高考物理动能定理的综合应用技巧(很有用)及练习题

高考物理动能定理的综合应用技巧(很有用)及练习题
高考物理动能定理的综合应用技巧(很有用)及练习题

高考物理动能定理的综合应用技巧(很有用)及练习题

一、高中物理精讲专题测试动能定理的综合应用

1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大;

(2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大;

(3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。

【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】

(1)运动员和自行车整体的向心力

F n =2(m)M v R

+

解得

F n =700N

(2)自行车所受支持力为

()cos45N

M m g F +=

?

解得

F N 2N

根据牛顿第三定律可知

F 压=F N 2N

(3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh =

212

mv W F =2

FL h =

1

cos 452

d o =1.9m W f 克=521J

2.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距

离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(2

10/g m s =)

【答案】15N 【解析】 设撤去力

前物块的位移为

,撤去力

时物块的速度为,物块受到的滑动摩擦力

对撤去力后物块滑动过程应用动量定理得

由运动学公式得

对物块运动的全过程应用动能定理

由以上各式得 代入数据解得

思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题

试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.

3.一个平板小车置于光滑水平面上,其右端恰好和一个

光滑圆弧轨道AB 的底端等高对

接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数

.(取g=10m/s 2)试求:

(1)滑块到达B 端时,轨道对它支持力的大小; (2)小车运动1.5s 时,车右端距轨道B 端的距离;

(3)滑块与车面间由于摩擦而产生的内能.

【答案】(1)30 N (2)1 m (3)6 J

【解析】

(1)滑块从A端下滑到B端,由动能定理得(1分)

在B点由牛顿第二定律得(2分)

解得轨道对滑块的支持力N (1分)

(2)滑块滑上小车后,由牛顿第二定律

对滑块:,得m/s2 (1分)

对小车:,得m/s2 (1分)

设经时间t后两者达到共同速度,则有(1分)

解得s (1分)

由于s<1.5s,故1s后小车和滑块一起匀速运动,速度v="1" m/s (1分)

因此,1.5s时小车右端距轨道B端的距离为m (1分)

(3)滑块相对小车滑动的距离为m (2分)

所以产生的内能J (1分)

4.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.

(1)求运动员在AB段下滑时受到阻力F f的大小;

(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?

【答案】(1)144 N (2)12.5 m

【解析】

试题分析:(1)运动员在AB上做初速度为零的匀加速运动,设AB的长度为x,斜面的倾角为α,则有

v B2=2ax

根据牛顿第二定律得mgsinα﹣F f=ma 又sinα=H x

由以上三式联立解得 F f =144N

(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有 mgh+W=

12mv C 2-1

2

mv B 2 设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2

C

v R

由运动员能承受的最大压力为其所受重力的6倍,即有 F N =6mg 联立解得 R=12.5m 考点:牛顿第二定律;动能定理

【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.

5.质量为m =2kg 的小玩具汽车,在t =0时刻速度为v 0=2m/s ,随后以额定功率P =8W 沿平直公路继续前进,经t =4s 达到最大速度。该小汽车所受恒定阻力是其重力的0.1倍,重力加速度g =10m/s 2。求: (1)小汽车的最大速度v m ; (2)汽车在4s 内运动的路程s 。 【答案】(1)4 m/s ,(2)10m 。 【解析】 【详解】

(1)当达到最大速度时,阻力等于牵引力:

m m P Fv fv == 0.1f mg =

解得:m 4m/s v =;

(2)从开始到t 时刻根据动能定理得:

22m 01122

Pt fs mv mv -=

- 解得:10m s =。

6.如图所示,一质量为m 的滑块从高为h 的光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端B 与水平传送带相接,传送带的运行速度恒为v 0,两轮轴心间距为L ,滑块滑到传送带上后做匀加速运动,滑到传送带右端C 时,恰好加速到与传送带的速度相同,求:

(1)滑块到达底端B 时的速度大小v B ; (2)滑块与传送带间的动摩擦因数μ;

(3)此过程中,由于克服摩擦力做功而产生的热量Q. 【答案】(1

2)20

22v gh gl μ-=(3

(2

02

m v -

【解析】

试题分析:(1)滑块在由A 到B 的过程中,由动能定理得:2

102

B mgh mv -=,

解得:B ν

(2)滑块在由B 到C 的过程中,由动能定理得:μmgL =

12mv 02?1

2

mv B 2, 解得,2022v gh gL

μ-=;

(3)产生的热量:Q=μmgL 相对,(

)2

02B

L g

相对

ννμ-=

(或0),

解得,2

01(2

Q m ν=; 考点:动能定理

【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过程,熟练应用动能定理即可正确解题.

7.一质量为m =0.1kg 的滑块(可视为质点)从倾角为θ=37°、长为L =6m 的固定租糙斜面顶端由静止释放,滑块运动到斜面底端时的速度大小为v ,所用的时间为t .若让此滑块从斜面底端以速度v 滑上斜面,利滑块在斜面上上滑的时间为1

2

t .已知重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.求: (1)滑块通过斜面端时的速度大小v ;

(2)滑块从斜而底端以速度v 滑上斜面又滑到底端时的动能. 【答案】(1

);(2)1.2J 【解析】 【详解】

解:(1)设滑块和斜面间的动摩擦因数为μ,滑块下滑时的加速度大小为1a ,滑块上滑时的加速度大小为2a ,由牛顿第二定律可得 滑块下滑时有1mgsin mgcos ma θμθ-=

滑块上滑时有2mgsin mgcos ma θμθ+= 由题意有122

t v a t a == 联立解得μ=0.25

则滑块在斜面上下滑时的加速度1a =4m/s 2,滑块上滑时的加速度大小2a =8m/s 2

由运动学公式有2

12v a L =

联立解得43v =m/s

(2)设滑块沿斜面上滑的最大位移为x ,则有2

22v a x =

解得:x =3m

则滑块从斜面底端上滑到下滑到斜面底端的过程中,由动能定理有:

21

cos 22

k mg x E mv μθ-?=-

解得:k E =1.2J

8.如图所示,四分之一的光滑圆弧轨道AB 与水平轨道平滑相连,圆弧轨道的半径为R =0.8m ,有一质量为m =1kg 的滑块从A 端由静止开始下滑,滑块与水平轨道间的动摩擦因数为μ=0.5,滑块在水平轨道上滑行L =0.7m 后,滑上一水平粗糙的传送带,传送带足够长且沿顺时针方向转动,取 g =10m/s 2,求: (1)滑块第一次滑上传送带时的速度 v 1 多大? (2)若要滑块再次经过B 点,传送带的速度至少多大?

(3)试讨论传送带的速度v 与滑块最终停下位置x (到B 点的距离)的关系。

【答案】7m/s (3) 22v x L g

μ=-或2

2v x L g μ=

- 【解析】 【详解】

(1)从A 点到刚滑上传送带,应用动能定理

2112

mgR mgL mv -=

μ 得

122v gR gL μ=-代入数据得,v 1=3m/s.

(2)滑块在传送带上运动,先向左减速零,再向右加速,若传送带的速度小于v 1,则物块最终以传送带的速度运动,设传送带速度为v 时,物块刚能滑到B 点,则

21

02

mgL mv μ-=-

解得27v gL μ==m/s

即传送带的速度必须大于等于7m/s 。

(3)传送带的速度大于或等于v 1,则滑块回到水平轨道时的速度大小仍为v 1

211

02

mgs mv μ-=-

得s =0.9m ,即滑块在水平轨道上滑行的路程为0.9m ,则最后停在离B 点0.2m 处。 若传送带的速度7m/s

21

)02

mg L x mv μ-+=-(

解得2

2v x L g

μ=

- 若传送带的速度v<7m/s ,则滑块将不能回到B 点,即

21

)02

mg L x mv μ--=-(

解得2

2v x L g

μ=-

9.如图所示,在水平路段AB 上有一质量为2kg 的玩具汽车,正以10m/s 的速度向右匀速运动,玩具汽车前方的水平路段AB 、BC 所受阻力不同,玩具汽车通过整个ABC 路段的v-t 图象如图所示(在t =15s 处水平虚线与曲线相切),运动过程中玩具汽车电机的输出功率保持20W 不变,假设玩具汽车在两个路段上受到的阻力分别有恒定的大小.(解题时将玩具汽车看成质点)

(1)求汽车在AB 路段上运动时所受的阻力f 1; (2)求汽车刚好开过B 点时的加速度a (3)求BC 路段的长度.

【答案】(1)f 1=5N (2) a =1.5 m /s 2 (3)x =58m 【解析】 【分析】

根据“汽车电机的输出功率保持20W 不变 ”可知,本题考查机车的启动问题,根据 图象知汽车在AB 段匀速直线运动,牵引力等于阻力,而牵引力大小可由瞬时功率表达式求出;由图知,汽车到达B 位置将做减速运动,瞬时牵引力大小不变,但阻力大小未知,考虑在t =15s 处水平虚线与曲线相切,则汽车又瞬间做匀速直线运动,牵引力的大小与BC 段阻力再次相等,有瞬时功率表达式求得此时的牵引力数值即为阻力数值,由牛顿第二定律可得汽车刚好到达B 点时的加速度;BC 段汽车做变加速运动,但功率保持不变,需由动能定理求得位移大小. 【详解】

(1)汽车在AB 路段时,有F 1=f 1 P =F 1v 1

联立解得:f 1=5N

(2)t =15 s 时汽车处于平衡态,有F 2=f 2 P =F 2v 2

联立解得:f 2=2N

t =5s 时汽车开始加速运动,有F 1-f 2=ma 解得a =1.5m/s 2

(3)对于汽车在BC 段运动,由动能定理得:

解得:x =58m 【点睛】

抓住汽车保持功率不变这一条件,利用瞬时功率表达式求解牵引力,同时注意隐含条件汽车匀速运动时牵引力等于阻力;对于变力做功,汽车非匀变速运动的情况,只能从能量的角度求解.

10.有可视为质点的木块由A 点以一定的初速度为4m/s 水平向右运动,AB 的长度为2m ,物体和AB 间动摩擦因素为μ1=0.1,BC 无限长,物体和BC 间动摩擦因素为

23

μ=

, 求:

(1)物体第一次到达B 点的速度;

(2)通过计算说明最后停在水平面上的位置距B 点的距离. 【答案】(1)23/s v m =(2)2m 【解析】

【分析】

由题中“有可视为质点的木块由A 点以一定的初速度为4m/s 水平向右运动”可知,本题考查动能定理和能量守恒定律,根据对物体运动状态的分析结合能量变化可分析本题. 【详解】

(1)据题意,当物体从A 运动到B 点过程中,有:

2211122

AB B A mgs mv mv μ-=

- 带入数据求得:

=23m /s B v

(2)物体冲上斜面后,有:

2

21-cos30sin 302

BC BC B mg x mg x mv μ-=-o o

解得:

0.8BC x m =

则有:

2

211-2cos302

BC B mg x mgx mv μμ-=-o

解得:

2x m =

即物体又回到了A 点.

11.如图所示,倾斜轨道在B 点有一小圆弧与圆轨道相接,一质量为m=0.1kg 的物体,从倾斜轨道A 处由静止开始下滑,经过B 点后到达圆轨道的最高点C 时,对轨道的压力恰好与物体重力相等.已知倾斜部分有摩擦,圆轨道是光滑的,A 点的高度H=2m,圆轨道半径R=0.4m ,g 取10m/s 2,试求:

(1)画出物体在C 点的受力与运动分析图,并求出物体到达C 点时的速度大小; (2)物体到B 点时的速度大小(用运动学公式求不给分); (3)物体从A 到B 的过程中克服阻力所做的功. 【答案】(1)22m/s (3)26m/s (3)0.8J 【解析】 【分析】 【详解】

(1)物体在C 点的受力与运动分析图所示:

在C 点由圆周运动的的知识可得:

2

c v mg mg m R

+=

解得:c 22100.4m/s 22m/s v Rg ==??= (2)物体由B 到C 的过程,由动能定理可得:

22c B 11222

mg R mv mv -=

-g 解得:B 26m/s v =

(3)从A 到B 的过程,由动能定理可得:

2

f B 12

mgH W mv -=

解得:f 0.8J W =

12.如图所示,AMB 是AM 和MB 两段组成的绝缘轨道,其中AM 段与水平面成370,轨道MB 处在方向竖直向上、大小E =5×103 N/C 的匀强电场中。一质量m =0.1 kg 、电荷量q =+1.0×10-4 C 的可视为质点的滑块以初速度v 0=6 m/s 从离水平地面高h =4.2 m 处开始向下运动,经M 点进入电场,从 B 点离开电场, 最终停在距B 点1.6m 处的C 点。不计经过M 点的能量损失,已知滑块与轨道间的动摩擦因数μ=0.5,求滑块:

(1)到达M 点时的速度大小; (2)M 、B 两点的距离l ; 【答案】(1)8m/s ;(2)9.6m

【解析】试题分析:带电滑块的运动,可以分为三个过程:①进电场前斜面上的匀加速直线运动;②在电场中沿水平地面的匀减速直线运动;③离开电场后沿地面的匀减速直线运动。本题可以单纯利用牛顿运动定律和运动学的知识去计算,也可以结合能量部分来解题。

解(1)方法一:在滑块从A 运动到M 点的过程中,由动能定理可得:

,解得:

=8m/s

方法二:在斜面上,对滑块受力分析,根据牛顿第二定律可得:

根据运动学速度和位移的关系可得:,解得=8m/s (2)物块离开B点后,并停在了离B点1.6m处的C点处:

方法一:滑块从B到C,由动能定理得:,得=4m/s 所以,在滑块从M运动到B的过程中,根据动能定理得:

,解得:=9.6m

方法二:滑块从B到C的过程中,由牛顿运动定律结合运动学知识,可得:

同理,从滑块从M运动到B的过程中,

联立上述方程,带入数据得:=9.6m

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

动能定理应用及典型例题(整理好用)

动能定理及应用 动能定理 1、内容: ________________________________________________________________________________ 2、动能定理表达式:_____________________________________________________________________ 3、理解:①F合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。 F合做正功时,物体动能增加;F合做负功时,物体动能减少。 ②动能定理揭示了合外力的功与动能变化的关系。 4、适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。 5、应用动能定理解题步骤: A、明确研究对象及研究过程 B进行受力分析和做功情况分析 C确定初末状态动能 D列方程、求解。 1、一辆5吨的载重汽车开上一段坡路,坡路上S=100m坡顶和坡底的高度差h=10m汽车山坡前的速度是10m/s, 上到坡顶时速度减为 5.0m/s。汽车受到的摩擦阻力时车重的0.05倍。求汽车的牵引力。 2、一小球从高出地面H米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对 球的平均阻力是其重力的多少 倍。 3、质量为5 x 105kg的机车,以恒定的功率沿平直轨道行驶,在大 速度15m/s ?若阻力保持不变,求机车的功率和所受阻力的数值. 3min内行驶了1450m,其速度从10m/s增加到最 4、质量为M、厚度为d的方木块,静置在光滑的水平面上,如图所示,一子弹以初速度V。水平射穿木块,子弹 的 质量为m,木块对子弹的阻力为f且始终不变,在子弹射穿木块的过程中,木块发生的位移为L。求子弹射穿木块后,子弹和木块的速度各为多少? 5、如图所示,质量m=1kg的木块静止在高h=1.2m的平台上,木块与平台间的动摩擦因数使木块产生位移S=3m时撤去,木块又滑行9=1m时飞出平台,求木块落地时速度的大小?"=0.2,用水平推力F=20N, 2 (空气阻力不计, g=10m/s ) 图6-3-1

【物理】动能定理的综合应用练习及解析

【物理】动能定理的综合应用练习及解析 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,AC 为光滑的水平桌面,轻弹簧的一端固定在A 端的竖直墙壁上.质量 1m kg =的小物块将弹簧的另一端压缩到B 点,之后由静止释放,离开弹簧后从C 点水平 飞出,恰好从D 点以10/D v m s =的速度沿切线方向进入竖直面内的光滑圆弧轨道 (DEF 小物体与轨道间无碰撞).O 为圆弧轨道的圆心,E 为圆弧轨道的最低点,圆弧轨道 的半径1R m =,60DOE ∠=o ,37.EOF ∠=o 小物块运动到F 点后,冲上足够长的斜面 FG ,斜面FG 与圆轨道相切于F 点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o , cos370.8=o ,取2 10/.g m s =不计空气阻力.求: (1)弹簧最初具有的弹性势能; (2)小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小; (3)判断小物块沿斜面FG 第一次返回圆弧轨道后能否回到圆弧轨道的D 点?若能,求解小物块回到D 点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小. 【答案】()11 ?.25J ;()2 30N ;()3 2/m s . 【解析】 【分析】 【详解】 (1)设小物块在C 点的速度为C v ,则在D 点有:C D v v cos60o = 设弹簧最初具有的弹性势能为p E ,则:2P C 1E mv 2 = 代入数据联立解得:p E 1.25J =; ()2设小物块在E 点的速度为E v ,则从D 到E 的过程中有: () 22E D 11mgR 1cos60mv mv 22 -= -o 设在E 点,圆轨道对小物块的支持力为N ,则有:2 E v N mg R -= 代入数据解得:E v 25m /s =,N 30N = 由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ; ()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有:

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

动能和动能定理,机械能守恒典型例题和练习(精品)

学习目标 1. 能够推导并理解动能定理知道动能定理的适用围 2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和”的含义。 3. 确立运用动能定理分析解决具体问题的步骤与方法 类型一 .常规题型 例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力 F 跟 木 箱 前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ 例2. 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E2,则: A. E2=E1 B. E2=2E1 C. E2>2E1 D. E1<E2<2E1 针对训练 材料相同的两个物体的质量分别为m1和m2,且m m 124=,当它们以相同的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比 t t 12:分别是多少?(两物体与水平面的动摩擦因数相同)

类型二、应用动能定理简解多过程问题 例3:质量为m的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S后撤去外力,物体还能运动多远? 例4、一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 2-7-6 针对训练2 将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s2)

动能定理的综合应用(含答案)

动能定理的综合应用 1.如右图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道的B端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑块从A点由静止释放,滑块沿圆弧轨道运动至B点并以v=5m/s的速度水平飞出(g取10m/s2).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功;(2)小滑块经过B点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。 2.如图所示,质量为m=5kg的摆球从图中A位置由静止开始摆下,当小球摆 至竖直位置到达B点时绳子遇到B点上方电热丝而被烧断。已知摆线长为L=1.6m,OA与OB的夹角为60o,C为悬点O正下方地面上一点,OC间的距离 h=4.8m,若不计空气阻力及一切能量损耗,g=10m/s2, 求:(1)小球摆到B点时的速度大小;(2)小球落地点D到C点之间的距离; (3)小球的落地时的速度大小 A

3、(14分)如图所示,一个人用一根长1m ,只能承受46N 拉力的绳子,拴着一个质量为1kg 的小球,在竖直平面内作圆周运动,已知圆心O 离地面h =6m 。转动中小球运动到最低点时绳子突然断了,求 (1)绳子断时小球运动的角速度多大? (2)绳断后,小球落地点与抛出点间的水平距离。(取g =10m/s 2 ) 4.在光滑的水平面桌上有质量为m=0.2kg 的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。轻弹簧原来处于静止状态,具有弹性势能E P =10.6J ,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为为R=0.625m 的竖直放置的光滑半圆形轨道。取g=10m/s 2 则: (1)试通过计算判断小球能否滑到B 点? (2)若小球能通过B 点,求此时它对轨道的压力为多大。

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

【物理】物理动能定理的综合应用练习题及答案

【物理】物理动能定理的综合应用练习题及答案 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释 放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求: (1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小. 【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】 (1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理 mgR -W f = 12mv 2 W f =1.5J (2)由牛顿第二定律可知: 2 N v F mg m R -= 解得: 4.5N F N = (3)小球离开圆弧后做平抛运动根据动能定理可知: 22111 m m 22 mgh v v =- 解得: 152m/s v = 2.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹

簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求: (1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小; (3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。 【解析】 【分析】 【详解】 (1)小球离开台面到达A 点的过程做平抛运动,故有 02 3m/s tan y v gh v θ = = = 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为 2 01 4.5J 2 p E mv = =; (2)小球在A 处的速度为 5m/s cos A v v θ = = 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得 221111sin cos 22 C A mgL mgL mv mv θμθ-= - 解得 ()212sin cos 10m/s C A v v gL θμθ=+-=; (3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径; 那么对小球能通过最高点时,在最高点应用牛顿第二定律可得 2 1v mg m R ≤; 对小球从C 到最高点应用机械能守恒可得 221115 2222 C mv mgR mv mgR =+≥ 解得

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

(完整版)动能定理和机械能守恒定律的综合应用.docx

第 15 讲动能定理和机械能守恒定律的综合应用4、如图所示,一固定的楔形木块,其斜面倾角θ=30°,另一边与地面垂直,顶上有一定滑轮, 、如图所示,竖直平面内放一直角杆AOB,杆的水平部分粗糙,动摩擦因数μ =0.2 ,杆的竖直部一条细绳将物块 A 和 B 连接, A 的质量为 4m, B 的质量为 m,开始时将 B 按在地面上不动,然后 1 分光滑 . 两部分各套有质量均为 1 kg 的小球 A 和 B,A、B 球间用细绳相连 . 此时 A、B 均处于静止放开手,让 A 沿斜面下滑而 B 上升,物块 A 与斜面间无摩擦,设当 A 状态,已知: OA=3 m,OB=4 m.若 A 球在水平拉力 F 的作用下向右缓慢地移动 1 m(取 g=10 m/s2) , 沿斜面下滑 x 距离后,细绳突然断了,求物块 B 上升的最大高度 H. 那么 (1)该过程中拉力 F 做功多少? (2)若用 20 N 的恒力拉 A 球向右移动 1 m 时, A 的速度达 到了 2 m/s ,则此过程中产生的内能为多少? 、如图所示,跨过定滑轮的轻绳两端的物体 A 和 B 的质量分别为 M和 m,物体 A 在水平面上 .A由 A、 B,直角尺的顶点 O 2、如图所示,质量分别为 2m 和 3m 的两个小球固定在一根直角尺的两端 5 静止释放,当 B 沿竖直方向下落 h 时,测得 A 沿水平面运动的速度为 v ,这时细绳与水平面的夹角 处有光滑的固定转动轴 .AO、BO 的长分别为 2L 和 L.开始时直角尺的AO 部分处于水平位置而 B 在 O 为θ,试分析计算 B 下降 h 过程中, A 克服地面摩擦力做的功 .( 滑轮的质量和摩擦均不计 ) 的正下方 .让该系统由静止开始自由转动,求: (1)当 A 到达最低点时, A 小球的速度大小v; (2)开始转动后 B 球可能达到的最大高度h。 3、如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在 B 点与圆弧相切, 圆弧半径为R. 一个质量为m的物体 ( 可以看做质点 ) 从直轨道上的P 点由静止释放,结果它能在两 轨道间做往返运动. 已知 P 点与圆弧的圆心O 等高,物体与轨道AB间的动摩擦因数为μ. 求: (1)物体做往返运动的整个过程中在AB轨道上通过的总路程; (2)最终当物体通过圆弧轨道最低点 E 时,对圆弧轨道的压力; 、一质量为 1kg 的物体被人用手由静止向上提升1m 时,物体的速度是2m/s,下列说法中错误的6 (3)为使物体能顺利到达圆弧轨道的最高点D,释放点距 B 点的是( g 是 10m/s 2)() 距离 L′应满足什么条件? A.提升过程中手对物体做功 12JB.提升过程中合外力对物体做功12J - 1 -

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案) 一、高中物理精讲专题测试动能定理的综合应用 1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大; (2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大; (3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。 【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】 (1)运动员和自行车整体的向心力 F n =2(m)M v R + 解得 F n =700N (2)自行车所受支持力为 ()cos45N M m g F += ? 解得 F N 2N 根据牛顿第三定律可知 F 压=F N 2N (3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh = 212 mv W F =2 FL h = 1 cos 452 d o =1.9m W f 克=521J 2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径 R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求: (1)参赛者运动到圆弧轨道B 处对轨道的压力; (2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能. 【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】 (1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12 m 2B v 解得v B =4m /s 在B 处,由牛顿第二定律 N B -mg =m 2B v R 解得N B =2mg =1 200N 根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理 -μ2mgL 2=0- 12 m 2C v 解得v C =6m /s B 到 C 过程,由牛顿第二定律μ1mg =ma

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

动能定理的综合应用

动能定理的综合应用 1. 如右图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道 的B端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑 块从A点由静止释放,滑块沿圆弧轨道运动至B点并以v=5m/s的速度水平飞出2 (g取10m/s)?求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。 2?如图所示,质量为m= 5kg的摆球从图中A位置由静止开始摆下,当小球摆至竖直位置到达B点时绳子遇到B点上方电热丝而被烧断。已知摆线长为L = 1.6m , OA与0B的夹角为60o, C为悬点O正下方地面上一点,OC间的距离 h = 4.8m,若不计空气阻力及一切能量损耗,g= 10m/s2, 求:(1)小球摆到B点时的速度大小;(2)小球落地点D到C点之间的距离; (3)小球的落地时的速度大小

3、(14分)如图所示,一个人用一根长1m只能承受46N拉力的绳子,拴着一个 质量为1kg的小球,在竖直平面内作圆周运动,已知圆心O离地面h = 6m。转动 中小球运动到最低点时绳子突然断了,求 (1)绳子断时小球运动的角速度多大? (2)绳断后,小球落地点与抛出点间的水 平距离。(取g = 10m/s2) J / 4. 在光滑的水平面桌上有质量为m=0.2kg的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。轻弹簧 原来处于静止状态,具有弹性势能E P=10.6J,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为 为R=0.625m的竖直放置的光滑半圆形轨道。取g=10m/s2则: (1) 试通过计算判断小球能否滑到B点? (2) 若小球能通过B点,求此时它对轨道的压力为多大。

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2= 3 2 m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ= 3 ,g 取10m/s 2. (1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ; (3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

动能及动能定理典型例题剖析

动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可

相关文档
最新文档