伯克利分校的“智能尘埃”计划验证了传感器节点硬件小型化的可行性。把传感器、微处理器、电源及无线通信单元集成在13

mm的微小节点上,在传感器节点集成化、小型化以及能量管理方面取得了很大的进展。目前美国几乎所有著名院校都有研究小组在从事无线传感器网络相关技术的研究,一些大公司也都开始介入该领域的研发工作。加拿大、英国、德国、韩国、日本等国家的研究机构都对无线传感器络表现出了极大的兴趣,纷纷展开了该领域的研究工作。我国对无线传感器网络的发展也非常重视。从2002年开始,国家自然科学基金、中国下一代互联网示范工程、国家“863”等已陆续资助了多项和无线传感器网络相关的课题。

到现在为止,传感器网络的研究大致经过了两个阶段。第1阶段主要偏重利用MEMS(Micro-Electro-Mechanism System)技术设计小型化的节点设备,代表性的研究项目有WINS和Smart Dust。对于网络本身问题的关注和研究可以认为是传感器网络研究的第2个阶段,目前正在成为无线网络研究领域的一个不小的热点。从网络分层模型角度分析,每一层都有需要结合传感器网络的特点进行细致研究的问题,就己有的研究而言,主要集中在网络层和链路层。随着现代微电子技术、微机电系统材料、无线通信技术、信号处理技术、计算机网技术等的进步。传感器所能探测的信息种类也越来越多,温度、湿度、压力、速度等信息都能够被传感器采集到。传感器节点的结构主要由传感器、微处理器、无线通信单元构成。节点体积小成本低使得节点能够被大量散布在监测区域内。传感器节点技术的进步、成本的降低使得WSN在商业中的应用成为可能。

路由协议的分类

路由协议的分类。什么是自治域系统、IGP、EGP。 自治域(自治系统),在同一种路由协议上使用不同的自治域,可以有效的分割 路由信息,即自治域A中的路由器不会与自治域B中的路由器交换路由 信息。一个AS是一组共享相似的路由策略并在单一管理域中运行的路由器的集合。一个AS可以是一些运行单个IGP(内部网关协议)协议的路由器集合。也可以是一些运行不同路由选择协议但都属于同一个组织机构的路由器集合。不管是哪种情况,外部世界都将整个AS看作是一个实体。按照工作区域,路由协议可以分为IGP和EGP: IGP(InteriorGateway Protocols)内部网关协议 在同一个自治系统内交换路由信息,RIP、OSPF和IS—lS 都属于IGP。IGP的主要目的是发现和计算自治域内的路由信息。 EGP(Exterior Gateway Protocols)外部网关协议 用于连接不同的自治系统,在不同的自治系统之间交换路由信息,主要使用路由策略和路由过滤等控制路由信息在自治域间的传播 什么是管理距离,有什么作用。 管理距离是指一种路由协议的路由可信度。每一种路由协议按可靠性从高到低,依次分配一个信任等级,这个信任等级就叫管理距离。对于两种不同的路由协议到一个目的地的路由信息,路由器首先根据管理距离决定相信哪一个协议。 防止环路的方法有哪些? RIP:有六种防止环路的措施:设定无穷大的值(16)路由毒化水平分割毒化反转触发更新抑制计时器 OSPF有哪些状态,在每种状态下进行哪些操作?OSPF有哪三个表?为什么需要DR、BDR,如何选择。 OSPF路由器在完全邻接之前,所经过的几个状态: 1.Down:此状态还没有与其他路由器交换信息。首先从其ospf接口向外发送hello分组,还并不知道DR(若为广播网络)和任何其他路由器。发送hello分组使用组播地址224.0.0.5。 2.Attempt: 只适于NBMA网络,在NBMA网络中邻居是手动指定的,在该状态下,路由器将使用HelloInterval取代PollInterval 来发送Hello包. 3.Init: 表明在DeadInterval里收到了Hello包,但是2-Way通信仍然没有建立起来. 4.two-way: 双向会话建立,而RID彼此出现在对方的邻居列表中。(若为广播网络:例如:以太网。在这个时候应该选举DR,BDR。) 5.ExStart: 信息交换初始状态,在这个状态下,本地路由器和邻居将建立Master/Slave关系,并确定DD Sequence Number,路由器ID大的的成为Master. 6.Exchange: 信息交换状态,本地路由器和邻居交换一个或多个DBD分组(也叫DDP) 。DBD包含有关LSDB中LSA条目的摘要信息)。 7.Loading: 信息加载状态:收到DBD后,将收到的信息同LSDB中的信息进行比较。如果DBD中有更新的链路状态条目,则向对方发送一个LSR,用于请求新的LSA 。 8.Full: 完全邻接状态,邻接间的链路状态数据库同步完成,通过邻居链路状态请求列表为空且邻居状态为Loading判断。

路由协议选择OSPFvsEIGRP-V3.1

目录Table of Contents 1路由协议规划选择原则 (4) 2OSPF vs. EIGRP路由协议特性比较 (5) 2.1OSPF协议 (5) 2.1.1OSPF协议简介 (5) 2.1.2OSPF协议特点 (6) 2.2EIGRP协议 (8) 2.2.1EIGRP协议简介 (8) 2.2.2EIGRP协议特点 (8) 2.3OSPF和EIGRP的比较 (9) 2.3.1OSPF的缺点 (10) 2.3.2EIGRP的缺点 (10) 2.3.3OSPF与EIGRP的比较总结 (11) 2.4从EIGRP网络到OSPF网络的迁移 (12)

表目录List of Tables 表1 OSPF和EIGRP比较总结 (12)

路由协议选择:从EIGRP到OSPF 关键词Key words: OSPF,EIGRP,SPF,DUAL 摘要Abstract: 本文首先介绍了在部署网络时,选择路由协议需要注意的地方,然后分别介绍了两种常用的路由协议EIGRP和OSPF,并对其特点和优缺点进行了技术上的比较,最后给出了一个已经部署了EIGRP协议的网络平滑迁移到OSPF的步骤。 缩略语清单List of abbreviations:

1 路由协议规划选择原则 在互联网飞速发展的今天,TCP/IP协议已经成为数据网络互联的主流协议。各种网络上运行的大大小小各种型号路由器,承担着控制本世纪或许最重要信息的流量,而这成百上千台路由器间的协同工作,离不开路由协议。因此在大型网络的规划构建中,选择适当的路由协议是非常重要的。目前常用的单播路由协议有多种,如RIP、OSPF、IS-IS、BGP,以及Cisco私有的IGRP/EIGRP协议等。不同的路由协议有各自的特点,分别适用于不同的条件之下。 互连是网络构建最基础和最本质的要求,选择适当的路由协议需要以此为目标,并综合考虑以下因素: 1)路由协议的开放性:开放性的路由协议保证了不同厂商都能对本路由协议进行支持,这不 仅保证了目前网络的互通性,而且保证了将来网络发展的扩充能力和用户构建网络时的设备选择空间,这点在很多情况下是需要重点考虑的。 2)网络的拓扑结构:网络拓扑结构直接影响协议的选择。例如RIP这样比较简单的路由协议 不支持分层次的路由信息计算,对复杂网络的适应能力较弱。对于比较复杂的网络,需要使用处理能力更强的协议,如OSPF、EIGRP等。 3)网络节点数量:不同的协议对于网络规模的支持能力有所不同,需要按需求适当选择,有 时还需要采用一些特殊技术解决适应网络规模方面的扩展性问题。农发展银行全国网络节点较多,路由信息也非常多,而且网络状况会千变万化,将导致路由刷新相对频繁,所以对路由协议的性能提出很高的要求。如能支持的节点数、路由选径是否最佳、路由算法必须具有鲁棒性、快速收敛性、灵活性等。 4)网络间的互通及关联要求:通过划分成相对独立管理的网络区域,可以减少网络间的相关 性,有利于网络的管理和扩展。可通过划分区域等形式,路由协议要能支持减少网络间的相关性。必要时还要考虑路由信息安全因素和对路由交换的限制策略管理。 5)管理和安全上的要求:通常要求在可以满足功能需求的情况下尽可能简化管理。但有时为 了实现比较完善的管理功能或为了满足安全的需要,例如对路由的传播和选用提出一些人为的要求,就需要路由协议对策略的支持。 根据以上原则,现在各种大型网络构建中,为节省投资、保证网络的持续扩展性,都在使

无线传感器网络各类路由协议仿真

实 验 报 告 课程无线传感网络各类路由协议仿真 1.实验目的 网络数据传输离不开路由协议,路由协议是其组网的基础,路由协议是无线

传感器网络研究的重点之一,其主要的设计目标是降低节点能量消耗,延长网络的生命周期。本次实验将仿真各类无线传感器网络路由协议。 2.实验要求 争取考虑全面,考虑到各因素对各类协议的影响,以提高无线传感网络的性能。 3.设计思想 (1)Flooding 泛洪是一种传统的路由技术,不要求维护网络的拓扑结构,并进行路由计算, 接收到消息的节点以广播形式转发分组。对于自组织的传感器网络,泛洪路由是 一种较直接的实现方法,但消息的“内爆”(implosion)和“重叠”(overlap)是其固有的 缺陷。为了克服这些缺陷,S.hedetniemi等人提出了Gossiping策略,节点随机选 取一个相邻节点转发它接收到的分组,而不是采用广播形式。这种方法避免了消 息的“内爆”现象,但有可能增加端到端的传输延时。 Flooding路由协议中的内爆和重叠问题 (2)SPIN (sensor protocol for information via negotiation) SPIN是以数据为中心的自适应路由协议,通过协商机制来解决泛洪算法中 的“内爆”和“重叠”问题。传感器节点仅广播采集数据的描述信息,当有相应的请 求时,才有目的地发送数据信息。SPIN协议中有3种类型的消息,即ADV,REQ 和DATA。 ADV—用于新数据广播。当一个节点有数据可共享时,它以广播方式向外发送

DATA数据包中的元数据。 REQ—用于请求发送数据。当一个节点希望接收DATA数据包时,发送REQ数据包。 DATA—包含附上元数据头(meta一header)的实际数据包。 SPIN协议有4种不同的形式: ? SPIN-PP:采用点到点的通信模式,并假定两节点间的通信不受其他节点的干扰,分组不会丢失,功率没有任何限制。要发送数据的节点通过ADV向它的相邻节点广播消息,感兴趣的节点通过REQ发送请求,数据源向请求者发送数据。接收到数据的节点再向它的相邻节点广播ADV消息,如此重复,使所有节点都有机会接收到任何数据。 ? SPIN-EC:在SPIN-PP的基础上考虑了节点的功耗,只有能够顺利完成所有任务且能量不低于设定阈值的节点才可参与数据交换。 ? SPIN-BC:设计了广播信道,使所有在有效半径内的节点可以同时完成数据交换。为了防止产生重复的REQ请求,节点在听到ADV消息以后,设定一个随机定时器来控制REQ请求的发送,其他节点听到该请求,主动放弃请求权利。? SPIN-RL:它是对SPIN-BC的完善,主要考虑如何恢复无线链路引入的分组差错与丢失。记录ADV消息的相关状态,如果在确定时间间隔内接收不到请求数据,则发送重传请求,重传请求的次数有一定的限制。图3.2表明了SPIN协议的路由建立与数据传送。 SPIN协议的路由建立与数据传送 基于数据描述的协商机制和能量自适应机制的SP创协议能够很好地解决传统的Flooding协议所带来的信息爆炸、信息重复和资源浪费等问题。此外,由于协议中每个节点只需知道其单跳邻居节点的信息,拓扑改变呈现本地化特征。SP 州协议的缺点是数据广告机制不能保证数据的可靠传递,如果对数据感兴趣的节点远离源节点或者在源节点和目的节点中间的节点对数据不感兴趣,那么数据就不可能被传递到目的地。因此,对于入侵发现等需要在定期间隔内可靠传递数据

底层路由协议

底层路由协议 1底层路由协议介绍 1.1为何要设置底层路由 OSPF、EIGRP是三层协议,就是我们常说的IGP,而BGP是架设在3层上的,BGP的邻居是靠TCP连接建立起来的,这个TCP连接就是靠OSPF/EIGRP 来通的。 1.2 EIGRP的介绍 EIGRP(高级距离矢量路由协议)是cisco私有的路由协议,采用DUAL(扩散更新算法),是在IGRP基础,增强开发出来的,IGRP目前已被淘汰 优点: 支持等价/不等价的负载均衡的内部网关路由协议 支持VLSM(可变长子网掩码)、CIDR,手工汇总 支持apple talk IPX IP等多种网络协议,但是目前商业网络使用的IP 协议,因此,研究仅限于IP网络协议下 管理距离:90 快速收敛:促发增量更新的方式,在选择最优路由的同时,就选好次优路径提供备份 缺点: EIGRP没有区域的概念,所以适用于网络规模相对较小的网络,这也是矢量距离路由算法的局限所在? 运行EIGRP的路由器之间必须通过定时发送HELLO报文来维持邻居关系,这种邻居关系即使在拨号网络上,也需要定时发送HELLO报文,这样在按需拨号的网络上,无法定位这是有用的业务报文还是EIGRP发送的定时探询报文,从而可能误触发按需拨号网络发起连接。EIGRP的无环路计算和收敛速度是基于分布式的DUAL算法的,这种算法实际上是将不确定的路由信息散播,得到所有邻居的确认后再收敛的过程,邻居在不确定该路由信息可靠性的情况下又会重复这种散播,因此某些情况下可能会出现该路由信息一直处于活动状态。 快速收敛: 收敛--拓扑中结构发生变化,从变化开始直至拓扑中所有佘恩波均知道,并且稳定的工作的过程。 1、触发式增量更新:当拓扑发生变化,立即向外发出通告,仅将变化的部分发生出去 2、选择一个最佳路径同时,会备份好次优路径 Eigrp四个组件: 网络层协议无关模块IP \ IPX \ APPLE TALK,只研究IP下的eigrp

03 动态路由协议简介

03 动态路由协议简介 3.1 协议介绍及其优点 3.1.1 前景和背景知识 1、动态路由协议的发展历程 2、认识动态路由协议: 路由协议是用于路由器之间交换路由信息的协议。通过路由协议,路由器可以动态共享有关远程网络的信息,并自动将信息添加到各自的路由表中。 3.1.2网络发现和路由表的维护 1、路由协议的用途如下: 1)发现远程网络 2)维护最新路由信息 3)选择通往目的网络的最佳路径 4)当前路径无法使用时找出新的最佳路径 2、路由协议由哪些部分组成? 1)数据结构(Data structures)-某些路由协议使用路由表和/或数据库来完成路由过程。 此类信息保存在内存中。 2)算法(Algorithm)-算法是指用于完成某个任务的一定数量的步骤。路由协议使用 算法来路由信息并确定最佳路径。 3)路由协议消息(Routing protocol messages)-路由协议使用各种消息找出邻近的路由 器,交换路由信息,并通过其它一些任务来获取和维护准确的网络信息。 3、动态路由协议的运行过程如下: 1)路由器通过其接口发送和接收路由消息。 2)路由器与使用同一路由协议的其它路由器共享路由消息和路由信息。 3)路由器通过交换路由信息来了解远程网络。 4)如果路由器检测到网络拓扑结构的变化,路由协议可以将这一变化告知其它路由器。 3.1.3动态路由协议的优点 1、静态路由的优点: 1)占用的CPU 处理时间少。 2)便于管理员了解路由。 3)易于配置。 2、静态路由的缺点: 1)配置和维护耗费时间。 2)配置容易出错,尤其对于大型网络。 3)需要管理员维护变化的路由信息。 4)不能随着网络的增长而扩展;维护会越来越麻烦。 5)需要完全了解整个网络的情况才能进行操作。 3、动态路由的优点: 1)增加或删除网络时,管理员维护路由配置的工作量较少。 2)网络拓扑结构发生变化时,协议可以自动做出调整。 3)配置不容易出错。 4)扩展性好,网络增长时不会出现问题。 4、动态路由的缺点:

推荐-常用动态路由协议安全性分析及应用

常用动态路由协议安全性分析及应用 【摘要】路由器寻找的最佳路径是路由协议,它能保持各个路由器间的路由表相同,实现各个路由器间的相互连通,且在网络间传递数据包。可见,动态路由协议是借助路由器间的信息传递,计算、更新网络结构。但在此过程中,存在一定弊端影响常用动态路由器安全性。现就BGP、OSFP 和RIP V2三种常用的动态路由协议安全性进行分析,并总结其应用。 【关键词】动态路由安全性应用 连接网络的重要硬件设备,是路由器,它可以实现数据包的传递。而动态路由协议指的是路由器表的更新过程,它能够满足网络结构变化的需求。常用的动态路由分为三种,分别为BGP协议、OSPF协议和RIP V2协议。如果在数据包传递过程中,协议出现漏洞,那么容易被人利用,给网络安全造成严重影响。所以,分析常用动态路由协议安全性显得尤为重要。 一、常用动态路由协议安全性分析 1.1 BGP协议安全性 多个相互连接的商业网络共同组成了Internet。各个ISP或企业网络,需要定义一个自治系统号,即ASN,它们

的分配由IANA完成[1]。自治系统号共有65535个,其中私用保留的为65512―65535。路由信息在共享状态下,此号码的维护方式可以采取层的方式。BGP采用会话管理,其中TCP 的179端口可起到触发作用,使Keepalive和update信息被触发,且累及其邻居,从而更新和传播BGP路由表。 然而,因BGP的传输方式以TCP为主,那么容易导致BGP 出现关于TCP的诸多问题,例如拒绝服务攻击,预测序列号,SYN Flood攻击等。BGP主要是利用TCP的序列号,未使用自身的序列号。所以,一旦设备应用可预测序列号,就容易受到该类型攻击。在Internet中运行的大部分路由器都采用了Cisco设备,没有采用预测序列号方案,这就降低了受到攻击的风险。一些BGP在默认状态下,未采用相关的认证机制,有些BGP继续沿用明文密码,这样,大大增加了受到攻击的可能性。 实际应用BGP协议时,还会受到伪造报文攻击等其他攻击。但通常情况下,BGP主要在核心网的出口应用,且配置密码认证,因此,BGP协议的安全性相对较高。 1.2 OSPF协议安全性 复杂是OSPF运行机制的主要特征,运行中的诸多环节都有可能受到攻击者的攻击,给OSPF带来不同程度伤害。攻击方式分为以下几种。一是资源消耗攻击。将不同类型的OSPF报文不间断大量发送,这样极易导致攻击实体资源枯

课程设计RIP路由协议的设计与实现

课程设计 课程设计(论文) RIP路由协议的设计与实现 院(系)名称电子与信息工程学院 专业班级 学号 学生姓名 指导教师 起止时间:

课程设计(论文)任务及评语院(系):电子与信息工程学院教研室:

摘要 RIP协议是一种内部网管协议(IGP),是一种动态路由选择协议,用于自治系统(AS)内的路由信息的传递。RIP协议基于距离矢量算法(DistanceVectorAlgorithms),使用“跳数”(即metric)来衡量到达目标地址的路由距离。这种协议的路由器只关心自己周围的世界,只与自己相邻的路由器交换信息,范围限制在15跳(15度)之内,再远,它就不关心了。RIP应用于OSI 网络七层模型的应用层。各厂家定义的管理距离(AD,即优先级)如下:华为定义的优先级是100,华三定义优先级是100,思科定义的是120。 随着OSPF和IS-IS的出现,许多人认为RIP已经过时了。但事实上RIP也有它自己的优点。对于小型网络,RIP就所占带宽而言开销小,易于配置、管理和实现,并且RIP还在大量使用中。但RIP也有明显的不足,即当有多个网络时会出现环路问题。为了解决环路问题,IETF提出了分割范围方法,即路由器不可以通过它得知路由的接口去宣告路由。分割范围解决了两个路由器之间的路由环路问题,但不能防止3个或多个路由器形成路由环路。触发更新是解决环路问题的另一方法,它要求路由器在链路发生变化时立即传输它的路由表。这加速了网络的聚合,但容易产生广播泛滥。总之,环路问题的解决需要消耗一定的时间和带宽。若采用RIP协议,其网络内部所经过的链路数不能超过15,这使得RIP协议不适于大型网络。 关键词:RIP协议;网络;路由器

表驱动路由协议端到端延时好于按需驱动路由协议

表驱动路由协议端到端延时好于按需驱动路由协议, 按需驱动路由协议在数据报文交付率和路由负荷方面好于表驱动路由协议。 在对网络延时要求较高的环境下,一般选用表驱动路由协议 DSDV 依赖于路由消息的周期性广播,在高速移动的 Ad Hoc 网络中不宜使用 对数据包完整性和带宽要求严格的场合应尽量选择按需驱动路由协议[ 面向应用的如时延和吞吐量之类的性能指标,在比较宽松(即节点较少或移动性较弱)的环境中,DSR 协议优于 AODV 协议;但是在较苛刻的环境中则 AODV 优于 DSR 协议,环境变得越来越苛刻(即载荷变得越重,移动性变得越强),AODV 协议相对于 DSR 协议的性能优势越来越明显 表驱动路由协议 (DSDV) 的平均时延要小于按需路由协议(AODV,DSR) 分组投递率、路由开销和能量消耗等性能不如按需路由 AODV 协议具有较强地适应能力,适用于网络拓扑变化频繁的环境;DSR 适用于节点较少网络变化较小且对时延要求不高的环境;DSDV 协议更适用于网络节点移动速度较小的环境 AODV一旦路由建立后,数据包的延时要明显优于DSDV。实际上,随着移动节点数目和节点移动速度的增加,AODV的优势将更加明显。 在节点高速移动,网络拓扑变化频繁时,AODV 和DSR 的包投递率要比DSDV 好。但是在节点慢速移动时,DSDV 的端到端平均时延要好于AODV 和DSR。这 LAR路由协议适合于节点以中低速移动 ,节点平均密度稍高但网络负载不宜 过高 ,报文发送率中高的环境 簇内节点采用表驱动路由,CBRP算法适合于节点多,速度受限的MANET。在节点移动速度相当快的 MANET 中 CBRP 算法导致网络开销迅速增大,严重影响网络性能 GPSR协议与采用Flooding算法的协议相比降低了网络负载,提高了投递成功率,缩短了路由跳数,所以它更适用于较大规模的网络。AODV,DSR,GPSR DsDv协议的应用非常受限,无法支持网络规模较大,拓扑变化相对频繁的网络环境。AoDv 和DSR可以很好地支持中小规模的网络,而对于大规模的网络需要通过分 簇算法来扩展。AoDv协议对带宽利用率高,能够及时相应网络拓扑变化,同时能避免路由环路 现象。 AODv协议也存在一些问题。由于在路由请求报文的广播过程中建立了反向路由,用于回送路由应答报文,所以要求传输信道是双向的,因此AODv仅适用于双向传输信道的网络;路由表仅维护一条到指定目的节点的路由;AODv的前向路由生存时间定时器会删除生存时长内未使用的路由,即使相应路由是有效地。 OLSR 和DSDV协议的时延整体上小于其他三种协议. DSDV协议的分组传送率低于其他协议; 路由开销方面, TORA协议的最大, DSR 最小, OLSR 的开销也较小, DSDV的开销基本不随节点的移动性而改变; DSDV 的平均跳数最少, 其次是OLSR。

关于路由协议试题以及参考答案

关于路由协议试题以及参考答案 1、解决路由环问题的方法有(ABD) A. 水平分割 B. 路由保持法 C. 路由器重启 D. 定义路由权的最大值 2、下面哪一项正确描述了路由协议(C) A. 允许数据包在主机间传送的一种协议 B. 定义数据包中域的格式和用法的一种方式 C. 通过执行一个算法来完成路由选择的一种协议 D. 指定MAC地址和IP地址捆绑的方式和时间的一种协议 3、以下哪些内容是路由信息中所不包含的(A) A. 源地址 B. 下一跳 C. 目标网络 D. 路由权值 4、以下说法那些是正确的(BD) A. 路由优先级与路由权值的计算是一致的 B. 路由权的计算可能基于路径某单一特性计算,也可能基于路径多种属性 C. 如果几个动态路由协议都找到了到达同一目标网络的最佳路由,这几条路由都会被加入路由表中 D. 动态路由协议是按照路由的路由权值来判断路由的好坏,并且每一种路由协议的判断方法都是不一样的 5、IGP的作用范围是(C) A. 区域内 B. 局域网内 C. 自治系统内 D. 自然子网范围内 6、距离矢量协议包括(AB) A. RIP B. BGP C. IS-IS D. OSPF 7、关于矢量距离算法以下那些说法是错误的(A) A. 矢量距离算法不会产生路由环路问题 B. 矢量距离算法是靠传递路由信息来实现的 C. 路由信息的矢量表示法是(目标网络,metric) D. 使用矢量距离算法的协议只从自己的邻居获得信息 8、如果一个内部网络对外的出口只有一个,那么最好配置(A) A. 缺省路由 B. 主机路由 动态路由C. 9、BGP是在(D)之间传播路由的协议

常用路由协议的分析及比较

路由分为静态路由和动态路由,其相应的路由表称为静态路由表和动态路由表。静态路由表由网络管理员在系统安装时根据网络的配置情况预先设定,网络结构发生变化后由网络管理员手工修改路由表。动态路由随网络运行情况的变化而变化,路由器根据路由协议提供的功能自动计算数据传输的最佳路径,由此得到动态路由表。 根据路由算法 动态路由协议可分为距离向量路由协议(Distance V ector Routing Protocol)和链路状态路由协议(Link State Routing Protocol)。距离向量路由协议基于Bellman-Ford算法,主要有RIP、IGRP(IGRP为Cisco公司的私有协议);链路状态路由协议基于图论中非常著名的Dijkstra 算法,即最短优先路径(Shortest Path First,SPF)算法,如OSPF。在距离向量路由协议中,路由器将部分或全部的路由表传递给与其相邻的路由器;而在链路状态路由协议中,路由器将链路状态信息传递给在同一区域内的所有路由器。 根据路由器在自治系统(AS)中的位置 可将路由协议分为内部网关协议(Interior Gateway Protocol,IGP)和外部网关协议(External Gateway Protocol,EGP,也叫域间路由协议)。域间路由协议有两种:外部网关协议(EGP)和边界网关协议(BGP)。EGP是为一个简单的树型拓扑结构而设计的,在处理选路循环和设置选路策略时,具有明显的缺点,目前已被BGP代替。 EIGRP是Cisco公司的私有协议,是一种混合协议,它既有距离向量路由协议的特点,同时又继承了链路状态路由协议的优点。各种路由协议各有特点,适合不同类型的网络。下面分别加以阐述。 2 静态路由 静态路由表在开始选择路由之前就被网络管理员建立,并且只能由网络管理员更改,所以只适于网络传输状态比较简单的环境。静态路由具有以下特点: ·静态路由无需进行路由交换,因此节省网络的带宽、CPU的利用率和路由器的内存。 ·静态路由具有更高的安全性。在使用静态路由的网络中,所有要连到网络上的路由器都需在邻接路由器上设置其相应的路由。因此,在某种程度上提高了网络的安全性。 ·有的情况下必须使用静态路由,如DDR、使用NA T技术的网络环境。 静态路由具有以下缺点: ·管理者必须真正理解网络的拓扑并正确配置路由。 ·网络的扩展性能差。如果要在网络上增加一个网络,管理者必须在所有路由器上加一条路由。 ·配置烦琐,特别是当需要跨越几台路由器通信时,其路由配置更为复杂。 3 动态路由

课程设计RIP路由协议的设计与实现

课程设计R I P路由协议的设计与实现精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

课程设计 课程设计(论文) RIP路由协议的设计与实现 院(系)名称电子与信息工程学院 专业班级 学号 学生姓名 指导教师 起止时间: 课程设计(论文)任务及评语 院(系):电子与信息工程学院教研室:

摘要 RIP协议是一种内部网管协议(IGP),是一种动态路由选择协议,用于自治系统(AS)内的路由信息的传递。RIP协议基于距离矢量算法(DistanceVectorAlgorithms),使用“跳数”(即metric)来衡量到达目标地址的路由距离。这种协议的路由器只关心自己周围的世界,只与自己相邻的路由器交换信息,范围限制在15跳(15度)之内,再远,它就不关心了。RIP应用于OSI 网络七层模型的应用层。各厂家定义的管理距离(AD,即优先级)如下:华为定义的优先级是100,华三定义优先级是100,思科定义的是120。 随着OSPF和IS-IS的出现,许多人认为RIP已经过时了。但事实上RIP也有它自己的优点。对于小型网络,RIP就所占带宽而言开销小,易于配置、管理和实现,并且RIP还在大量使用中。但RIP也有明显的不足,即当有多个网络时会出现环路问题。为了解决环路问题,IETF提出了分割范围方法,即路由器不可以通过它得知路由的接口去宣告路由。分割范围解决了两个路由器之间的路由环路问题,但不能防止3个或多个路由器形成路由环路。触发更新是解决环路问题的另一方法,它要求路由器在链路发生变化时立即传输它的路由表。这加速了网络的聚合,但容易产生广播泛滥。总之,环路问题的解决需要消耗一定的时间和带宽。若采用RIP协议,其网络内部所经过的链路数不能超过15,这使得RIP协议不适于大型网络。 关键词:RIP协议;网络;路由器

第五章 路由协议

第五章路由协议 路由协议主要负责建立源节点与目的节点之间的一条消息传输路径,即实现路由功能。路由协议包含了两个方面功能:寻找源节点-目的节点间的最优路径,并将数据分组沿该路径正确转发。传统的Ad hoc网络、无线局域网等网络的首要目标是提高服务质量和公平高效地利用网络带宽资源。这些网络路由协议的优化目标通常是网络延时最小化,而能量问题通常不作为一个最主要的优化目标。而在陆地无线传感器网络中,由于节点能量有限,因此路由协议需要高效利用能量,同时,由于传感器网络规模一般较大,节点通常不具有全网拓扑信息,因此传感器网络的路由协议需要在已知局部网络信息的基础上选择合适的路径。但是,当前陆地网络的路由协议由于受到种种方面的限制,均不能有效地直接应用于水下网络中,复杂的水下环境给网络层路由协议的设计带来了全新的挑战。 水下传感器节点通信半径和覆盖面积相对于整个网络的规模较小,同时由于水声链路的高度时空动态特性,事先在源节点和目的节点之间建立一条完整且固定的通信路径是不现实的,因此水下传感器网络一方面主要采用多跳传输的路由机制,另一方面路由表需要以一定的频率更新以适应网络的动态变化。多跳传输方式需要借助中继节点转发信息,该方式要求多个节点共同协作完成消息从源节点到目的节点的传输,这就涉及中间节点选择的问题,如何选择中间节点从而有效降低传输延迟、提高数据传输率是路由协议主要解决的问题。此外,水下後感器显络迪路由协议还要具备以下特性:①可扩展性,由于水下传感器网络中的节点受部署环境的影响造成部分节点或部分链路失效,因此能有效地检测和处理节点失效或移动造成的链路中断,适应不断变化的网络柘朴是水下一隹感器网络路由协议需要解决的一个主要问题;②节能性,在水下传感器网络中,节点大都是以电池供电的,电量十分有限,且电池的更换耗时耗力,同时水声信号发射功率相对较大,因此,提高能量效率是对水下传感器网络设计的另一主要目标;③容错性和鲁棒性,在水下感器网络中,节点的失效是很难避免的,造成节点失效的原因主要包括环境因素,此外,水声信道的通信质量也很难保证,这就要求路由协议具有较好的鲁棒性,能有效避免部分节点的失效或链路的中断给整个网络造成影响;④快速收敛特性,由于水下传感器网络的拓扑结构动态变化,节点能量和水声频谱带宽资源严重受限,因此要求路由算法可以做到快速收敛,以适应网络拓扑结构的动态变化,减小通信协议开销,提高信息传输效率。

无线传感网路由协议的分析比较

无线传感网路由协议的分析比较 无线传感网技术是对当今经济和社会进步发挥重要作用的技术,对于现代军事、信息技术、制造业等多个重要的领域产生着巨大的影响。而无线路由协议则是无线传感网研究中的热点问题。文章对于几个典型的平面路由协议和分层路由协议进行了介绍,分析了它们各自的利弊,并对它们进行了比较。 标签:无线传感网;路由协议;传感器节点 1 无线传感网概述 无线网络即使用无线传输介质的网络。目前有两种无线网络,基础设施网络和对等网络。基础设施网络的无线终端需要配置无线网卡,并通过接入点(AP)连接入网。对等网络即Ad hoc网络,不需要AP的支持,终端设备之间可以直接通信。无线Ad hoc网络又可分为两类,移动Ad hoc网络和无线传感器网络。前者的终端是快速移动的,后者的结点是静止的或者移动很慢。 无线传感网由大量的静止或移动的传感器组成,它们以自组织和多跳的方式构成无线网络,相互协作以探测、处理和传输网络覆盖区域内感知对象的监测信息,并报告给用户。无线传感器网络技术在军事应用、智能家居、环境监测、建筑物质量监控、医疗护理等各个方面都有广泛应用[1]。 无线传感网的系统结构包括监测区域(Sensor Field)、传感器节点(Sensor Node)和汇聚节点(Sink Node)[2]。监测区域中包含了各种需要采集数据的观察对象;传感器节点用于采集观察对象的相关数据,并将处理后数据传给汇聚节点;汇聚节点用于收集由传感器节点传递来数据,并将数据传送到远程中心进行集中处理。 2 无线路由协议 无线路由协议是无线传感网研究中的热点问题。无线传感网的路由协议负责在源节点和目的节点之间可靠地传输数据,包括路由选择和数据转发两个功能。根据网络的拓扑结构是否有层次,可以将路由无线路由协议分为平面路由协议和分层路由协议[3]。 2.1 平面路由协议 平面路由协议适用于具有平面结构的网络,所有节点之间地位平等,协议相对简单。源节点和目的节点之间一般存在多条路径,可共同承担网络负荷,通常不存在瓶颈,网络具有较强的健壮性。然而,节点的组织、路由的建立、控制与维持所产生的开销需要占用较大的带宽,从而影响网络数据的传输速率。另外,当网络规模较大时需要损耗很大的能量,并且网络的可扩展性较差。因此,平面路由协议只适用于规模较小的网络。

四种路由协议比较

内部网关协议RIP:基于距离向量的路由协议。(1)仅和相邻路由器交换信息,交换的信息是自己的路由表。(2)按固定的时间间隔交换信息。RIP协议用UDP报文进行传送。 RIP实现简单,但它能使用的最大距离为15,16是不可到达,所以RIP只适用于小规模网络。RIP还有一个特点就是好消息传播的快,坏消息传播的慢。 RIP为了防止成环:可以用水平分割的方法,即从本端口接收到的路由,不再从本接口发送出去。 内部网关协议OSPF:使用分布式的链路状态协议。(1)向本自治系统内的所有路由器发送信息,用洪泛法。,路由器向所有相邻的路由器发送信息,这个相邻的路由器再向所有它相邻的路由器发送信息。(2)发送的信息是与本路由器相邻的所有路由器的链路专题。(3)只有链路状态变化时,才用洪泛法发送信息,OSPF没有RIP那样坏消息传播的慢的问题。而不像RIP那样每隔30s交换一次路由信息。OSPF协议知道全网的拓扑结构图。OSPF更新收敛的快是重要特点。OSPF不用UDP而是直接用IP数据报传送。OSPF的数据包很短,这样可以减少路由信息的通信量。 注:RIP交换的是路由表,即到目的网络的最短距离,RIP就是根据最短距离选路的。OSPF发送的信息是与本路由器相邻的链路状态,即与本路由器都和哪些路由器相邻以及该链路的度量,如距离,费用带宽。所以交换完路由信息以后,形成数据库,然后利用SPF算法(如Dijkstra静态路由算法)再算出路径,形成SPF树。每个路由单元根据SPF树生成自己的路由表。对OSPF而言,主要的消耗就在SPF的算法处理中,最常用的是Dijkstra静态路由算法。当一条链路down,每台路由器都会获得变化的信息,在网络拓扑更新之后,每台路由器就会重新计算SPT。这样计算SPT的计算量特别大,消耗CPU。。在目前的实际应用中,重新计算SPT就是删除当前的SPT,调用最短路径优先算法重新构造SPT。所以需要提出一种快速收敛的算法,来消除冗余存储或冗余计算。如下图我们只需要计算第二张图中区域的节点,即只对部分变化的节点重新计算路径,大大减少了计算量。

AODV相关路由协议学习

AODV相关路由协议学习 1:AODV路由协议工作原理 AODV路由协议是一种经典的按需路由协议,它只在两个节点需要进行通信且源节点没有到达目的节点的路由时,才会进行路由发现过程。AODV采用的是广播式路由发现机制,当源节点想与另一节点进行通信时,源节点会首先查询自己的路由表中是否存在有到达目的节点的路由有效信息。如果包含有目的节点的有效信息,则源节点就会将数据包传送到目的节点的下一跳节点;如果缺失目的节点的有效的信息,则源节点会启动路径请求程序,同时广播RREQ控制包。 而下一跳节点在接收到RREQ报文时,如果该节点是目的节点,又或者该节点路由表中存放有到达目的节点的可行路径信息,则会向源节点回复路由响应报文CRREP。否则就记录相关信息,用于建立一个反向路径,让目的节点的RREP遵循此路径返回源节点,同时将RREQ报文中的跳数字段值加1,并向该节点的邻居节点转发RREQ 报文。这样经过若干中间节点转发最后到达目的节点,确认路由建立。 路由表项建立以后,路由中的每个节点都要执行路由维持和管理路由表的任务。如果由于中间节点的移动而导致路由失效,则检测到路由断链的节点就会向上游节点发送路由出错报文RRER,而收到出错报文RRER的节点则会直接发出RREQ来进行路径请求,如果能在规定好的时间内找到目的节点的路径,则表示路由成功 1.2存在的问题 传统的AODV采用基本的路由发现算法来建立从源节点到目的

节点的路由时,路由选择是选择最短路径路由,即选择最小跳数的路由,这样就忽略了每两点之间的传输能力,从而导致产生整条链路吞吐量低、路由不稳定、线路拥塞、延迟甚至数据丢失等严重问题。2最大路由速率的AODV协议的提出【基于最大路由速率的AODV 协议优化研究与实现---罗泽、吴谨绎、吴舒辞】 2.1基本思想 针对传统AODV路由协存在的问题,提出了一种基于最大传输速率(路由速率=路由速率之和/路由跳数)的改进方案,其基本思想是:用户确定一个期望速率,源节点在进行路由发现时比较收到的各条路由的实测速率,选择一条速率最大的路由作为路由,在源节点使用当前路由发送数据的过程中,源节点每隔一段时间发出RREQ 报文,以便查找到可能存在的更好的路由,如果发现一条速率更高的路由且该路由速率大于期望速率,则执行路由切换,改用新路由。

实验四:ARP分析及路由协议分析解析

??计算机网络实验与学习指导基于Cisco Packet Tracer模拟器 计算机科学与技术学院计算机网络实验报告 年级2013 学号2013434151 姓名汪凡成绩 专业计算机科学与技术实验地点C1-422 指导教师常卓 实验项目实验3.3:ARP分析实验3.5:路由协议分析实验日期2016/5/6 实验3.3:ARP分析 一、实验目的 1.掌握基本的ARP命令。 2.熟悉ARP报文格式和数据封装方式。 3.理解ARP的工作原理。 二、实验原理 (1)ARP简介 1.什么是ARP ARP,即地址解析协议。TCP/IP网络使用ARP实现IP地址到MAC地址的动态解析。网络层使用逻辑地址(IP地址)作为互联网的编址方案,但实际的物理网络(以太网)采用硬件地址(MAC地址)来唯一识别设备。因此在实际网络的链路上传送数据帧时,最终还是必须使用硬件地址(MAC地址)。 ①ARP工作原理 每个主机和路由器的内存中都设有一个ARP高速缓存,用于存放其他设备的IP地址到物理地址的映射表。当主机欲向本局域网上其他主机发送IP包时,先在本地ARP缓存中查看是否有对方的MAC地址信息。如果没有,则ARP会在网络中广播一个ARP请求,拥有该目标IP地址的设备将自动发回一个ARP回应,对应的MAC地址将记录到主机的ARP缓存中。考虑到一个网络可能经常有设备动态加入或者撤出,并且更换设备的网卡或IP地址也都会引起主机地址映射发生变化,因此,ARP缓存定时器将会删除在指定时间段内未使用的ARP条目,具体时间因设备而异。例如,有些Windows操作系统存储ARP缓存条目的时间为2mim但如果该条目在这段时间内被再次使用,其ARP定时器将延长至lOmin。ARP缓存可以提高工作效率。如果没有缓存,每当有数据帧进入网络时,ARP都必须不断请求地址转换,这样会延长通信

典型单路径路由协议

典型单路径路由协议 无线传感器网络和Adhoc网络一样,是无线自组织网络的一种,因此,它的路由协议也可以从无线Adhoc网络得到一些启发。本节首先对无线Adhoc网络的路由协议AODV进行研究,详细介绍其路由实现原理。然后详细介绍北京交通大学下一代互联网互联设备国家工程实验室代写计算机职称论文自行研制和开发的路由协议MSRP,MSRP借鉴了AODV的思想,但是又做了很大的简化。本论文所设计的多径路由机制是在MS即的基础上做了创新和改进。本节评价了它的优点和缺点,指出了需要改进的地方。 1.AODV路由协议AODVI’jj(AdhoeOndemandDistanceVectorRouting)是一种按需驱动的路由协议,它能够在移动节点之间建立动态多跳路由并维护一个Adhoc网络。AODV能让节点快速建立到新目的节点的路由,而且不需要节点维护处于非活动状态路径的路由。在链路损坏或者网络拓扑发生变化时,网络中多个移动节点能够及时做出反应,网络能够快速自愈。当网络链路出现断裂时,AODV能够通知所有受影响的节点,让它们及时删除使用该链路的路由。AODV一个很重要的创新点是对每一条路由使用了一个目的序列号,任何一个路由表项必须包含到目的节点的最新的序代写计算机硕士论文列号信息。目的节点序列号由目的节点产生。每一个目的节点在它发送给请求节点的任何路由信息中都会包含这个序列号,使用目的序列号可以保证路由无环路,也利于编程实现。当出现两条路由到达目标节点时,请求节点会选择序列号比较大的路由。节点收到任何有关报文,只要其中有关于目的序列号的信息,该目的节点的序列号就会更新。网络中的节点各自保存和维护自己的序列号。一个目的节点在下列两种情况下产生自己的序列号:1、在建立一个路由发现之前,它产代写计算机毕业论文生自己的序列号,避免与以前建立的到无线传感器网络路由协议的研究该源节点的反向路由冲突;2、在产生一个RREP回复双EQ之前,将自己节的序列号更新为目前节点的序列号和路由请求中该节点序列号两者的最大值。下一跳链路丢失时,序列号不再更新。这时候,对于使用该下一跳的每一条路由,节点都将其目的序列号加一,并将该路由标计为失效。只有再次收到“足够新”路由信息时(序列号等于或大于该记录的序列号),该节点才会将路由表中相应信息更新。AoDv定义了三种报文类型:路由请求(RREQs)、路由回复(RREPs)、路错误(计算机专业职称论文RERRs)。这些消息包装在uDP报文中,端口654,并使用通常的IP报头,请求节点使用自己的IP地址作为路由消息中的“源IP地址”字段。对于广播消息,使用IP广播地址255.255.255.255。这意味着这些消息不会被盲目的转发。但是,AODV确实需要某些报文(例如路由请求消息)能够大范围甚至在整个网络中洪,IP报文的TTL字段可以用来限定传播范围。只要通信的两个端有到对方的有效路由,那么AODV就不参与。当节点需一个到新目的节点的路由时,该节点会广播路由请求进行寻找。当该路由请求达目的节点,或者一个中间节点具有一个到目的节点的“足够新,,的路由时,这条路由便可以确定下来。每一个收到路由请求的节点都会缓存一个到源节点的反路由,这样,“路由回复”便会从最终目的节点或者满足请求条件的中间节点顺利递到源节点。节点会监测有效路由下一条链路的状态。当监测到有链路发生断裂时,节会发送路由错误消息来通知其他节点:链路已经丢失,需要重新寻找路由。“路错误”消息用来表明一些节点通过该断裂的链路己经不可达。为了采用这种错误告的机制,所有节点保存一个“前驱列表”,前驱列表包含一些邻居的IP地址,些邻居节点可能使用本节点作为到达目的地的下一跳。前驱列表的信息可以很易的在路由回复的时候获取,因为从定义上来说,“路由回复”就是要发送给前歹J表中的节点的。AODv是个路由协议,因此它有自己的路由表管理机制。即使是暂时的路信息(例如到路由请求源节点的暂时的反向路由),也需要在路由表中保存。AOD的路由表有以下几个组成部分:目的IP地址、目的序列号、有效目的序列号标以及其他的标志(如有效、无效、可修复、正在修复中)、网络接口、跳数、下跳、前驱列表、生命期(路由表的失效或删除时间)。 1AODV路由建立过程当一个节点发现自己需要路由却不存在路由信息的时候,它发起路由

相关文档
最新文档