弦振动偏微分方程的求解

弦振动偏微分方程的求解
弦振动偏微分方程的求解

弦振动偏微分方程的求解

(郑州航空工业管理学院数理系 田硕 450015)

摘要:本文列出了不同情况下的弦振动问题的定解方程及其成立条件,给出了不同情况下偏微分方程的求解方法,对于我们的生活和学习有一定的指导意义。

关键词:数学物理方程;偏微分方程;弦振动;拉普拉斯变换

Method for solving partial differential equations of string vibration

(Tianshuo Department of mathematics and physics, Zhengzhou Institute of

Aeronautics Industry Management, henna zhengzhou 450015)

Abstract : This article lists the definite solution of the equation of string vibration problems in different situations and the establishment of conditions, given the method for solving partial differential equations under different circumstances, for our lives and learning have a certain significance.

Keywords : mathematical physics equations; partial differential equations; vibrating string; Laplace transform

在数学物理方程中,根据常见物理模型,可以建立求解的偏微分方程。如在很多物理实际问题中要遇到的拉普拉斯方程,泊松方程,波动方程,热传导方程等等。对偏微分方程求解的讨论,有很重要的意义和运用。对不同的偏微分方程,往往有不同的求解方法,这要根据方程本身的特点而定。选取合适的方法不仅可以使问题简化,有时候也能体现出方程背后更深层次的物理意义。理想弦的振动方程就是一个一维波动方程的特例,本文将给出不同情况下的弦振动偏微分方程,并对它们的求解给予一定的讨论。

一、无界弦的自由振动问题

无界弦的自由振动问题既是满足下面条件的偏微分方程[1]:

???+∞<<-∞==>+∞<<-∞=)

(),(),0(),(),0(),0,(2x x x u x x u t x u a u t xx tt φ? 对于该偏微分方程,我们可以类似常微分方程初始问题的解法,先求出通解,然后把初始条件代入通解,以确定任意常数,从而求得初始问题的解。

做变量代换at x -=ξ,at x +=η,代入偏微分方程,整理可得:

02=???η

ξu ,得方程的通解为:)()()()(at x g at x f g f u ++-=+=ηξ 再代入初始条件,有:

???='+'-==+=)2()

()()(),0()1()()()(),0(x x g a x f a x u x x g x f x u t φ?

对(2)式积分: )3()(1)()(0c d a x g x f x +=+-?λλφ

将(1)式和(3)式联立,解之则得:

2

)(212)

()(0c d a x x f x --=?λλφ? 2)(212)()(0c d a x x g x ++=?λλφ?

于是我们便得到了:

?+-+++-=++-=at x at

x d a at x at x at x g at x f x t u λλφ??)(212)()()

()(),( 这便是一维无界弦的自由振动解的表达式, 称作达朗贝尔公式。由于对u 没有任何限制,只要一维波动方程有解,解必由达朗贝尔公式给出,且解是唯一的。

二、有界弦的自由振动问题。

描述两端固定的有界弦的自由振动的混合问题:

??

???====>+∞<<-∞=(初始条件)边界条件),

),(),0(),(),0((0),()0,()0,(2x x u x x u l t u t u t x u a u t xx tt φ? 对于该问题,适合用分离变量方法进行求解。

第一步,分离变量,分析求一族满足泛定方程和边界条件的分离变量形式的非零特解,可以先不估计初始条件。

令:)()(),(t T x X x t u =,把它代入方程,得

)()()()(2t T x X a t T x X ''=''

两边除以)()(2t T x X a ,得

)

()()()(2x X x X t T a t T ''='' 此式左端仅是t 的函数,右端仅是x 的函数,而x 与t 是两个相互独立的变量,所以只有两边都是常数时,等式才能成立,令这个常数为λ-,就得到一个常微分方程: 02=+''T a T λ

及其边值问题(因,0)()0()0,(==t T X t u 所以0)0(=X ;同理,0)()(),(==t T l X l t u 所以0)(=l X )

故第二个常微分方程是:

???==<<=+''0)(0)0(0))(l X X l x x X x X )((λ

第二步,解固有值问题

怎么找到满足条件的固有值λ,使常微分方程的边值问题有非零解。分三种情况讨论。

(1)0=λ,这时方程为:, 0=''X ,通解为:B Ax X +=,由边界条件0)()0(==l X X ,得A=0;B=0,0)(≡x X ,不满足要求。

(2)0<λ,不妨设2k -=λ,这时方程0))(2=-''x X k x X (的通解为:

kx kx Be Ae X -+=由边界条件0)()0(==l X X ,得

???=+=+-0

0kl kl Be Ae B A 不难求出A=B=0,同样不满足要求。

(3)0>λ,不妨设2k =λ(0>k ),这时方程0))(2=+''x X k x X (的通解为:

kx B kx A X sin cos +=

由条件X(0)=0,知,A=0,再由条件0)(=l X ,得

0sin =kl B ,由于B 不能再为零,则必有),2,1( ==n l

n k π 或者:),2,1(2 =??

? ??=n l n πλ 我们把),2,1(2 =??

? ??=n l n n πλ叫做固有值,与固有值对应的非零解为: l x n B x X n n πsin

)(=,n B 是任意常数。求固有值和固有函数的边值问题称为固有值

问题。 把固有值2

??

? ??=l n n πλ代入确定T 的常微分方程: l at n D l at n C t T n n n ππsin cos )(+=,n C ,n D 为任意常数。这样得到: ),2,1(sin sin cos )()(),( =??? ?

?+==n l x n l at n D l at n C t T x X x t u n n n n n πππ 把n B 归入常数n C ,n D

第三步,写出级数形式解

由于方程和边界条件都是线性齐次的,故由叠加原理,级数:

∑∑+∞

=+∞=??? ??+==11sin sin cos ),(),(n n n n n l x n l at n D l at n C x t u x t u πππ 仍满足方程和边界条件。

第四步,确定级数解中的系数n C 和n D 由初始条件:∑+∞===1sin

),0()(n n l

x n C x u x π?及

+∞===1sin ),0()(n n t l x n D l a n x u x ππφ,由正弦展开的系数公式,得: ?=l n dx l

x n x l C 0sin )(2π? ?=l n dx l

x n x a n D 0sin )(2πφπ 这样我们得到该问题的定解为: ∑??+∞=??? ???+?=100sin sin sin )(2cos sin )(2),(n l l l x n l at n d l n a n l at n d l n l

x t u ππξπξξφππξπξξ?三、无界弦的受迫振动问题

该问题的偏微分方程为:

???==>+∞<<-∞+=(初始条件)),

(),0(),(),0()0,(),(2x x u x x u t x t x f u a u t xx tt φ? 对该问题,用拉普拉斯变换计算比较方便[2]。

对泛定方程施行拉普拉斯变换

dt e t x u x p u pt ?+∞-=0),(),(得:0),(2002=----==p x u a u u p u p xx t t t 代入初始条件得:0),(22=----p x f u a p u p xx φ?该非齐次常微分方程的通解是 d p p f p e e a d p p f p e e a Be Ae

p x u x px px x a px a px a px a px )](),()([21)](),()([21),()()(ξ?ξξφξξ?ξξφ+++++-+=??---

考虑到+∞→x 和-∞→x 时u 不应为无穷大,所以A=0,B=0,另为保证积分收敛,第一个积分下限取∞+,第二个积分下限取∞-。所以

??

????++??

????++??

????+=+++++=+++++-=??????????∞---∞+--∞---∞+--∞---∞+--∞---∞+--∞---∞--ξξ?ξξ?ξξξξξξφξξφξξ?ξξφξξ?ξξφξξ?ξξφξξ?ξξφξξξξξξξξξξd p p e a d p p e a d p f p e a d p f p e a d p e a d p e a d p p p

e a d p p

f p

e a d p p

f p e a d p p f p

e a p x u x x p x a x p x a

x p x a x p x a

x p x a x p x x p x a

x p x x p x a

x p )(21)(21),(21),(21)(21)(21)](),()([21)](),()([21)](),()([21)](),()([21),()()()()()()()()()()(

对于第一个中括号,运用延迟定理,),(1t H P ?则???+>+<=--?--)

(0)(1)()(at x at x a x t H p e a x p ξξξξ 所以ξξφξξφξd a d p e a at x x

x a x p )(21)(21)(??+∞+--? 同理ξξφξφξd a

d p

e a x at x x a x p )(21)(21)(??-∞---? 对第三个中括号,)(ξ?代替了)(ξφ且多了一个因子p ,则对第一个中括号中原函数中)(ξφ替换行为)(ξ?并对t 求导即得第三个中括号里的原函数分别为:

ξξ?ξd p p

e a x x p )(21)(?∞+--)(21at x a +?? ξξ?ξd p p

e a x a

x p )(21)(?∞---)(21at x a -?? 对第二个中括号,运用卷积定理

?-?t d t f f p f p f 0

2121)()()()(τττ τξτξτξξττξξξτξd d f a d d a x t H f a d p p e a t t a x x

t x x x p ?????-+∞+∞+--=---=0)(0)(),(21)(),(21),(21 同理:τξτξξξτξd d f a

d p f p

e a t x t a x x a x p ???--∞---=0))()(),(21),(21 于是得到该问题解的表达式为:

???+--+--++-++=at x at x t t a x t a x d d f a d a at x at x t x u τξτξξξφ??ττ0)()

(),(21)(21)]()([21),( 四、半无界弦的自由振动问题

该问题即求下面问题的解[3]:

?????===>+∞<≤=∞→(初始条件)

边界条件)有限,,),0(,0),0((,0)0,()0,0(2b x u x u u t u t x u a u t x xx tt 对t 做拉普拉斯变换。设dt e t x u x p u pt ?+∞

-=0),(),(,则有:

)0,()0,(),(2x u x pu p x u p u t tt --→

利用初始条件,上式变为:b p x u p u tt -→),(2,原方程的像为:

0),(2222=??--x u a b p x u p ,解为:x a p

x a p Be Ae p b u -++=2。 A 、B 需要用边界条件予以确定。当对t 做拉普拉斯变换时候,像函数所满足的边界条件就是原函数边界条件的像。因此:有限∞→x u 即有限∞→x u 。故A=0

又有边界条件0)0,(=t u ,可得0)0,(=p u ,代入可得2p b B -

=。于是得到 )1()1(),(2

p e p p b e p b p x u x a p x a p ---=-=,对该式做反演。 )(1t H p →,)(a

x t H p e x a p -→-(延迟定理) 于是按积分定理,得反演之后的函数表达式为:

dt a

x t H b dt a x t H t H b t x u p x u t t )](1[)]()([),(),(00??--=--=→ 当a

x t <时,则有00)(00=?=-??dt dt a x t H t t 当a x t >时,则有a x t dt dt a x t H t a

x t -=?=-??1)(0 于是可写作)()()(0a x t H a x t dt a x t H t

--=-? 所以方程的定解可写作

)()(),(a

x t H a x t b bt t x u ---= 综上所述,我们总结了在不同情况下弦振动偏微分方程的求解,根据不同情况做出了不同的弦振动偏微分方程求解方法。这对我们学习和巩固偏微分方程在物理学中的应用有很好的应用,便于我们深刻理解物理问题,也对我们的实际生活有一定的指导意义。

参考文献:

[1]严振军.数学物理方法[M].合肥:中国科学技术大学出版社,2005

[2]苗明川.数学物理方法全程导学及习题全解[M].北京:中国时代经济出版社,2011

[3]余恬.数学物理方法解题示例[M].北京:北京邮电大学出版社,2011

弦振动实验报告

弦振动的研究 '、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密p、弦长L和弦的张力T的关系,并进行测 量。 、、实验仪器 弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺 、实验原理 为了研究问题的方便,认为波动是从A 点发出的,沿弦线朝E端方向传播,称为入射波,再由E端反射沿弦线朝A端传播,称为反射 波。入射波与反射波在同一条弦线上沿相反方向传 播时将相互干涉,移动劈尖E 到适合位置?弦线上 的波就形成驻波。这时, 弦线上的波被分成几段形 成波节和波腹。驻波形成如图(2)所示。 设图中的两列波是沿X轴相向方向传 播的振幅相等、频率相同振动方向一致的简谐波。向右传播的用细实线表示,向 图(2)左传播的用细虚线 表示,它们的合成驻波用粗 实线表示。由图可见,两个 波腹间的距离都是等于半 个波长,这可从波动方程推

导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “0”,且在X二0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y i = Acos2 (ft —x/ ) Y2 = Acos[2 (ft + x/ "+ ] 式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。两波 叠加后的合成波为驻波,其方程为: Y i + 丫2 = 2Acos[2 (x/ ) + /2]Acos2 ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动, 它们的振幅为丨2A cos[2 (x/ )+ /2] | ,与时间无关t,只与质点的位置 x有关。 由于波节处振幅为零,即:丨cos[2 (x/ ) + /2] | =0 2 (x/ ) + /2 = (2k+1) / 2 (k=0. 2. 3. …) 可得波节的位置为: x = k /2 ②而相邻两波节之间的距离为: X k+1 —X k = (k + 1) 12—k / 2 = / 2③又因为波腹处的质点振幅为最大,即I cos[2 (x/ ) + /2] | =1

偏微分方程简介

偏微分方程简介 PB06001109,李玉胜1、偏微分方程的起源 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与理学中的新问题。结果是在天体理学中不仅能得到并解释早先已经知晓的那些事实,而且得到了新的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。 在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。 应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程。 欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。 和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。 偏微分方程得到迅速发展是在十九世纪,那时候,数学物理问题的研究繁荣起来了,许多数学家都对数学物理问题的解决做出了贡献。这里应该提一提法国数学家傅立叶,他年轻的时候就是一个出色的数学学者。在从事热流动的研究中,写出了《热的解析理论》,在文章中他提出了三维空间的热方程,也就是一种偏微分方程。他的研究对偏微分方程的发展的影响是很大的,所以有人说:偏微分

简支梁固有频率及振型函数

简支梁横向振动的固有频率及振型函数的推导 一.等截面细直梁的横向振动 取梁未变形是的轴线方向为X 轴(向右为正),取对称面内与x 轴垂直的方向为y 轴(向上为正)。梁在横向振动时,其挠曲线随时间而变化,可表示为 y=y(x,t) (1) 除了理想弹性体与微幅振动的假设外,我们还假设梁的长度与截面高度之比是相当大的(大于10)。故可以采用材料力学中的梁弯曲的简化理论。根据这一理论,在我们采用的坐标系中,梁挠曲线的微分方程可以表示为: 22y EI M x ?=? (2) 其中,E 是弹性模量,I 是截面惯性矩,EI 为梁的弯曲刚度,M 代表x 截面处的弯矩。挂怒弯矩的正负,规定为左截面上顺时针方向为正,右截面逆时针方向为正。关于剪力Q 的正负,规定为左截面向上为正,右截面向下为正。至于分布载荷集度q 的正向则规定与y 轴相同。在这些规定下,有: M Q Q q x x ??==??, (3) 于是,对方程(2)求偏导,可得: 222222(EI )(EI )y M y Q Q q x x x x x x ??????====??????, (4) 考虑到等截面细直梁的EI 是常量,就有:

3434y y EI Q EI q x x ??==??, (5) 方程(5)就是在等截面梁在集度为q 的分部李作用下的挠曲微分方程。 应用达朗贝尔原理,在梁上加以分布得惯性力,其集度为 22 y q t ρ?=-? (6) 其中ρ代表梁单位长度的质量。假设阻尼的影响可以忽略不计,那么梁在自由振动中的载荷就仅仅是分布的惯性力。将式(6)代入(5),即得到等截面梁自由弯曲振动微分方程: 4242y y EI x t ρ??=--?? (7) 其中2 /a EI ρ=。 为求解上述偏微分方程(7),采用分离变量法。假设方程的解为: y(x,t)=X(x)Y(t) (8) 将式(8)代入(7),得: 22424 1Y a d X Y t X dx ?=-? (9)

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒定的位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A 端振动,由A 端振动引起的波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波 在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示 向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位 始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为:

大学物理《弦振动》实验报告文档

2020 大学物理《弦振动》实验报告文 档 Contract Template

大学物理《弦振动》实验报告文档 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 (报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有

惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。理论和实验证明,波在弦上传播的速度可由下式表示: = ρ 1 -------------------------------------------------------① 另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ--------------------------------------------------------② 将②代入①中得γ =λ1 -------------------------------------------------------③ρ1 又有L=nλ/2或λ=2L/n代入③得γ n=2L ------------------------------------------------------④ρ1 四实验内容和步骤

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

驻波实验报告

实验目的: 1、观察弦振动及驻波的形成; 3、在振动源频率不变时,用实验确定驻波波长与张力的关系; 4、在弦线张力不变时,用实验确定驻波波长与振动频率的关系; 4、定量测定某一恒定波源的振动频率; 5、学习对数作图法。 实验仪器: 弦线上驻波实验仪(FD-FEW-II型)包括:可调频率的数显机械振动源、平台、固定滑轮、可动刀口、可动卡口、米尺、弦线、砝码等;分析天平,米尺。 实验原理: 如果有两列波满足:振幅相等、振动方向相同、频率相同、有固定相位差的条件,当它们相向传播时,两列波便产生干涉。一些相隔半波长的点,振动减弱最大,振幅为零,称为波节。两相邻波节的中间一点振幅最大,称为波腹。其它各点的振幅各不相同,但振动步调却完全一致,所以波动就显得没有传播,这种波叫做驻波。驻波相邻波节间的距离等于波长λ的一半。 如果把弦线一端固定在振动簧片上,并将弦线张紧,簧片振动时带动弦线由左向右振动,形成沿弦线传播的横波。若此波前进过程中遇到阻碍,便会反射回来,当弦线两固定端间距为半波长整数倍时,反射波与前进波便形成稳定的驻波。波长λ、频率f和波速V满足关系:V = fλ (1) 又因在张紧的弦线上,波的传播速度V与弦线张力T及弦的线密度μ有如下关系:(2) 比较(1)、(2)式得:(3) 为了用实验证明公式(3)成立,将该式两边取自然对数,得: (4) 若固定频率f及线密度μ,而改变张力T,并测出各相应波长λ ,作ln T -lnλ图,若直线的斜率值近似为,则证明了的关系成立。同理,固定线密度μ及张力T,改变振动频率f,测出各相应波长λ,作ln f - lnλ图,如得一斜率为的直线就验证了。 将公式(3)变形,可得:(5) 实验中测出λ、T、μ的值,利用公式(5)可以定量计算出f的值。 实验时,测得多个(n个)半波长的距离l,可求得波长λ为:(6) 为砝码盘和盘上所挂砝码的总重量;用米尺测出弦线的长度L,用分析天平测其质量,求出弦的线密度(单位长度的质量):(7) 实验内容: 1、验证横波的波长λ与弦线中的张力T 的关系(f不变) 固定波源振动的频率,在砝码盘上添加不同质量的砝码,以改变同一弦上的张力。每改变一次张力(即增加一次砝码),均要左右移动可动卡口支架⑤的位置,使弦线出现振幅较大而稳定的驻波。将可动刀口支架④移到某一稳定波节点处,用实验平台上的标尺测出④、⑤之间的距离l,数出对应的半波数n,由式(6)算出波长λ。张力T改变6次,每一T下测2次λ,求平均值。作lnλ- ln T图,由图求其斜率。

弦振动偏微分方程的求解

弦振动偏微分方程的求解 (郑州航空工业管理学院数理系 田硕 450015) 摘要:本文列出了不同情况下的弦振动问题的定解方程及其成立条件,给出了不同情况下偏微分方程的求解方法,对于我们的生活和学习有一定的指导意义。 关键词:数学物理方程;偏微分方程;弦振动;拉普拉斯变换 Method for solving partial differential equations of string vibration (Tianshuo Department of mathematics and physics, Zhengzhou Institute of Aeronautics Industry Management, henna zhengzhou 450015) Abstract : This article lists the definite solution of the equation of string vibration problems in different situations and the establishment of conditions, given the method for solving partial differential equations under different circumstances, for our lives and learning have a certain significance. Keywords : mathematical physics equations; partial differential equations; vibrating string; Laplace transform 在数学物理方程中,根据常见物理模型,可以建立求解的偏微分方程。如在很多物理实际问题中要遇到的拉普拉斯方程,泊松方程,波动方程,热传导方程等等。对偏微分方程求解的讨论,有很重要的意义和运用。对不同的偏微分方程,往往有不同的求解方法,这要根据方程本身的特点而定。选取合适的方法不仅可以使问题简化,有时候也能体现出方程背后更深层次的物理意义。理想弦的振动方程就是一个一维波动方程的特例,本文将给出不同情况下的弦振动偏微分方程,并对它们的求解给予一定的讨论。 一、无界弦的自由振动问题 无界弦的自由振动问题既是满足下面条件的偏微分方程[1] : ?? ?+∞<<-∞==>+∞<<-∞=) (),(),0(),(),0(), 0,(2x x x u x x u t x u a u t xx tt φ? 对于该偏微分方程,我们可以类似常微分方程初始问题的解法,先求出通解,然后把初始条件代入通解,以确定任意常数,从而求得初始问题的解。 做变量代换at x -=ξ,at x +=η,代入偏微分方程,整理可得: 02=???η ξu ,得方程的通解为:)()()()(at x g at x f g f u ++-=+=ηξ 再代入初始条件,有: ?? ?='+'-==+=) 2() ()()(),0()1()()()(),0(x x g a x f a x u x x g x f x u t φ? 对(2)式积分: )3()(1)()(0c d a x g x f x += +-?λλφ 将(1)式和(3)式联立,解之则得: 2 )(212) ()(0c d a x x f x - -=?λλφ?

均匀弦振动实验报告

实验八 固定均匀弦振动的研究 XY 弦音计是研究固定金属弦振动的实验仪器,带有驱动和接收线圈装置,提供数种不同的弦,改变弦的张力,长度和粗细,调整驱动频率,使弦发生振动,用示波器显示驱动波形及传感器接收的波形,观察拨动的弦在节点处的效应,进行定量实验以验证弦上波的振动。它是传统的电子音叉的升级换代产品。它的优点是无燥声污染,通过函数信号发生器可以方便的调节频率,而这两点正好是电子音叉所不及的。 [实验目的] 1. 了解均匀弦振动的传播规律。 2. 观察行波与反射波互相干涉形成的驻波。 3. 测量弦上横波的传播速度。 4. 通过驻波测量,求出弦的线密度。 [实验仪器] XY 型弦音计、函数信号发生器、示波器、驱动线圈和接收线圈等。 [实验原理] 设有一均匀金属弦线,一端由弦码A 支撑,另一端由 弦码B 支撑。对均匀弦线扰动,引起弦线上质点的振动, 假设波动是由A 端朝B 端方向传播,称为行波,再由B 端 反射沿弦线朝A 端传播,称为反射波。行波与反射波在同 一条弦线上沿相反方向传播时将互相干涉,移动弦码B 到 适当位置。弦线上的波就形成驻波。这时,弦线就被分成 几段,且每段波两端的点始终静止不动,而中间的点振幅 最大。这些始终静止的点称为波节,振幅最大的点称为波 腹。驻波的形成如图4-8-1所示。 设图4-8-1中的两列波是沿x 轴相反方向传播的振幅相等、频率相同的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。由图4-8-1可见,两个波腹间的距离都是等于半个波长,这可以从波动方程推导出来。 下面用简谐表达式对驻波进行定量描述。设沿x 轴正方向传播的波为行波,沿x 轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点,且在x =0处,振动质点向上达最大位移时开始计时,则它们的波动方程为: )(2cos 1λπx ft A y -= )(2cos 2λ πx ft A y += 式中A 为简谐波的振幅,f 为频率,λ为波长,x 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: 图 4-8-1

弦振动的研究

弦振动的实验研究 弦是指一段又细又柔软的弹性长线,比如二胡、吉它等乐器上所用的弦。用薄片拨动或者用弓在张紧的弦上拉动就可以使整个弦的振动,再通过音箱的共鸣,就会发出悦耳的声音。对弦乐器性能的研究与改进,离不开对弦振动的研究,对弦振动研究的意义远不只限于此,在工程技术上也有着极其重要的意义。比如悬于两根高压电杆间的电力线、大跨度的桥梁等,在一定程度上也是一根“弦”,它们的振动所带来的后果可不象乐器上的弦的振动那样使我们们感到愉快。对于弦振动的研究,有助于我们理解这些特殊“弦”的振动特点、机制,从而对其加以控制。同时,弦的振动也提供了一个直观的振动与波的模型,对它的分析、研究是处理其它声与振动问题的基础。欧拉最早提出了弦振动的二阶方程,而后达朗贝尔等人通过对弦振动的研究开创了偏微分方程论。 本实验意在通过对一段两端固定弦振动的研究,了解弦振动的特点和规律。 预备问题 1. 复习DF4320示波器的使用。 2. 什么是驻波?它是如何形成的? 3. 什么是弦振动的模式?共振频率与哪些因素有关? 4. 张力对波速有何影响?试比较以基频和第一谐频共振时弦中的波速。 一、 实验目的: 1、了解驻波形成的条件,观察弦振动时形成的驻波; 2、学会测量弦线上横波传播速度的方法: 3、用作图法验证弦振动频率与弦长、频率与张力的关系。 二、实验原理 一根两端固定并张紧的弦,静止时处于水平平衡位置,当在弦的垂直方向被拉离平衡位置后,弦会有回到平衡位置的趋势,在这种趋势和弦的惯性作用下,弦将在平衡位置附近振动。令弦线长度方向为x 轴,弦被拉动的方向(与x 轴垂直的方向)为y 轴,如图1所示。若设弦的长度为L ,线密度为ρ,弦上的张力为T ,对一小段弦线微元dl 进行受力分析,运用牛顿第二定律定律,可得在y 方向的运动微分方程 ()2222t y dx dx x y T ??=??ρ (1) 若令ρ/2 T v =, 上式可写为 2222 21t y v x y ??=?? (2) x x+dx T T x y dl 图1

弦振动研究试验(教材)分析

弦振动研究试验 传统的教学实验多采用音叉计来研究弦的振动与外界条件的关系。采用柔性或半柔性的弦线,能用眼睛观察到弦线的振动情况,一般听不到与振动对应的声音。 本实验在传统的弦振动实验的基础上增加了实验内容,由于采用了钢质弦线,所以能够听到振动产生的声音,从而可研究振动与声音的关系;不仅能做标准的弦振动实验,还能配合示波器进行驻波波形的观察和研究,因为在很多情况下,驻波波形并不是理想的正弦波,直接用眼睛观察是无法分辨的。结合示波器,更可深入研究弦线的非线性振动以及混沌现象。 【实验目的】 1. 了解波在弦上的传播及弦波形成的条件。 2. 测量拉紧弦不同弦长的共振频率。 3. 测量弦线的线密度。 4. 测量弦振动时波的传播速度。 【实验原理】 张紧的弦线4在驱动器3产生的交变磁场中受力。移动劈尖6改变弦长或改变驱动频率,当弦长是驻波半波长的整倍数时,弦线上便会形成驻波。仔细调整,可使弦线形成明显的驻波。此时我们认为驱动器所在处对应的弦为振源,振动向两边传播,在劈尖6处反射后又沿各自相反的方向传播,最终形成稳定的驻波。 图 1

为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从左端劈尖发出的,沿弦线朝右端劈尖方向传播,称为入射波,再由右端劈尖端反射沿弦线朝左端劈尖传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,在适当的条件下,弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图1所示。 设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同、振动方向一致的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,当传至弦线上相应点时,相位差为恒定时,它们就合成驻波用粗实线表示。由图1可见,两个波腹或波节间的距离都是等于半个波长,这可从波动方程推导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动相位始终相同的点作坐标原点“O”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2π(ft-x/ λ) Y2=Acos2π(ft+x/ λ) 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos2π(x/ λ)cos2πft ······①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos2π(x / λ) |,只与质点的位置X有关,与时间无关。 由于波节处振幅为零,即|cos2π(x / λ) |=0 2πx / λ=(2k+1) π / 2 ( k=0.1. 2. 3. ······) 可得波节的位置为: X=(2K+1)λ /4 ······②而相邻两波节之间的距离为: X K+1-X K =[2(K+1)+1] λ/4-(2K+1)λ / 4)=λ / 2 ·····③又因为波腹处的质点振幅为最大,即|cos2π(X / λ) | =1 2πX / λ=Kπ ( K=0. 1. 2. 3. ······) 可得波腹的位置为: X=Kλ / 2= 2kλ / 4 ·····④这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节(或相邻两波腹)间的距离,就能确定该波的波长。 1

弦振动实验-报告

弦振动实验-报告

实验报告 班级姓名学号 日期室温气压成绩教师 实验名称弦振动研究 【实验目的】 1.了解波在弦上的传播及驻波形成的条件 2.测量不同弦长和不同张力情况下的共振频率 3.测量弦线的线密度 4.测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λ πx =2 y- cos A ft 当波到达端点时会反射回来,波动方程为 ()λ πx cos =2 y+ A ft

式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλπ2cos 2cos 22 1=+= 这就是驻波的波函数,称为驻波方程。式中,λπx A 2cos 2是各点的振幅 ,它只与x 有关,即各点 的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ πx A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λπx A ,可得波节的位置坐标为 () 412λ +±=k x Λ2,1,0=k 令12cos 2=λπx A ,可得波腹的位置坐标为 2λ k x ±= Λ 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端 点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。 既有 2λ n L = 或 n L 2=λ Λ2,1,0=n

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一. 实验目的 1. 观察弦上形成的驻波 2. 学习用双踪示波器观察弦振动的波形 3. 验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二. 实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。论和实验证明,波在弦上传播的速度可由下式表示: ρ 1 另外一方面,波的传播速度v 和波长λ及频率γ之间的关系是:

v= λ γ -- ② 将②代入①中得 γ =λ1 -- ③ρ 1 又有L=n* λ/2或λ =2*L/n 代入③得γ n=2L --- ④ρ 1 四实验内容和步骤 1. 研究γ和n 的关系 ①选择 5 根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。 ②设置两个弦码间的距离为60.00cm ,置驱动线圈距离一个弦码大约5.00cm 的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。 ③将1kg 砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必

要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则 T=2mg;若砝码挂在第三个槽,则T=3mg??. )④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1 时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5 时的共振频率,做γn 图线,导出γ和n 的关系。 2. 研究γ和T 的关系保持L=60.00cm,ρ 1 保持不变,将1kg 的砝码依次挂在第1、2、3、4、5 槽内,测出n=1 时的各共振频率。计算lg r 和lgT,以lg2 为纵轴,lgT 为横轴作图,由此导出r 和T 的关系。 3. 验证驻波公式 根据上述实验结果写出弦振动的共振频率γ与张力T、线密度ρ关系,验证驻波公式 1、弦长l1 、波腹数n 的 五数据记录及处理

弦振动实验报告

实验13 弦振动得研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动就是产生波动得根源,波动就是振动得传播。均匀弦振动得传播,实际上就是两个振幅相同得相干波在同一直线上沿相反方向传播得叠加,在一定条件下可形成驻波。本实验验证了弦线上横波得传播规律:横波得波长与弦线中得张力得平方根成正比,而与其线密度(单位长度得质量)得平方根成反比、 一、 实验目得 1、 观察弦振动所形成得驻波。 2、 研究弦振动得驻波波长与张力得关系、 3. 掌握用驻波法测定音叉频率得方法。 二。 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三。 实验原理 1、 两列波得振幅、振动方向与频率都相同,且有恒定得位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊得干涉现象——形成驻波、如图3—13—1所示。在音叉一臂得末端系一根水平弦线,弦线得另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A 端振动引起得波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续得入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉、当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波得波节;而有些点振动最强,称为驻波得波腹。 2、 图3—13-2所示为驻波形成得波形示意图。在图中画出了两 列波在T=0,T/4,T/2时刻得波形,细实线表示向右传播得波,虚线表示 向左传播得波,粗实线表示合成波。如取入射波与反射波得振动相位 始终相同得点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们得波动方程分别为:

偏微分方程 课程总结

偏微分方程 (13)

古典解的性质
—— 热传导方程

能 量 估 计
该类估计方法在物理上可以反映能量关系 特点: 在方程两端乘以u的某种关系式, 再 积分, 利用 利用一些已知的不等式进行估计 些已知的不等式进行估计, 最 终得到解u与已知函数之间的积分不等式.
1

常用概念
设 Ω ? R , p ≥ 1. 1 我们用 L (Ω) 表示满足条件
N p
的 Ω 上的Lebesgue可测函数u所构成的线性空 p 间. 对 u ∈ L (Ω), 定义 1/ p
|| u || p = || u || L p ( Ω ) =

Ω
| u( x ) |p dx < +∞
(∫
Ω
| u ( x ) | p dx
)
.
Ω 上的Lebesgue可测函数 u 称为在 Ω 上本性有 界,如果存在 如果存在一个常数 个常数 K 使得 | u( x ) |≤ K a .e . Ω . 常数 K的下确界叫做 u 在 Ω 上的本性上确界, 记做
ess sup | u ( x ) | .
L (Ω) 表示Ω 上全体本性有界函数组成的线性空间.
|| u ||∞ = || u || L∞ ( Ω ) = ess sup | u ( x ) | .
x∈Ω

x ∈Ω
2

常用概念
L (Ω)
p loc
u 是 Ω 上的可测函数:
对任意的紧集 G ? Ω , 都有 u ∈ Lp (G)
L (Ω) 中的函数称为 Ω 上的局部可积函数.
1 loc
设 u 和 v 是 R 上的局部可积函数, 如果 u 和 v 满 足积分等式
? ∫ u( x )? '( x )dx = ∫ v ( x )? ( x )dx ,
R R
?? ∈ D( R ),
3
则称 u 广义可导, 而称 v 为 u 的广义导数.

固体力学作业薄板的振动的固有频率与振型

固体力学作业 薄板的振动的固有频率与振型 1、 问题 矩形薄板的参数如下 33150,100,5,210,0.3,7.9310/a mm b mm h mm E GPa v kg m ρ======? 求矩形薄板在 (1) 四边简支(2)四边固支 条件下的固有频率和振型 2、薄板振动微分方程 薄板是满足一定假设的理想力学模型,一般根据实际的尺寸和受力特点来将某个实际问题简化为薄板模型,如厚度要比长、宽的尺寸小得的结构就可以采用薄板模型。薄板在上下表面之间存在一个对称平面,此平面称为中面,且假定: (1)板的材料由各向同性弹性材料组成; (2)振动时薄板的挠度要比它的厚度要小; (3)自由面上的应力为零; (4)原来与中面正交的横截面在变形后始终保持正交,即薄板在变形前中面的法线在变形后仍为中面的法线。 为了建立应力、应变和位移之间的关系,取空间直角坐标Oxyz ,且坐标原点及xOy 坐标面皆放在板变形前的中面位置上,如图 1所示。设板上任意一点a 的位置,将由变形前的坐标x 、y 、z 来确定。 图 1 薄板模型 根据假定(2),板的横向变形和面内变形u 、v 是相互独立的。为此,其弯曲变形可由中面上各点的横向位移(,,)w x y t 所决定。根据假定(4),剪切应变分量为零。由薄板经典理论,可以求得板上任意一点(,,)a x y z 沿,,x y z 三个方向的位移分量,,a a a u v w 的表达式分别为

() a a a w u z x w v z y w w ?=-??=-?=+ 高阶小量 (1.1) 根据应变与位移的几何关系可以求出各点的三个主要是应变分量为 22 22 22a x a y a a xy u w z x x v w z y y u v w z y x x y εεγ??==-????==-?????=+=-???? (1.2) 胡克定律,从而获得相对应的三个主要应力分量为: 2222 222222222()()11()()111x x y y y x xy xy E Ez w w x y E Ez w w y x Ez w G x y σεμεμμμσεμεμμμτγμ??=+=-+--????=+=-+--???==- +?? (1.3) 现画薄板微元的受力图如图 2所示。 图 2所示中x xy x y yx y M M Q M M Q 、和、、和分别为OB 面、OC 面上所受到的单位长度的弯矩、扭矩和横切剪力。弯矩和扭矩都用沿其轴的双剪头表示。M x 、M y 是由正应力σx 、 σx 引起的合力矩。扭矩是由剪切力τxy 引起的合力矩。 图 2 薄板应力示意图 p (x ,y ,t )=P (x ,y )f (t )为具有变量分离形式的外载荷集度,沿z 轴方向。应用动静法计算时, 沿z 轴负方向有一虚加惯性力22w h dxdy t ρ??,根据0z F =∑,0y M =∑,0y M =∑则 有

弦振动实验报告

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 三、波。示。轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “O ”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y 1=Acos2(ft -x/ ) Y 2=Acos[2 (ft +x/λ)+ ]式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y 1 +Y 2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t ,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0

2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ②而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: =2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=f,将⑤式代入可得弦线上横波的传播速度: V=2Lf/n ⑥ 另一方面,根据波动理论,弦线上横波的传播速度为: V=(T/ρ)1/2 ⑦ 式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。 再由⑥⑦式可得 f =(T/ρ)1/2(n/2L) 得 T=ρ / (n/2Lf )2 即ρ=T (n/2Lf )2 ( n=1. 2. 3. … ) ⑧ 由⑧式可知,当给定T、ρ、L,频率f只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。 四、实验内容 1、测定弦线的线密度:用米尺测量弦线长度,用电子天平测量弦线质量,记录数据 2、测定11个砝码的质量,记录数据

双曲型偏微分方程的求解及其应用[文献综述]

毕业论文文献综述 信息与计算科学 双曲型偏微分方程的求解及其应用 一、前言部分 在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。 应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程[1]。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。 其中,可以变的标准型有:椭圆型、双曲型、抛物型。而基本方程可以归结为四大类:波动、热传导、传输[2]。 随着电子计算机的出现和发展, 偏微分方程的数值解得到了前所未有的发展和应用.在科学的计算机化进程中,科学与工程计算作为工具性、方法性、边缘交叉性的新学科开始了自己的新发展.由于科学基本规律大多是通过偏微分方程来描述的,因此科学与工程计算的主要任务就是求解形形色色的偏微分方程,特别是一些大规模、非线性、几何非规则性的方程. 双曲型和抛物型方程描述了物质扩散和波动等不定常物理过程,这两类偏微分方程的定解问题在力学、热传导理论、燃烧理论、化学、空气动力学、电磁学和经济数学等方面都有

清华弦振动实验报告

竭诚为您提供优质文档/双击可除清华弦振动实验报告 篇一:弦振动试验实验报告 弦振动试验 一、实验目的 1.观察在弦线上形成的驻波 2.用弦驻波法测量张紧弦线上驻波的波长 3.研究弦线上张力与弦线上驻波波长之间的关系; 4.研究均匀弦线横波的传播速度与张力、弦线密度之间的关系 二、数据处理 1.在张力一定的条件下(加9个砝码),求波的传播速度 2.求横波的波长与弦线中的张力的关系 1 2 lgλ lgT

由以上可知,波长的对数和张力的对数成线性关,且相关的线性方程是:Y=0.0035x+1034543. 3 篇二:大学物理实验报告-弦振动 华南理工大学实验报告 课程名称:大学物理实验 理学院系数学专业创新班姓名任惠霞 实验名称弦振动20XX.9.6指导老师 (报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 xY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小

段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。理论和实验证明,波在弦上传播的速度可由下式表示:??= ρ ??1 -------------------------------------------------------① 另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ --------------------------------------------------------② 将②代入①中得γ =λ 1 ?? -------------------------------------------------------③ρ1 又有L=n*λ/2或λ=2*L/n代入③得γ n=2L

相关文档
最新文档