大直径钻孔灌注桩按桩身混凝土强度设计

大直径钻孔灌注桩按桩身混凝土强度设计
大直径钻孔灌注桩按桩身混凝土强度设计

按桩身混凝土强度设计嵌岩灌注桩的方法

章履远(浙江世贸联合投资集团公司310053)

概述

当前大直径钻孔灌注桩的应用量大面广。如何提高大直径钻孔灌注桩的竖向承载力,以降低桩基成本是人们追求的目标。本文探讨以端承为主的端承桩或摩擦端承桩如何来提高承载能力的问题。笔者通过近几年的工程实践与分析后认为,这种桩型的桩端必须要有中风化或微风化基岩(硬质岩或软质岩均可)作为持力层,且基岩的埋深在10m?80m以内,在这种

条件下,通过技术手段采取施工措施,使桩的承载能力大幅度提高,最后达到最大值——承载能力按桩身混凝土强度控制。本文着重叙述在桩身混凝土强度满足桩的竖向承载力设计要求时应采用的几个技术措施。

二、考虑问题的思路

1 、无论是国家标准《建筑地基基础设计规范》GB 50007 —2002、或行业标准《建筑桩基

技术规范》JGJ94—94,决定摩擦端承桩时,钻孔灌注桩单桩竖向承载力的计算公式总是分为摩擦部分和端承部分。而嵌岩灌注桩的计算就有区别。行业标准JGJ94—94分得较细,其

计算式为Q uk = Q sk+ Q rk+ Q pk,即嵌岩部分也分为嵌岩段摩擦阻力和端承部分支承力二部分,并且随嵌岩深度分别作出修正(见规范第40 页);国家标准GB50007—2002 比较简单, 只要是明确桩端嵌在较完整的硬质岩时,可按公式R a= q pa A p 来确定单桩竖向承载力。近年

来,笔者通过几种嵌岩灌注桩,无论是80m长桩,还是v 20m的短桩,持力层那怕是软质

岩或极软岩, 先用规范计算得出承载力再进行静载荷试桩, 结果发现二者差别都比较大, 表 1 给出计算值与试验值对比。

从表 1 中所列, 21 根试验桩及检验桩的试验值与按规范的计算值相比,除少数桩其试桩值达不到

计算值外,其余大部分桩试验值都超过了计算值,有的还大大超过了计算值。如306#检验桩,其试验值与计算值相比,达到 2.31 比值。其实,许多试验桩,从最终桩顶沉

降值来看,有些桩的荷载还能再增加,比值有可能会超过 3.0,只是由于荷载再加上去,已

没有实标意义(因荷载值己超过了按桩身材料抗压强度控制的最大值)或试桩堆载装置已无法再增加荷重而不得不终止加载。

再从表 1 中可以看出, 短桩比值大, 而长桩比值小, 但不管是长桩或短桩, 只要是嵌岩桩, 比值都能提高。

又从表1可看出,1#工程的S i和S2桩,与4#工程的SZ i、SZ2、SZ3试验桩,二者的地层

情况相似,S i、S2桩的桩端持力层岩石单轴抗压强度标准值(19.4MPa)要比SZ i、SZ2、SZ3桩的桩端持力层岩石单轴抗压强度标准值(6.46MPa)要高,但试验桩极限承载力前者反而比

后者要小, 且桩顶沉降值前者大于后者很多。这二种桩的唯一不同点, 据分析,前者桩底没有注浆,不排除由于桩底不注浆使桩底沉碴过厚而影响到桩底端阻力的发挥(从桩顶沉降过大可知)。

2、表1 中可知,所有试验桩和检验桩的一个共同点是:所有桩都是嵌岩灌注桩。从试验结果来看, 按规范的计算值和实际的静载荷试验值有巨大差别, 有的差别还很大, 尤其是短桩,无法用规范计算来得到解释。这种事实的存在提出了一个新的实际问题:只要是嵌岩灌注桩,当采用某些技术措施后,都能达到按桩身混凝土强度满足桩的竖向承载力来进行单桩设计,可以忽略规范的计算估算值。

为什么要提出这种说法呢?这是基于对嵌岩灌注桩重新认识的一种新的观点——笔者暂称其为“ 岩体延伸” , 即第三系基岩,通过钢筋混凝土

材料,将基岩延续提升到地面,而基岩是埋藏在地底下的无限大的连续整体,在四周约束状

态下,岩体是压不碎的,桩体给基岩的加载过程只能是钢筋混凝土桩体材料的破坏,亦即形成了嵌岩灌注桩都可以按桩身混凝土强度满足桩的承载力来进行单桩设计。桩身越短,这种经济价值越明显,直到嵌岩灌注长桩的桩侧摩阻力超过了桩身材料抗压强度提供承载力后,这种优势才消失掉。当然,嵌岩灌注桩要按桩身混凝土强度满足桩的竖向承载力来进行单桩设计,还必须要有一定的技术措施来保证才能实现。

三、按桩身混凝土强度设计单桩

承载力的设计施工技术措施

1、施工工艺技术:首先,钻孔灌注桩应采用泥浆反循环施工工艺技术,这是因为泥浆反

循环施工工艺能保证在钻头进入基岩后,被钻头切削或压碎下来的大小岩石碴体,立即从孔底跟着泥浆被抽吸上来,排入泥浆池中,孔底没有沉碴沉淀。而泥浆正循环工艺就做不到,

就不能保证孔底沉碴小于规范要求。其次,孔底沉碴清除,不管是泥浆反循环工艺施工的桩,

还是泥浆正循环施工的桩,在浇灌水下混凝土前均必须采用反循环(泵吸或气举)来消除孔底可能有的沉碴,从而保证水下混凝土与桩底持力层岩面的紧密结合,不会因为孔底有沉碴而

影响到桩底承载能力的发挥。

2、采用孔底注浆技术:对于嵌岩灌注桩,这项技术仅仅是一项辅助技术,在保证孔底沉

碴为0时,注浆是没有意义的。但是施工时清除孔底沉碴此项工作,由于施工人员素质参差

不齐,会有一些素质低下人员,在监督不严情况下偷工而造成清碴不彻底,再或,清碴以后,

由于多种原因,使初灌混凝土时间延长,孔底又产生新的沉碴,孔底沉碴加厚,使桩身混凝

土与持力层基岩面脱节,使岩体延续产生疏松夹层,桩的承载能力降低。为避免此类情况发生,不管清底是否彻底,一律使用孔底注浆技术,以保证有沉碴的桩底,也能做到桩身与基

岩的紧密结合。笔者在第2号工程中对20根桩进行了岩性钻探取样,以验证桩身强度及嵌岩完好程度,其情况详见表。

嵌岩桩钻芯取样检验一览表(表2)

直径桩来计算:基岩压强f r>2 x 5876kN - (0.8m x 0.8m Xn /4)= 23.38MPa(C35);

f r > 2X 6720kN - (0.8m X 0.8m Xn /4) = 26.74MPa(C40)。

当基岩为软岩时,就不能满足上述要求,那么基岩在软岩条件下(fw 30MPa),若按桩

身混凝土强度满足桩的承载力进行单桩设计时,必须采取如下二项措施:

其一:采用钻孔扩底桩,增加基岩接触面积,如上述2号工程,基岩为软岩,岩石抗

压强度为5.2MPa,不能满足23.38MPa的压强要求,当采用桩底扩大一倍桩径后,基岩的抗

压强度为:2 X 5876kN - (1.6m X 1.6m Xn /4)= 5.84MPa,可以满足要求;

其二:加深桩端嵌岩段长度。按《建筑桩基技术规范》JGJ 94 —94的建议值,桩端阻

力由嵌岩段侧壁摩阻力和端阻力分别承担,当基岩的抗压强度不能满足桩身传来的压力时,以加长嵌岩段长度,增加嵌岩段侧壁摩阻力,减小对基岩的压力,应该是有效的。问题是嵌岩段加长多少才合理。参照JGJ94—94规范,以2号工程地质情况为例,选择0.8m直径桩

为计算依据,嵌岩段选择长度为 5.0m,其嵌岩段摩阻力为:

0.8m XnX 0.05 X 5200KPa X 5.0m = 3266kN,该桩按桩身混凝土强度满足桩的承载力的

设计值为5876kN(C 35等级),扣除嵌岩段侧壁摩阻力后,对基岩的压力为:

(5876KN — 3266kN) - (0.8m X 0.8m Xn /4)= 5189kPa ,基岩抗压强度能满足要求。 由此,软岩的嵌岩段的长度建议按下图取值。

6倍桩径长度(5.2MPa)、4号工程选择3倍桩径长度(7.97?11.2MPa),经过静载荷试桩,试 桩结果全都

满足要求(见表1)。

四、结论

通过上述试桩、检验桩、取芯检验桩的成果分析和工程实践应用,

提出了嵌岩钻孔灌注桩,

桩长80m 以内,可以按照“岩体延伸”的观点,采用一定的设计措施和施工措施,都能按 桩身混凝土强度满足桩的承载力来进行单桩竖向承载力设计, 从而使建筑物、构筑物桩基成 本,比照按常规设计有较大幅度节省。其幅度可控制在 10%?50%范围,桩越短越明显。

具有具大的经济意义和现实意义。

2、 钻孔灌注桩桩身混凝土强度等级为 C 35 ;

3、 检验报告指出,未见断桩、松散、沉碴、夹泥等不良现象,岩石与桩身混凝土胶

结紧密,岩石抗压强度平均为

11.2MPa(勘测报告提供设计抗压强度特征值为

5.2MPa)。

从表2中所列20根桩的检验记录,足以验证嵌岩灌注桩,采用了泥浆反循环施工工艺、 泥浆反循环清底工艺及孔底注浆等三项工艺技术, 为能达到桩身与基岩能紧密结合的保证措

施,是有效的,是必要的。

3、基岩的抗压强度要超过桩按桩身强度设计时对基岩抗压强度要求:

桩身混凝土强度为 C 35、C 40的钻孔灌注桩,按桩身强度满足桩的承载力,其桩的竖向 力设计值可按式 Q W A p f c e C 分别计算如下:(采用①0.8m 直径桩)

C 35 的为:R a = 16.7N/mm 2 3X 800mm X 800mm Xn /4 X 0.7= 5876kN ; C 40 的为:R a = 19.1N/mm 2X 800mm X 800mm Xn /4 X 0.7= 6920kN 。

若按端承桩受力性状来分析,桩的竖向承载力应该由桩端与基岩接触部分的基岩来承 担,也就是说,基岩的压强必须满足按承载力设计值的

2倍对基岩产生的压强, 同样按0.8m

2

号、

4

预应力大直径管桩的构造及有限元分析

预应力大直径管桩的构造及有限元分析 预应力大直径管桩,是在混凝土管桩的桩底铆接一段钢管桩(钢桩靴)(图1),使钢管桩与混凝土管桩之间相互传递轴向力(拉应力和压应力)、剪力和弯矩。混凝土管桩与钢管桩的组合桩是一种新桩型,铆接的钢管桩长度按需要确定,一般为0.5m~14m。一般情况下,钢管桩通过螺栓与大管桩牢固连接,达到两种桩连接处具备传递外力和内力的条件。 本文选取某工程为研究对象,对预应力大直径管桩进行了有限元分析计算,确保了桩的承载力。 图1 预应力大直径管桩结构示意图 1.有限元模型的建立 计算选用SAP2000有限元分析软件对组合桩进行有限元分析计算。SAP2000是由美国Computers and Structures Inc.(CSI)公司开发研制的通用结构分析与设计软件。SAP2000已有近四十年的发展历史,是美国乃至全球公认的结构分析计算程序,在世界范围内广泛应用。 在计算时将管桩壁定义为壳单元,选用厚板公式进行分析计算。模型形状及网格划分图,材料定义示意图如图2、图3所示。本模型共有849个节点,816个面单元和16个实体单元。总桩长50m,其中上部大管桩部分长35m,直径为Φ1200;下部钢管桩部分长15m,直径为Φ946mm。 由于桩底没有伸入基岩,故将桩底视为铰支。在考虑桩周围土体作用时,在桩周围加正交的水平弹簧,并按m法计算弹簧刚度系数。SAP2000提供了面弹簧的指定功能,对于桩体在土体以下部分的壳单元进行了面弹簧的指定,以此来模拟桩土的相互作用。 计算选择桩底高程-46.70m,桩顶高程3.3m。各土层物理力学性质指标及设计参数建议值如表1所示。 表1 物理力学性质指标及设计参数建议值统计表(码头MA区段)

水中大直径钻孔灌注桩施工方案

水中大直径钻孔灌注桩施工方案(一)、施工万案 〈一〉对于风力在六级以下、浪高在1m以下、水深在10m以内的江河及浅海水中的大直径钻孔桩,拟采用C70钻机在利用中一60浮箱组成一定长度和宽度的刚性浮体上,在其上进行钻孔作业。浮动平台在锚机的牵引下定位,设置竖直定位桩,这时的浮动平台只能随水位的升降而上下浮动,其平面位置受到定位 桩的控制而保持不变。 〈二〉砼采用自动计量拌合站拌和,砼输送泵输送,导管法灌注水下砼 (二)、施工工艺及施工方法 〈一〉工艺流程

〈二〉施工方法 1、施工准备 (1)修建施工便道、施工用临时码头及上料栈桥等大型临时设施。 (2)利用舟桥器材拼组浮动平台、浮吊、运输船、砂石料船、拌合船及临时码头动臂吊机,在拌合船上安装拌合机,搭设拌合台,加工定位钢桩及定位桩框架等。 (3)搭设海上桥轴线测量平台,测设两纵向桩轴线的中心线。 (4)组装C70 钻机,进行试车检查机械状况并润滑保养,使钻机处于良好的工作状态。 (5)浮动平台横向紧靠临时码头边沿,用锚机固定,用公路梁搭设上船滑道,在高潮位期间,C70钻机吊着摆管装置沿着滑道慢速开上浮动平台的纵向公路梁;加固浮动平台,利用C70 钻机将护筒、冲锤、抓斗等施工机具吊上平台,在浮动平台上备一台90kw发电机作为锚机、振动锤、拌合机的动力设备。 (6)浮动平台就位在水上用有标志的竹杆标出即将施工的桥墩的中心位置,以桥墩为中心,在 桥墩纵横轴线角平分线的四个方向,距桥墩中心150m处抛出四个混凝土锚,抛锚工作由机动舟配合浮吊来完成。 用机动舟浮动平台顶推到即将施工的桥墩中心位置,并将浮动平台上锚机的缆绳系在四个锚的浮标上。这样每根锚绳控制着浮动平台的两个方向,任两个相邻的锚绳控制着浮动平台的前后、左右位置,两对角锚绳控制着浮动平台的旋转,从而完成浮动平台的就位。 (7)浮动平台定位 a 用花杆在浮动平台上示出两预留桩位空档轴线的垂直平分线,将测距仪的反光镜安置在两预留桩位空档轴线的中心点上,将经纬仪和光电测距仪置镜在位于桥轴线的测量平台上。 b 在测量控制点上测量人员的统一指挥下,用经纬仪通过花杆控制浮动工作平台的方向,测距仪通过反光镜控制浮动工作平台的距离。 c 将控制点得到的信息反馈到浮动平台上的指挥人员,由指挥人员同时指挥各锚机操作手,操纵浮动平台上的四个锚机,反复松卷锚绳,调整浮动平台的位置,使浮动平台两预留桩位空档位于设计桩位上,其误差由预留空档的大小决定。 d 浮动平台定位后,由C70 钻机将四根定位桩吊起插入浮动平台的定位框架 内,并用C70钻机的起重臂调好定位桩的垂直度。 e 利用定位桩自重,将定位桩插入地层一定深度,而后使用振动锤,将定位桩打入地层至预定深度。

超长、超大直径钻孔灌注桩施工工法(最终)

超长、超大直径钻孔灌注桩施工工法 一、前言 钻孔灌注桩是桥梁建设上常用的一种深基础形式。近年来我国桥梁事业发展迅速,新建桥梁的跨径越来越大、结构越来越复杂,钻孔灌注桩的长度也就越来越长、直径也就越来越大。 中港第二航务工程局承建的苏通大桥C1标主4号墩由131根钻孔灌注桩组成,桩长均为120m,桩径2.5~2.85m,为目前世界上最大的桥梁群桩基础。为了促进该施工方法在我国类似桥梁工程项目中推广使用,根据苏通大桥施工经验与实践,特编制该工法。该工法内容主要包括钻孔平台搭设、钻孔桩成孔工艺(钻机选型、泥浆的选用配置、成孔参数的选择)以及成桩工艺(水下砼的配制及浇注工艺),其中钻孔平台搭设工艺曾获2004年武汉市职工创新一等奖。 二、工法特点 1、采用结构护筒直接作为钻孔平台的承重结构。 2、采用了振动锤以及移动式导向架打设钢护筒。 3、钻孔处多为粉沙、细沙、中粗沙及沙砾层等易坍孔地层,施工选用了大功率钻机成孔、优质PHP护壁泥浆。 4、钢筋笼采用镦粗直螺纹接头,并于后场同槽预制,

采用大型浮吊大节段吊装。 5、桩基采用桩底后压浆技术。 三、使用范围 适用于采用钻孔灌注桩(地质以砂层为主)为基础的特大桥桩基施工。 四、工艺原理 钻孔桩施工工法主要分两部分:其一主要说明钻孔平台的搭设工法,其二介绍钻孔灌注桩的成孔、成桩以及桩底后压浆工艺。 五、施工工艺 (一)、工艺流程 1、传统钢管桩施工平台搭设工艺流程 图5.1 传统钢管桩施工平台搭设工艺流程

2、采用钢护筒作为承重结构的钻孔平台搭设工艺流程 图5.2 采用钢护筒作为承重结构的钻孔平台搭设工艺流程3、钻孔灌注桩施工工艺流程

大直径钻孔桩

大直径钻孔桩 早期的定义中是将直径大于0.8m的桩叫大直径桩,但随着桩基的发展,大直径桩的定义也有所发展,目前有将直径大于2m的桩叫大直径桩的,也有将直径大于2.5m的桩叫大直径桩的。 灌注桩按其成孔方法不同,可分为钻孔灌注桩、沉管灌注桩、人工挖孔灌注桩、爆扩灌注桩等。 钻孔灌注 指利用钻孔机械钻出桩孔,并在孔中浇筑混凝土(或先在孔中吊放钢筋笼)而成的桩。根据钻孔机械的钻头是否在土的含水层中施工,又分为泥浆护壁成孔和干作业成孔及套管护壁三种方法。 (1)泥浆护壁成孔灌注桩施工工艺流程:场地平整→桩位放线→开挖浆池、浆沟→护筒埋设→钻机就位、孔位校正→成孔、泥浆循环、清除废浆、泥渣→第一次清孔→质量验收→下钢筋笼和钢导管→第二次清孔→浇筑水下混凝土→成桩。 (2)干作业成孔灌注桩施工工艺流程:测定桩位→钻孔→清孔→下钢筋笼→浇筑混凝土。 沉管灌注 指利用锤击打桩法或振动打桩法,将带有活瓣式桩尖或预制钢筋混凝土桩靴的钢套管沉入土中,然后边浇筑混凝土(或先在管内放入钢筋笼),边锤击或振动边拔管而成的桩。前者称为锤击沉管灌注桩,后者称为振动沉管灌注桩。

沉管灌注桩成桩过程为:桩机就位→锤击(振动)沉管→上料→边锤击(振动)边拔管,并继续浇筑混凝土→下钢筋笼、继续浇筑混凝土及拔管→成桩。 人工挖孔 指桩孔采用人工挖掘方法进行成孔,然后安放钢筋笼,浇筑混凝土而成的桩。为了确保人工挖孔桩施工过程中的安全,施工时必须考虑预防孔壁坍塌和流砂现象发生,制定合理的护壁措施。护壁方法可以采用现浇混凝土护壁、喷射混凝土护壁、砖砌体护壁、沉井护壁、钢套管护壁、型钢或木板桩工具式护壁等多种。以应用较广的现浇混凝土分段护壁为例说明人工挖孔桩的施工工艺流程。

浅谈后张预应力混凝土大直径管桩

浅谈后张预应力混凝土大直径管桩 摘要:先张法预应力混凝土管桩是用先张法预应力工艺和离心成型法制成的一种空心圆筒体细长构件,由于其抗弯承载力高和成本低,在港口工程中得到广泛应用与混凝土方桩相比,预应力混凝土管桩具有刚度大、耐锤击性能强、抗渗性能强、抗弯能力强、等优点。 关键词:后张预应力大直径管桩 1.后张法预应力混凝土管桩概述 先张法预应力混凝土管桩是用先张法预应力工艺和离心成型法制成的一种空心圆筒体细长构件。 随着码头水深增加,先张法预应力混凝土管桩的长度需要大幅度增加,桩上受到的波浪力、水流力、锤击力也大幅度增加,大断面管桩在预制生产和结构型式上都已无法满足新的要求,因此这就需要采用后张法工艺生产预应力混凝土大直径管桩。在一些大中型港口码头、桥梁等工程中,大多需要使用直径1000mm~1400mm,单根长度40m~60m的大直径、超长度预应力混凝土管桩。 后张法预应力混凝土大直径管桩,国外叫雷蒙托桩,常简称为混凝土大管桩。我国于1980年由交通部三航局开始研制,1986年试产,是国家“六五”期间科技攻关研究成果。 2. 结构特点 2.1 后张预应力混凝土大直径管桩的特点 (1)混凝土大管桩的桩长可按1m为模数进行不同桩长的拼接,其改变桩长的灵活性优于其它混凝土桩。 (2)混凝土大管桩管节的预制和管桩的拼接均为工厂化生产,机械化程度较高。 (3)由于混凝土大管桩成型工艺先进,管桩混凝土为高强度、高密实性、低孔隙率、低吸水性。因而使混凝土大管桩具有耐久性好、耐锤击性好的特点。 (4)在相同条件下,混凝土大管桩的承载力高于钢管桩。 (5)混凝土大管桩可适用于任何土质。 (6)混凝土大管桩用钢量省,其用钢量约为钢管桩的1/6~1/8。 (7)混凝土大管桩比钢管桩维护费用省,在海水中混凝土大管桩不需作防

大孔径钻孔灌注桩施工工艺

大直径钻孔灌注桩施工工法 自1966年我国洛阳生产出第一台旋转钻机,大直径钻孔灌注桩就在我国许多特大桥梁桩基中得到了广泛的应用。而随着经济建设的不断发展,大跨径桥梁建设和城市大型重点工程逐渐增多,为大直径钻孔灌注桩桩基的采用提供了更广阔的市场。 一、工法内容 1.工艺特点 1.1.大直径钻孔桩根据桩径、桩长、地质条件、水文情况等诸多因素来选择钻机 的型号、扭矩及钻具的各项参数。一般在地层强度较高、钻孔深度较深地质情况较复杂则选用较大型号钻机,另其反。 1.2.在陆地上施工时,其泥浆循环可在陆地开挖泥浆沟和泥浆池,护筒的埋设只 受表层不稳定土层影响。而在在水上施工时,需搭设平台。护筒的埋设较深,既要保重平台的稳定又要保证钻孔壁的安全。 1.3.成孔过程泥浆的循环方法可分正循环和反循环泵,而反循环又可分泵吸反循 环和气举反循环两种。 1.4.大直径钻孔桩泥浆的作用主要为:①保护壁,②悬浮钻渣③冷却钻具;大口 径成孔对泥浆质量要求很高,一般检测指标有:①相对密度,②粘度,③含砂率,

④胶体率等。 1.5.在江上或海上作业时,材料供应和正常施工不可避免的要受到潮汐、风浪、 季节性的影响,另由于平台的局限性需在平台配制专门的泥浆箱或利用护筒的连接作为泥浆池或泥浆循环管。 2.适用范围 2.1.本工法适用范围:孔径≥2000mm,孔深150m以内的孔径、垂直度要求较 高,水上(陆地)竖向承重桩的施工。 2.2.适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层。 3.工艺原理 结合工程及地质条件,利用大扭矩钻机进行大直径成孔,下放钢筋笼、导管法水下混凝土灌注,从而实现成桩达到竖向承重的目的。 4.施工工艺 4.1.施工顺序 在施工前,先对钻孔中心进行校对然后钻机就位成孔。成孔中钢筋笼进行制备,成孔验收后下笼、下导管进行二次清孔验收,最后进行灌注成桩。 4.2.工艺流程

大直径管桩施工质量缺陷原因分析处理

大直径管桩施工质量缺陷原因分析处理 大直径管桩施工质量缺陷的原因分析与处理 大直径管桩施工中常见的质量缺陷主要是: 一、桩身出现裂缝; 二、桩顶发生破碎; 三、桩端达不到设计标高,即通常所谓的“超高”; 四、桩位偏差。 一、施工质量缺陷原因分析 1.由于桩身质量存在隐患 (1)管节成型时的质量问题 由于管节预留孔拉杆两端的螺帽用人工拧紧时,拧紧力不足或用力不均,以致在管节成型过程中在高速旋转的离心力作用下,拉杆向外弯曲,至管节成型后混凝土尚未产生足够强度时拉杆又因其自身弹性而向内回弹,有可能造成管节内壁产生纵向裂缝;在A型管节环向中因拉杆较细,更有可能产生此种裂缝; 管节成型后混凝土尚未产生强度,当钢模吊入卧式蒸养坑时,由于混凝土自重作用,在管节环向上部大约三分之一圆周范围,其内壁易产生纵向裂缝; 成型的管节若长期堆放在露天、高温或暴雨和急剧降温的环境,易使管节内壁产生纵向干缩裂缝;因此,对长期不用的管节宜放在日温差较小或经常保持潮湿的环境中; 管节表面或端部混凝土如局部存在蜂窝等缺陷,将影响管桩拼接接缝质量; (2)管桩拼接时的质量问题 例如管节端面处理不符合工艺要求,粘接剂涂刷不均匀或发生流淌,张拉布符合工艺顺序要求等等,都会导致张拉过程中接缝处产生纵向微裂缝,以致打桩过程中接缝处出现跑气、漏水等现象; (3)灌浆时的质量问题如灌浆压力不足,浆体不密实,漏浆或灌浆有空隙等,均会影响钢绞线的握裹力。 2.由于地质、地形上的原因 当土层的标贯击数较大,或遇孤石、抛石等情况沉桩贯入度已很小时,如仍继续锤击,将会产生断桩或桩锤受损等事故;在水域施工,如遇水下陡坎、斜坡等常会影响桩的正位率或造成蹩桩;或因桩身剧烈抖动而造成断桩; 3.由于打桩船机设备原因 (1)打桩船的抗风能力差,打桩时遇一定风力打桩船即会发生作用摇摆或晃动,此时若陆上地笼或锚力不够,常会引起走锚现象,致使打桩过程中桩、替打和桩锤不在一条轴线上,于是发生偏心锤击,造成桩顶破裂或桩身断裂; (2)现场观察获知,桩顶裂缝的部位大多出现在靠近打桩船龙口的一侧,虽有少数桩在远龙口的一侧也有裂缝,但此时其近龙口的一侧必也有裂缝,而且近龙口一侧的裂缝必多于远龙口一侧,这一规律表明,裂缝的产生常与锤击压应力不均匀有关。特别是由于下桩及压锤后船体上浮,引起打桩架后仰,致使桩身、替打和桩锤的中心不在一条轴线上,从而使替打面和管桩顶面不能全面平行接触,其结果往往使桩顶近龙口的半面受偏心锤击,应力最大的集中点是最接近龙口的管桩边沿; (3)桩垫材质差、弹性差,或不及时更换桩垫,以致不能对作用于桩顶的锤击应力发挥其调整作用,便会使局部混凝土受到过量冲击而发生裂缝或破碎; (4)桩锤自重大,锤击力大,打桩时锚缆所受冲击力也大,如施工区水域狭窄,抛锚长度受限制,锚位时有走动,也会造成断桩。

钻孔灌注桩心得

灌注桩 一、泥浆护壁成孔灌注桩施工工艺 泥浆护壁成孔灌注桩是利用泥浆护壁,钻孔时通过循环泥浆将钻头切削下的土渣排出孔外而成孔,而后吊放钢筋笼,水下灌注混凝土而成桩。成孔方式有正(反)循环回转钻成孔、正(反)循环潜水钻成孔、冲击钻成孔、冲抓锥成孔、钻斗钻成孔等。 泥浆护壁成孔灌注桩施工工艺流程如下: 钻孔灌注桩的施工顺序为:初步放样→筑岛→恢复定线→护筒埋设→钻孔→成孔检测清孔→下钢筋笼→下导管→砼浇注→破桩头→成桩检测。 (1)测定桩位。 (2)埋设护筒。护筒的作用是:固定桩孔位置,防止地面水流入,保护孔口,增高桩孔内水压力,防止塌孔,成孔时引导钻头方向。护筒用4—8mm厚钢板制成,内径比钻头直径大100—200 mm,顶面高出地面0.4~0.6 m,上部开1一2个溢浆孔。埋设护筒时,先挖去桩孔处表土,将护筒埋入土中,其埋设深度,在粘土中不宜小于1 m,在砂土中不宜小于1.5 m。其高度要满足孔内泥浆液面高度的要求,孔内泥浆面应保持高出地下水位1 m以上。采用挖坑埋设时,坑的直径应比护筒外径大0.8~1.0m。护筒中心与桩位中心线偏差不应大于50 mm,对位后应在护筒外侧填人粘土并分层夯实。 (3)泥浆制备。泥浆的作用是护壁、携砂排土、切土润滑、

冷却钻头等,其中以护壁为主。 泥浆制备方法应根据土质条件确定:在粘土和粉质粘土中成孔时,可注入清水,以原土造浆,排渣泥浆的密度应控制在1.1~1.3g/cm3;在其他土层中成孔,泥浆可选用高塑性(Ip≥17)的粘土或膨润土制备;在砂土和较厚夹砂层中成孔时,泥浆密度应控制在1.1—1.3 g/cm3;在穿过砂夹卵石层或容易塌孔的土层中成孔时,泥浆密度应控制在1.3~1.5 g/cm3。施工中应经常测定泥浆密度,并定期测定粘度、含砂率和胶体率。泥浆的控制指标为粘度18~22s、含砂率不大于8%、胶体率不小于90%,为了提高泥浆质量可加入外掺料,如增重剂、增粘剂、分散剂等。施工中废弃的泥浆、泥渣应按环保的有关规定处理。 (4)成孔方法 ①回转钻成孔。回转钻成孔是国内灌注桩施工中最常用的方法之一。按排渣方式不同分为正循环回转钻成孔和反循环回转钻成孔两种。 正循环回转钻成孔由钻机回转装置带动钻杆和钻头回转切削破碎岩土,由泥浆泵往钻杆输进泥浆,泥浆沿孔壁上升,从孔口溢浆孔溢出流人泥浆池,经沉淀处理返回循环池(图2-19)。正循环成孔泥浆的上返速度低,携带土粒直径小,排渣能力差,岩土重复破碎现象严重,适用于填土、淤泥、粘土、粉土、砂土等地层,对于卵砾石含量不大于15%、粒径小于

2.5米直径钻孔桩施工技术

2.5m直径钻孔灌注桩施工技术 中铁十三局一公司韩光明 [接要]:本文详细介绍了2.5m直径钻孔灌注桩成孔及灌注技术,成功克服了小钻机钻大孔径桩、复杂地质情况下泥浆护壁及砾石、铁板砂层成孔和泥浆无公害处理等施工技术难题,为类似施工提供借鉴之处。 [关键词]:2.5m直径钻孔灌注桩钻机改造成孔灌注技术 1.工程概况 哈双高速公路B2合同段的黎明站分离立交桥,位于哈尔滨市动力区朝阳乡东升村,跨越拉滨铁路黎明车站。桥梁孔跨组合为:左幅2×40m+12×50m;右幅为2×40m+2×50m+3×40m+2×50m+2×40m+5×50m。全桥共计54根钻孔灌注桩,桩基设计要求:直径2.5米,最大桩长32米,桩底位于中粗砂地层中,通长钢筋笼,孔底沉渣小于60cm。但实际地质与设计不符,部分桩底位于砾石层中或铁板砂(软岩)层中。 2.钻孔灌注桩成孔及灌注施工 2.1地层简述 一层:0-0.5m 人工填土。 二层: 0.5-4.5m 亚粘土,黄色,湿硬型状态。 三层: 4.5-12.0m亚粘土,灰色,湿,可塑状态。 四层: 12.0-16.5m亚粘土,灰色,湿,可塑状态,含云母。 五层: 16.5-17.3m 亚粘土,灰色,稍湿,硬塑。 六层: 17.3-19.0m 亚粘土,黄色-灰色,稍湿,硬塑-坚硬,含氧化铁,下部夹薄细砂层。 七层:19.0-29.9m中砂,灰色,稍湿,密实-极密状态,成分主要为石英、长石及云母,含砾约10-15%,磨圆较好,分选性较好。本层较为致密,具胶结(俗称铁板砂)。 2.2.施工主要难点 (1)小钻机进行大直径钻孔桩施工

(2)超厚粉细砂及中粗砂层的泥浆护壁 (3)旋转钻机穿越砾石,铁板砂层 (4)化学泥浆无公害处理 由上可见,该桩基工程所面对的技术问题是范围广、难度高,为了解决这些问题,施工中从理论到实践首次采取了一些施工方法来解决这些问题。 2.3钻机改造技术 2.3.1.电机改造 本工程使用的设备都为国产钻孔设备,一种为连云港生产的GM—20型钻机,一种为GPS—15型钻机,从型号可以看出此两种型号的钻机,均需要改进,并辅以相应的施工工艺才能进行 2.5M钻孔桩施工。改造钻机的原理为减少电机转速,增加扭距,以适应大直径钻孔桩施工需要。从结果看并不比国外设备或国产大功率钻孔设备差,使用的主要钻孔设备见表1 主要钻孔设备表1 2.3.2加工特制钻头 加工锥形刮刀钻头4个,适用于亚粘土或人工填土以及砂层,加工一个楔齿滚刀钻头1个适用于卵石、砾石,加工一个球齿滚刀钻头1个,适用于岩石(铁板砂)层。 2.4钻机钻孔技术 本钻孔桩工程采用反循环排渣钻进,泥浆池与钻孔桩位相连,循环送浆。 2.4.1穿过砾石、卵石层钻进技术 (1)选用楔齿滚刀钻头; (2)调节钻头吸渣口的位置、高度及直径; (3)增大钻压,控制钻进速度;

大直径钻孔灌注桩施工工艺

中江高速西江特大桥型.7m钻孔灌注桩施工工艺 沈怿宁廖雄滨 (广东冠粤路桥有限公司广州510000 ) 摘要:钻孔灌注桩中优质泥浆应用及西江特大桥工程中的实际应用。 关键词:钻孔灌注桩;泥浆;成孔;灌注; 1工程地质概况 西江特大桥主桥为70m+4 X120m+70m 预应力砼刚构一连续组合结构,全长620m,有 5个主墩,2个过渡墩,其中主墩桩基为① 2.5m~①2.7m的变截面桩,每墩8根,桩长都在60m~70m 之间,过渡墩桩基为①1.6m等截面桩,桩长也在50m~60m 之间,全桥桩基均为钻孔灌注桩。主桥桩基所处地层从上至下为:1 、淤泥质粉砂,饱和、流塑状,层厚在7~12m; 2、淤泥质亚粘土,饱和、流塑状,层厚在20~25m ;3 、卵石层,颗粒均匀性较差,粒径 2~7cm ,不稳定;4、强风化泥岩半岩半土状,稍硬,层厚10cm 左右;5、弱风化泥岩,岩质软,岩石裂隙发育,岩石天然单轴极限抗压强度2.3~11Mpa ,层厚3~10m ;6、微风化泥岩,质软,岩石天然单轴极限抗压强度3.5~44.4Mpa 。 2 泥浆循环系统 泥浆是由水、粘土、化学处理剂以及其他一定物质组成。泥浆是钻孔必不可少的,泥浆质量的好坏直接影响到成孔质量。主桥钻孔全部采用优质泥浆。 2.1优质泥浆组成及作用机理。 2.1.1泥浆配制 根据本桥特点在工地试验室进行泥浆试配,最终采用配合比是: 泥浆:1m3 水:1000kg 粘土:420kg 膨润土:60kg CMC : 1.5kg NaOH :

1.5kg 优质泥浆的特点是:降低失水,稀释,悬浮钻碴;泥皮薄,护壁稳定。 2.1.2 作用机理 优质泥浆中不同成分分别起着不同的作用。 (1)粘土中的细颗粒具有带电、吸附、水化膨胀分散以及絮凝等性能。 (2)膨润土具有相对密度低含砂量少,泥皮薄,稳定、固壁能力高,阻力小和造浆能力大。 (3)CMC (羧甲基纤维素),可增加泥浆粘性,使土层表面形线薄膜防护孔壁剥落并有降低失水量的作用。 (4)NaOH 的主要作用是增加水化膜厚度,提高泥浆的胶体率和稳定性,降低失水量。 2.2泥浆指标 由于受场地限制没有设置太大的泥浆处理器,河水平均深度24m 左右,护筒的长度基本都有35m ,利用护筒造浆,首先将护筒内土层用钻机清除,距护筒底还有1~2m 时,停止钻进并开始造浆,根据配合比向内投入足够数量的造浆材料。当泥浆指标达到下列数值时才能继续钻进。 泥浆性能指标表1 相对密度粘度(pa ?)含砂率(%)失水率(ml/30mi n )1.2~1.2519~22 <4 <20 泥皮厚(mm/30min )酸碱度(PH)胶体率(%)< 38~11边5 2.2.1 循环系统 从孔底压出的泥浆进到一个直径2.5m ,高1.5m 的过滤器,在过滤器上部有一0.5mm 的筛网,首先将泥浆中的粗砂以上的钻碴直接分离出来,泥浆在过滤器中沉淀部分钻碴,然后直接回到孔中,过滤器下部有一出口,定时将钻碴排出,由于整个循环系统较短而且过滤器的体积也不大,对泥浆中的粉砂不能及时清出,对于这个问题我们采用主动清理的办法,在过滤器中再放入一个泥浆泵,将容器中不能及时沉淀粉砂的泥浆抽出,并通过一个泥浆旋流

管桩规格

管桩规格 管桩产品一览表 地区管桩类别强度等级型号规格(mm)单节桩长(m) 广东PHC C80A AB Φ300 X 70≤12 Φ400 X 95≤14 Φ500 X 100 ≤14 Φ500 X 125 Φ550 X 100 ≤11 Φ550 X 125 Φ600 X 110 ≤14 Φ600 X 130 江苏PTC C70 Φ400 X 70≤12 Φ500 X 80≤13 Φ550 X 80≤13 Φ600 X 80≤13 PC PHC C70 C80 A AB Φ400 X 90≤14 Φ500 X 100 ≤15 Φ500 X 120 Φ550 X 100 ≤15 Φ550 X 120 Φ600 X 110 ≤15 Φ600 X 130 上海PHC C80A AB Φ300 X 60≤12 Φ400 X 80≤14 Φ500 X 100≤15 Φ550 X 105≤15 Φ600 X 100 ≤15 Φ600 X 110 福建PHC C80A AB Φ300 X 75≤12 Φ400 X 95≤14 Φ500 X 100 ≤14 Φ500 X 125 Φ550 X 100≤14 Φ600 X 110 ≤14 Φ600 X 130

天津PTC C60 Φ300 X 55≤12 Φ400 X 60≤13 Φ500 X 70≤15 Φ550 X 70≤15 PC PHC C60 C80 A AB Φ300 X 60≤12 Φ400 X 80≤14 Φ500 X 100≤15 Φ550 X 105≤15 Φ600 X 110≤15 湖北PTC C70 Φ400 X 70≤13 Φ500 X 80≤14 PC PHC C70 C80 A AB Φ300 X 60 ≤12 Φ300 X 70 Φ400 X 90 ≤14 Φ400 X 95 Φ500 X 100 ≤15 Φ500 X 125 Φ600 X 110 ≤15 Φ600 X 130 中文词条名:管桩制作规格分类 英文词条名: 1 管桩按桩混凝土强度等级及壁厚分为:预应力高强混凝土管桩(代号PHC)、预应力混凝土管桩(代号PC)、预应力混凝土薄壁管桩(代号PTC)。PHC桩混凝土强度等级不低于C80,PC桩和PTC桩混凝土强度等级不高于C80但不低于C60。PHC、PC桩壁厚一般为75MM~130MM,大直径桩壁厚可达150MM,PTC桩壁厚较小,一般为55MM~70MM。 2 管桩按外径主要分为300MM、400MM、500MM、550MM、600MM、800MM、1000MM等规格。 3 管桩按抗弯性能或有效预压应力值分为A型、AB型、B型和C型等,其有效预压应力值分别为4MPA、6MPA、8MPA、10MPA,其计算值应在各自规定值的范围内,管桩的抗弯性能应符合附录C的规定。预应力混凝土薄壁管桩主要考虑承受纵向压力,其抗弯性能应满足管桩吊运和堆放要求。

大直径灌注桩专项施工方案

大直径灌注桩专项施工方案 工程名称:某桩基础工程 工程地点: 施工单位: 编制单位: 编制人: 编制日期:年月日 审核负责人: 审批负责人: 审批日期:年月日

一、施工过程中质量控制的重点 (一)、一般情况下提高灌注桩施工质量的措施 1、提高水下混凝土的强度混凝土强度必须满足桩的结构设计要求。水下混凝土因施工条件限制,浇筑方法与干作业浇注不同,浇注过程中由于受水及泥浆杂质等的影响,强度会受到一定程度的损失。另外水下混凝土浇注时不易捣实,其密实性、均匀性均不及干作业浇注施工的混凝土,强度较低是必然的。因此,应根据施工单位的技术水平和工艺水平,适当提高灌注桩的混凝土施工配制强度,一般使用商品混凝土时应提高一个强度等级使用。 2、缩短成孔、成桩时间成孔过程中,应注意控制成孔时间。对于机械成孔,应正反循环交替使用,不同地层采用不同方法成孔,加强施工组织管理,合理选择冲进参数,使成孔成桩时间控制在72小时内。混凝土浇灌应采用连续浇注的方法,将泥浆在孔中停留时间控制在5小时内,尽量减小泥皮厚度。 3、提高混凝土的浇注质量。泥浆密度过低易引起塌孔,反之会引起孔壁泥皮厚度过大,因此一般在钻孔过程中泥浆相对密度宜控制在1.10~1.25之间,两次清渣时宜控制在1. 10~1.18之间。要加强对混凝土的浇注管理,严格按照工艺要求进行震捣,确保混凝士的密实度。 4、合理控制导管埋管深度浇注水下混凝土时,如果导管埋置深度过大,会导致混凝土出口压力不够,甚至引起出料困难;当导管埋置深度过小时,混凝土形成超压,则可能将混凝土顶面冲翻,导致混凝土夹泥、离析等。因此应合理控制导管埋管深度。另外在浇注过程中,还要始终严格控制好管内混凝土表面至泥浆表面的高度,保证孔内混凝土在浇注时能均匀缓慢上升,避免泥浆剧烈翻滚造成混凝土中泥夹层。 (二)、针对大直径灌注桩施工质量控制的措施

大直径钻孔灌注桩按桩身混凝土强度设计

按桩身混凝土强度设计嵌岩灌注桩的方法 章履远(浙江世贸联合投资集团公司310053) 一、概述 当前大直径钻孔灌注桩的应用量大面广。如何提高大直径钻孔灌注桩的竖向承载力,以降低桩基成本是人们追求的目标。本文探讨以端承为主的端承桩或摩擦端承桩如何来提高承载能力的问题。笔者通过近几年的工程实践与分析后认为,这种桩型的桩端必须要有中风化或微风化基岩(硬质岩或软质岩均可) 作为持力层,且基岩的埋深在10m~80m以内,在这种条件下,通过技术手段采取施工措施,使桩的承载能力大幅度提高,最后达到最大值——承载能力按桩身混凝土强度控制。本文着重叙述在桩身混凝土强度满足桩的竖向承载力设计要求时应采用的几个技术措施。 二、考虑问题的思路 1、无论是国家标准《建筑地基基础设计规范》50007—200 2、或行业标准《建筑桩基技术规范》94—94,决定摩擦端承桩时,钻孔灌注桩单桩竖向承载力的计算公式总是分为摩擦部分和端承部分。而嵌岩灌注桩的计算就有区别。行业标准94—94分得较细,其计算式为=++,即嵌岩部分也分为嵌岩段摩擦阻力和端承部分支承力二部分,并且随嵌岩深度分别作出修正(见规范第40页);国家标准50007—2002比较简单,只要是明确桩端嵌在较完整的硬质岩时,可按公式=来确定单桩竖向承载力。近年来,笔者通过几种嵌岩灌注桩,无论是80m长桩,还是<20m的短桩,持力层那怕是软质岩或极软岩,先用规范计算得出承载力再进行静载荷试桩,结果发现二者差别都比较大,表1给出计算值与试验值对比。 从表1中所列,21根试验桩及检验桩的试验值与按规范的计算值相比,除少数桩其试桩值达不到计算值外,其余大部分桩试验值都超过了计算值,有的还大大超过了计算值。如306#检验桩,其试验值与计算值相比,达到2.31比值。其实,许多试验桩,从最终桩顶沉降值来看,有些桩的荷载还能再增加,比值有可能会超过3.0,只是由于荷载再加上去,已没有实标意义(因荷载值己超过了按桩身材料抗压强度控制的最大值)或试桩堆载装置已无法再增加荷重而不得不终止加载。 再从表1中可以看出,短桩比值大,而长桩比值小,但不管是长桩或短桩,只要是嵌岩桩,比值都能提高。 又从表1可看出,1#工程的S1和S2桩,与4#工程的1、2、3试验桩,二者的地层情况相似,S1、S2桩的桩端持力层岩石单轴抗压强度标准值(19.4)要比1、2、3桩的桩端持力层岩石单轴抗压强度标准值(6.46)要高,但试验桩极限承载力前者反而比后者要小,且桩顶沉降值前者大于后者很多。这二种桩的唯一不同点,据分析,前者桩底没有注浆,不排除由于桩底不注浆使桩底沉碴过厚而影响到桩底端阻力的发挥(从桩顶沉降过大可知)。 2、表1中可知,所有试验桩和检验桩的一个共同点是:所有桩都是嵌岩灌注桩。从试验结果来看,按规范的计算值和实际的静载荷试验值有巨大差别,有的差别还很大,尤其是短桩,无法用规范计算来得到解释。这种事实的存在提出了一个新的实际问题:只要是嵌岩灌注桩,当采用某些技术措施后,都能达到按桩身混凝土强度满足桩的竖向承载力来进行单桩设计,可以忽略规范的计算估算值。为什么要提出这种说法呢?这是基于对嵌岩灌注桩重新认识的一种新的观点——笔者暂称其为“岩体延伸”,即第三系基岩,通过钢筋混凝土

超长大直径钻孔灌注桩施工技术论文

超长大直径钻孔灌注桩施工技术 摘要:介绍嘉通道3.8m大直径超长钻孔灌注桩试桩施工的技术特点、施工方法及主要机械设备配置情况,为同类大直径超长桩施工提供了参考。 关键词:钻孔桩机械设备施工方法混凝土灌注 abstract: the introduction the peggy channel 3.8m large diameter and long bored pile the technical characteristics of the test pile construction, construction methods and mechanical equipment configuration, provides a reference for similar large diameter ultra-long pile construction.keywords: bored piles machinery and equipment construction methods pouring of concrete 中图分类号:tu74 文献标识码:a 文章编号:2095-2104(2012) 1 工程概况 嘉兴至绍兴跨江公路通道嘉绍大桥是嘉兴至绍兴跨江公路通道 跨越天然屏障钱塘江河口段的一座特大型桥梁。本项目桥位处自然条件特殊,河床宽浅、潮强流急、河床变化剧烈,特别是受风浪和涌潮影响导致水域有效作业时间极为有限。考虑到以上特点,本工程水中区引桥采用70m跨径连续刚构,下部结构采用单桩独柱的结构形式。基础采用直径3.8m的大直径钻孔灌注桩,单桩最大桩长 为116m,为大直径超长桩。为保证正式工程的施工质量,先进行试桩施工。

大直径预应力管桩在港口工程中的应用

大直径预应力管桩在港口工程中的应用 摘要:港口工程是工程建设中的重要组成部分,而大直径预应力混凝土管桩 (简称大管桩)在港口工程中发挥了举足轻重的作用。大管桩作为20世纪80年 代研制的新型管桩,其各项技术性能和经济指标都明显优于其它管桩。大管桩对 港口工程的建设工期、工程质量以及工程造价都有积极影响。大管桩是港口工程 中最有前途的一种桩型,值得在港口工程建设中推广应用。 关键词:大管桩;预应力混凝土;港口工程 引言 预应力混凝土大直径管桩(以下简称“大管桩”)是我国“六五”国家科技攻关成果,是由基本管节4m的多管节采用环氧粘接剂、后张法拼接而成。管节采用离心、 震动、辊压相结合的复合法工艺生产,其具有混凝土强度高,密实性好,耐锤击 等优点,先后应用于我国连云港以南近30个沿海港口码头,取得了良好的社会 和经济效益。大管桩是在制作过程中经管节离心、高压养护、后张法灌浆拼接等 工艺生产出的空心环形混凝土构件。与传统的混凝土预制桩及钢管桩相比,大管 桩在制作工艺、技术性能、荷载承受能力、适用土层、耐腐蚀性、经济指标等方 面都优于传统桩型。 1大管桩的生产工艺和性能 1.1大管桩的性能 大管桩是采用分段成型混凝土管节,管节间涂刷粘结剂,张拉预应力钢绞线,预留孔道内压力灌注水泥浆体和使钢绞线自锚等工艺手段拼接而成。目前,大管 桩共有1.Om,1.2m,1.4m三种直径,桩长可任意拼接。成型机生产的标准管节长 4.0m,对于管节要求不足4.0m的则用4m长的管节锯割而成。标准管节采用离心、振动、轮压相结合的复合法工艺或立式工艺生产。大管桩的特点如下: (1)大管桩管节的预制和管桩拼接均在指定预制厂生产,机械化程度较高。管 桩制作工艺先进、管理严格、质量稳定。 (2)由于大管桩成型工艺先进,管桩混凝土具有高强度、高密实性、低孔隙率、低吸水性等优异性能,使得大管桩具有抗弯性能好、耐锤击性强的特点。 (3)桩长可按设计桩长任意拼接,其改变桩长的灵活性大大优于其他混凝土桩。 (4)在相同的条件下,大管桩的承载力高于钢管桩。 (5)可适用于任何土层,可作摩擦桩、端承桩或嵌岩桩。 (6)用钢量省,其用钢量仅为同规格钢管桩的1/8-1/6。 (7)耐腐蚀比钢管桩强,在海港中使用大管桩不需作防腐蚀处理。 (8)工程造价低,大管桩的成本约为钢管桩的1/31/2。近十年来,大管桩多用 于港口工程的深水泊位,我国已建成300020000吨级大管桩码头共30多个泊位。由于其性能优越,在防波堤工程、大型岸壁工程、桥梁基础工程中得到了广泛应用。 1.2型号规格 我国现生产的大管桩分A,B,C三种型号;A,,Az,B,,B2,C,,C:共6种规格。A型桩为 单股钢绞线管桩,即每个预留孔内设置1股钢绞线:B,C型桩为双股钢绞线管桩, 即每个预留孔内设置2股钢绞线。目前我国港口工程设计中,中小型码头多采用 A型管桩,深水泊位的大型码头多采用B,C型管桩。 2大管桩在港口工程中的应用 大管桩通常是指外径大于800mm的管桩,港口工程中应用大管桩时,需根

水上大直径钻孔灌注桩解析

水中大直径钻孔灌注桩 一、施工方案 (一)对于风力六级以下、浪高1m以下、水深10m以内的江河及浅海水中的大直径钻孔桩,拟采用C70钻机在利用中—60浮箱组成一定长度和宽度的刚性浮体上,在其上进行钻孔作业。浮动平台在锚机的牵引下定位,设置竖直定位桩,这时的浮动平台只能随水位的升降而上下浮动,其平面位置受到定位桩的控制而保持不变。 (二)砼采用自动计量拌合站拌和,砼输送泵输送,导管法灌注水下砼。 二、施工工艺及施工方法 (一)工艺流程 C70钻机钻孔施工工艺流程如图所示。 (二)施工方法 1、施工准备 (1)修建施工便道、施工用临时码头及上料栈桥等大型临时设施。 (2)利用舟桥器材拼组浮动平台、浮吊、运输船、砂石料船、拌合船及临时码头动臂吊机,在拌合船上安装拌合机,搭设拌合台,加工定位钢桩及定位桩框架等。 (3)搭设海上桥轴线测量平台,测设两纵向桩轴线的中心线。 (4)组装C70钻机,进行试车检查机械状况并润滑保养,使钻机处于良好的工作状态。 (5)浮动平台横向紧靠临时码头边沿,用锚机固定,用公路梁搭设上船滑道,在高潮位期间,C70钻机吊着摆管装置沿着滑道慢速开上浮动平台的纵向公路梁;加固浮动平台,利用C70钻机将护筒、冲锤、抓斗等施工机具吊上平台,在浮动平台上备一台90kw发电机作为锚机、振动锤、拌合机的动力设备。 (6)浮动平台就位 在水上用有标志的竹杆标出即将施工的桥墩的中心位置,以桥墩为中心,在桥墩纵横轴线角平分线的四个方向,距桥墩中心150m处抛出四个混凝土锚,抛锚工作由机动舟配合浮吊来完成。 用机动舟浮动平台顶推到即将施工的桥墩中心位置,并将浮动平台上锚机的缆绳系在四个锚的浮标上。这样每根锚绳控制着浮动平台的两个方向,任两个相邻的

超深大直径灌注桩施工技术

海滨大道二期工程超深大直径灌注桩施工技术 王文山、张伟 摘要:天津海滨大道北段二期工程钻孔灌注桩桩径2.0米,深度最大达97m,均在超软的沿海滩涂地上施工。天津沿海的地质条件极差,对超深桩施工是极大的挑战,在进行大量的技术攻关和试验后,最终取得了成功。 关键词:滩涂超深灌注桩施工技术 天津海滨大道北段二期工程的桩基为钻孔灌注桩,桩径分?1.5、?1.8、?2.0 三种,其中大直径Φ2m超深97m灌注桩共500多根,均在超软的沿海滩涂地上施工。天津沿海的地质条件极差,对超深桩施工是极大的挑战,前期几次试桩均出现不同程度的塌孔现象,施工难道很大。我们在大量学习国内其他超长桩的施工经验并进行大量的技术攻关和试验后,最终取得了成功。本文主要论述超长灌注桩施工、容易出现的问题和相应解决办法,希望能为以后类似工程做参考。 一、工程概述: 海滨大道北段二期工程起自永定新河河口南侧海滨大道疏港三 线立交,向北先后跨越疏港四线和规划的永定新河主河道,沿线以高架桥的形式在海滩滩涂地向北延伸,最终在蛏头沽村东北侧接海滨大道北段高速公路主线收费站。工程路线全长9.12公里,其中桥梁长8.6公里,全线按高速公路标准建设,设计行车速度80km/h,为双向八车道。 钻孔灌注桩共有1344根,其中Φ1200mm12根,Φ1500mm16根,Φ1800mm3根,Φ2000mm286根,桩长从64m至97m不等,均处于现

状海挡以外的沿超软海滩地之中,属于超长桩。混凝土采用C35,总量达22万方。 二、工程地质情况 灌注桩施工区域位于华北平原北部海冲积平原,地貌特征为滨海低地、泻湖洼地和海滩。地势低平,海相与陆相相交互沉积地层。 按地质成因主要分为八个地质成因层,现根据各土层时代成因及物理力学性质详细阐述下表。 三、施工方法 1、施工工艺的选择 根据地质资料,结合试桩的设计和设备情况等因素,钻孔灌注桩施工采用回转钻进、泵吸(气举)反循环为主的成孔工艺,砼罐车运砼到现场,通过车上的溜槽直接倒进灰斗进行水下混凝土灌注工艺。

大直径桩基础施工技术

大直径桩基础旋挖钻施工技术 摘要:文中对*****高速公路*****大桥大直径桩基础工程施工中采用旋挖钻机进行桩基础施工的施工方法、采用的新技术和新工法、旋挖钻施工工艺流程和控制、施工中应注意的事项等几个方面进行了施工前比较深入的技术分析。 关键词:旋挖钻;大直径桩基础;成孔施工;钢筋笼制作和安装;水下砼灌注; 一、工程概况 根据目前行业标准,本桥88根Φ2.5m的桩基础为大直径钻孔桩。 二、施工方案 根据该桥的水文、地质及周围的环境情况,本工程的钻孔灌注桩基础100根桩中88根是Φ2.5m的大直径桩基、4根Φ1.8m的桩基、8根Φ1.5m的桩基。 采用旋挖钻机进行钻孔灌注桩施工,由于钻进速度的提高,钻具运动各排碴方式的变化,对泥浆的固壁和悬浮、输送等功能提出了更高的要求。目前,国际上普通采用环保型超泥浆(Supermud)和低固相膨润土泥浆固壁,而国内普遍采用膨润土泥浆固壁工艺。 ***大桥桩基础从施工的角度考虑,根据地质资料和现场考察,对****有水的桩位采取先围堰筑岛、后钻孔的方案施工。 为保证成桩质量,加快施工进度,并结合我单位的设备能力的情况,本桥桩基础全部采用旋挖钻施工,钻机选用德国宝峨BG40型旋挖钻机;桩位附近设置临时泥浆池;钻孔桩成孔清孔后,吊放钢筋笼,下导管,用垂直导管法进行水下砼灌注;钢筋笼采用长线法制作,在孔口对接,主筋连接采用CABR镦粗直螺纹螺母连接。 本工程采用旋挖钻机施工,使用静态泥浆护壁成孔,这种施工工艺具有成桩质量高、高效节能、污染较少等特点;且旋挖钻机具有扭矩大,捞渣能力强(使用磨盘式捞渣钻头)等特性,可使孔底沉渣厚度有效地控制在规定的范围之内,达到高效优质的目的。 针对本桥大桩径的砼灌注的特点,本工程灌注砼的导管选择直径为Φ30cm、壁厚7mm无缝钢管(丝扣式连接),配备2m3的漏斗2个和5m3的漏斗1个。水密性试验检查合格后下放导管,导管上安装压浆管,利用反循环原理二次清孔,目的是保证砼灌注前孔底沉渣满足要求,并且使孔内泥浆均匀分布。 成桩后砼达到规定龄期,进行开挖,按照业主和招标文件指定的检测方法进行成桩检测,检测合格后进入下一道工序施工。 三、采用的新工法和新技术 为优质、高效、快速的完成胶莱河大桥的桩基础工程施工,我单位在综合考虑工期、质量和资金、设备能力等方面的因素,采用了一项新工法和一项新技术。

钻孔灌注桩直径一米的单价是多少

钻孔灌注桩直径一米的单价是多少 钻孔灌注桩1米直径的一般钢筋含量每米在40---65KG之间,一般应该在55KG的比较多些,现在钢筋出场价格在4000元每吨左右,需要加200元左右的运费和其他费用,制作加工费用500元。所以钢筋笼成型需要260元左右,成孔含泥浆制作运输混凝土灌注等等我不说那么详细了,成本价格含钢筋笼子制作已经入孔应该在800元左右,如果需要处理地方关系需要900元就足够了。这是包工队所需要价格。你如果是总承包商,给外包队900足够了。但是对于一个国营一级资质企业的话需要1150-1400元都是正常的。少于1100对于大型企业就没必要去接了。对于一个小企业或者是自己有钻机的小老板。800都可以凑合干。我之所以不好回答你,因为不知道你是什么企业,另外对于打桩所在地情况不了解,还有具体有多少根桩,如果只有几根1500也不干。如果有几千根1000也可以商量。如果想了解详细可以补充你哪里的详细情况 直径1.6米钻孔灌注桩成孔单价多少?不含钢筋制作 钻孔灌注桩的成孔单位与地质条件、施工环境、所选用的施工方法、施工地域等均有密切的关系,一般不入岩的情况下,直径1.6m的钻孔桩每米成孔单价大概在350至500元,如入岩则需要根据岩石性质、强度、深度等综合考虑。 机械钻孔灌注桩大小直径施工承包价格? 这个价格是要根据实际地层来决定的,孔深,直径,入岩深度,很多实际情况才能决定这个价格的,不是一句话两句话就可以定下来的事情。 桥梁圆形双柱墩施工,钻孔桩直径1.8米,钻孔灌注桩一般采用什么机械,型号多少? 目前一般采用回旋钻、冲击钻、旋挖钻三种方式,型号无所谓。 主要看是什么地质情况。 1、回旋钻 钻机按照泥浆的循环方式:分正循环钻机和反循环钻机。正循环钻机适用于黏土、粉土、砂性土等各类土层的桥墩的桩基施工。反循环钻机适用于粘性土、砂性土、卵石土和风化岩层,但卵石粒径少于钻杆内径的2/3,且含量不大于20%。 2、冲击钻: 冲击式钻机是灌注桩基础施工的一种重要钻孔机械,它能适应各种不同地质情况,特别是卵石层中钻孔,冲击式钻机较之其它型式钻机适应性强。同时,用冲击式钻机造孔,成孔后,孔壁四周形成一层密实的土层,对稳定孔壁,提高桩基承载能力,均有一定作用。 目前常用的冲击钻机,所有部件装在拖车上,包括电动机、传动机、卷扬机和桅杆等,整体牵引。冲机钻孔是利用钻机的曲柄连杆机构,将动力的回转运动改变为往复运动,通过钢丝绳带动冲锤上下运动。通过冲锤自由下落的冲击作用,将卵石或岩石破碎,钻渣随泥浆(或用掏渣筒)排出。 3、旋挖钻: 旋挖钻机是一种适合建筑基础工程中成孔作业的施工机械。主要适于砂土、粘性土、粉质土等土层施工,在灌注桩、连续墙、基础加固等多种地基基础施工中得到广泛应用,旋挖钻机的额定功率一般为125~450kW,动力输出扭矩为120~400kN·m,最大成孔直径可达1.5~4m,最大成孔深度为60~90m,可以满

相关文档
最新文档