合成甲醇工艺流程图

合成甲醇工艺流程图
合成甲醇工艺流程图

合成甲醇工艺流程图

一、总图

脱硫后焦炉气

甲醇外售

驰放气作燃料气

二、气柜

1、系统图

25℃ 200mmH 2O

700 mmH 2O 去焦炉气压缩

30℃

新鲜水来自来水总管

污水去生化处理

2、物料平衡表

物料名称 输入量 输出量

备注

物料名称 输入量 输出量

备注

H 2 55~58% NH 3 ≤50 mg/m 3 CH 4 24~26% H 2S ≤20 mg/m 3 CO 6~8% 有机硫 350mg/m 3 C m H n

2.5%

CO 2及其它

<3%

新鲜水消耗0.3Mpa : 正常16m 3/h ,最大20 m 3/h 蒸汽0.6Mpa :正常2.4t/h 最大3.0t/h

气 柜 焦炉气压缩 精脱硫 转化

空分

合成压缩

甲醇合成 甲醇精馏 甲醇库 水 封 槽 ф39100*8530 水 封

20000m 3 400mmH 2

O 钟 罩

水 封

三、焦炉气压缩

1、系统图 0.3172Mpa 140℃ 40℃

200mmH 2O

25℃ 分离水

40℃ 0.957 Mpa 分离水

2.5Mpa 140℃ 40℃ 去精脱硫

2.5 Mpa

40℃ 分离水

2、物料平衡表

物料名称 输入量 输出量

备注

物料名称 输入量 输出量 备注

H 2 55~58% NH 3 ≤50 mg/m 3 CH 4 24~26% H 2S ≤20 mg/m 3 CO 6~8% 有机硫 350mg/m 3

C m H n

2.5% CO 2及其它

<3%

化产循环水32℃: 正常580m 3/h ,最大650 m 3/h 蒸汽0.6Mpa :正常2.4t/h 最大3.0t/h

注意: 停车时造成煤气放散30000Nm 3/h

三、精脱硫 1、系统图

2.5Mpa

40℃

不合格返回 不合格返回

去转化 2.3 Mpa 380℃

(1)有机硫加氢转化:CS 2+H 2+H 2O →H 2S+CO COS+H 2O →H 2S+CO 2

(2)必须将系统中来自炼焦、压缩机等的氯杂质去除,在甲醇反应中会生成水溶性氯化物,影响整个床层。

2、物料平衡表

一级吸气 缓冲器

一级汽缸 一级排气缓冲器 一级冷却器 一级分离器 二级吸气 缓冲器

二级汽缸

二级排气缓冲器

二级冷却器

二级分离器 三级吸气

缓冲器

三级汽缸 三级出口缓冲器 三级冷却器 三级分离器 过滤器 予脱硫槽 去除油雾

脱除无机硫 一级加氢转化器 H 2+O 2→水

C m H n →饱和烃

有机硫→无机硫 铁钼加氢催化剂27.4m 3

取空速1000h -1 ф2300mm 一台

中温氧化铁脱硫槽 脱除绝大部分无机硫 总硫量355mg/Nm 3 触媒总装158.4m 3更换周期4000小时,ф2900mm 两开

一备共三台并联使用 二级加氢转化器 残余有机硫→无机硫 铁钼加氢催化剂17m 3 取空速1500h -1

ф1900mm 一台

中温氧化锌脱硫槽 把关脱硫0.01ppm 触媒总装22.6m 3

ф1900mm 两台串联工作

转化工段预热

器提温300℃

物料名称输入量输出量备注物料名称输入量输出量备注H255~58%NH3≤50 mg/m3

CH424~26%H2S ≤20 mg/m3

CO 6~8%有机硫350mg/m30.01ppm

C m H n 2.5%

CO2及其它<3%

原材料消耗定额及消耗量表(生产甲醇耗煤气2176 Nm3/吨)

序号名称规格单位消耗

定额

消耗量

备注每小时每年

1 焦炉气Nm32176 30000

催化剂、化学品消耗定额及消耗量表

序号名称规格加入设备

名称

单位

首次

填装量

消耗

定额

消耗量

(每年)

备注

1 铁钼加氢催

化剂

Φ3~5

一级和二级加氢

转化器

kg 33300 11100

2 中温氧化铁Φ4x5~15

中温

脱硫槽

kg 142587 402000

3 氧化锌脱硫

Φ5x5~15

氧化锌

脱硫槽

kg 17856 19200

4 活性炭Φ2~4 预脱硫槽kg 14850 18000

5 脱氯剂Φ5x10~15 氧化锌

脱硫槽

kg 2130 2130

6 吸油剂Φ6~8 过滤器kg 35640 17820

三废排放量表

序号排放物名称排放

点排放物

形状

排放情况排放量(每年)组成及

含量

排放标准连续间断单位正常最大

1 铁钼加氢催化剂固间断t 11.1

2 中温氧化铁固间断t 402

3 氧化锌脱硫剂固间断t 19.2

4 脱氯剂固间断t 2.13

5 吸油剂固间断t 17.82

6 活性炭固间断t 18

四、转化

1、系统图 氧气来自空分(100℃) 经蒸汽加热270℃ 冷却水去外管

防止焦炉气高温析碳加入3.0Mpa 饱和蒸汽 付产蒸汽去外管 来自精脱硫 540℃ 660℃ 540℃ 2.3Mpa380℃ 520℃

960℃

燃料气来自合成 2.2Mpa

与空气混合后

370℃ 冷却水来自外管 焦炉气来自精脱硫 锅炉给水来自外管 脱盐水来自脱盐水管 采暖水来自管网

预脱硫槽 270℃

预热到300℃去精脱硫 脱盐水去锅炉房 117℃

锅炉给水去合成 采暖水回水去管网 冷却水来自外管 2.0Mpa 、40℃去合成气压缩工段 40℃

冷凝水送街区 冷却水去外管

在转化炉中焦炉气发生如下反应:

2H 2+O 2=H 2O+115.48kcal (1) 2CH 4+O 2=2CO+4H 2+17.0kcal (2)

CH 4+H 2O=CO+3H 2-49.3kcal (3) CH 4+CO 2=2CO+2H 2-59.1kcal (4) CO+H 2O=CO 2+H 2+9.8kcal (5) 反应最终按(5)达到平衡。 2、物料平衡表

(1)原料气 物料名称 输入量 输出量 备注 物料名称 输入量 输出量 备注

H 2 56.74% 71.39% NH 3 ≤50 mg/m 3 CH 4 27.17% 0.83% N 2

4.7% 2.92%

CO 6.48% 16.52% 有机硫 0.01ppm C m H n

2.61% 0 CO 2及其它

2.3%

7.8%

(2)危险物料特性

装置危险性物料主要物性表

序号 名称 分子量 熔点 (℃) 沸点 (℃) 闪点 (℃) 燃点 (℃) 爆炸极限

V% 毒性

程度

火险 分类 爆炸 级组 国家卫生标准

备注 上限 下限 1 H2 2 -259 -252 400 74.2 4 甲 ⅡCT1 2 CH4 16

-182 -161 540 15 5.3 甲 ⅡA T1 3

CO

28

-205

-191

605

74.2

12.5

ⅡA T1

(3)催化剂技术规格

催化剂技术规格

焦炉气预热器 预热炉 2200mm*18m 换热面积 300m 2 转化炉 ф2200mm 催化剂体积20.9m 3 催化剂床层高

5.5m

废热锅炉

焦炉气预热器 锅炉给水预热器 脱盐水预热器

采暖水预热器

最终冷却器

气液分离器 氧化锌脱硫槽

序号名称

规格

(型号、尺寸)

控制组分名称标准备注

1 热保护催化剂Z205、Φ25x18x10 Ni0≥5.00、SiO2≤0.20

2 转化催化剂Z204、Φ19x19x9 Ni0≥14.00、SiO2≤0.20

3 氧化锌脱硫剂HT-305Φ5x5~15

(4)物料消耗(消耗定额以吨甲醇产品计)

原材料消耗定额及消耗量表

序号名称规格单位消耗

定额

消耗量

备注每小时每年

1 焦炉气Nm32176 30000

2 氧气Nm3418.5 5780

动力(水、电、汽、气)消耗定额及消耗量表

序号名称规格使用

情况

单位

消耗

定额

小时消耗量

备注

正常最大

1 循环水32℃连续m368.9 950 1050

2 电380V 连续kW.h 4.35 60

3 蒸汽 2.7MPa 连续t -0.22 -3

4 燃料气连续Nm3224 3091

5 锅炉给水 4.2MPa 连续t 2.03 28

催化剂、吸附剂、化学品消耗定额及消耗量表

序号名称规格

加入设备

名称

单位

首次填

装量

消耗

定额

消耗量(h)

备注

正常最大

1 热保护催化剂Φ25x18x10 转化炉kg 4807 0.015 0.2

2 转化催化剂Φ19x19x9 转化炉kg 19228 0.058 0.8

3 氧化锌脱硫剂Φ5x5~15 脱硫槽kg 17523 0.0

4 0.6

三废排放量表

序号排放物名称排放点排放物

形状

排放情况排放量(每年)组成及含

排放

标准

备注连续间断单位正常最大

1 烟道气预热炉气连续Nm3/h 9273

2 转化催化剂固间断t 8

3 氧化锌脱硫剂固间断t 4.8

主要节能措施:

燃料气使用甲醇合成工段的弛放气,合理利用了废气。利用转化气副产中压蒸汽,可回收热量13.85x103kw,并利用转化气预热锅炉给水和脱盐水,可回收热量12.1x103kw,充分回收了反应热。

五、合成气压缩

1、系统图

冷却水回水去总管

转化气 3.5Mpa 冷却水来自外管

40℃、2.1Mpa 109℃ 40℃

地沟

循环气来自合成与二段压缩至5.5Mpa 转化气混合 6.0Mpa 合成气送至甲醇合成

(汽轮机轴功率3750kw ,额定功率4538kw )

2、物料平衡

(1)本装置(630#

)为10万吨/年甲醇合成装置的合成气压缩机组,处理新鲜气量46951Nm 3

/h (干),循环气量259592Nm 3/h ,合成气出口压力为6.0MPa(A)。除部分接管外,整个装置由压缩机厂成套供应。合成气压缩机为离心式二合一机组,由汽轮机驱动,汽轮机为抽汽凝汽式。正常操作时无三废排放,压缩机运转产生的噪声经消音、隔离处理后可降至85dBA 以下。 (2)装置危险性物料主要物性表

序号 名称 分子量

熔点 (℃) 沸点

(℃) 闪点

(℃) 燃点 (℃) 爆炸极限V%

毒性 程度

火险 分类 爆炸 级组 卫生 标准

备注 上限 下限 1 H2 2 -259 -252 400 74.2 4 甲 ⅡCT1 2 CH4 16 -182 -161 540 15 5.3 甲 ⅡAT1 3 CO 28 -205 -191 605 74.2 12.5 Ⅱ 乙 ⅡAT1 4

CH3OH

32

-98

64.5

12

473

36.5

6

III

甲B

IIAT2

(3)动力消耗 动力(水、电、汽、气)消耗定额及消耗量 序号 名称 规格

单位 消耗定额 消耗量

备注 每小时 每年 1 循环水 0.5MPa(g) 32℃Δt=8℃ t 82.61 1150 9200000 连续 2 电 380V

kw 〃h 2.03 28.2 225600 连续 4

蒸汽

3.43MPa(g) 435℃

t

2.16

30

240000

连续

主要节能措施:

1、压缩机采用汽轮机驱动,减少了电力消耗。

2、二级射汽抽气器用凝汽器冷凝下来的冷凝液作冷却介质,节省了循环水用量。

气液分离器

中间气体冷却器 压缩机一段

过滤器 压缩机二段 回路冷却器

六、甲醇合成

蒸汽去管网

1、系统图 塔后出口气进气气换热器与入塔气换热到活性温度 锅炉给水来自转化

汽液混合物

合成气来自合成压缩机 220℃ 分离水回合成塔 连续排污去除氧站

6.0Mpa ,40℃ 蒸汽来自管网

95℃ 5.4Mpa 0.2Mpa 去转化预热炉加热

冷却水来自外管 脱盐水 去焦炉燃烧加热

冷却水回外管

40℃ 驰放气 稀醇水排出去甲醇精馏

去合成气压缩增压并补充新鲜气

送甲醇精馏0.7Mpa (粗醇)

合成塔中进行的反应是在催化剂的作用下进行甲醇合成反应 CO+2H 2=CH 3OH+Q CO 2+3H 2=CH 3OH+H 2O+Q 副反应: 4CO+8H 2=C 4H 9OH+3H 2O 8CO+17H 2=C 8H 18+8H 2O 等

2、物料平衡

(1)原材料技术规格 序 号

名 称

规 格

标 准

备 注

1

新鲜气

T=40℃、P=2.0MPa(g)、组分∑100.0V ol%:H 2:71.68、CO :16.46

CO 2:7.77、CH 4:0.83、N 2:2.91、H 2O :0.35

(2)产品技术规格 序 号

名 称

规 格

标 准

备 注

1

燃料气

P=0.2MPa(g)、T=40℃、组分∑100.0 V ol%:H 2O :0.05

H 2:77.87、CO :5.69、CO 2:3.79、CH 4:2.74、N 2:9.83

2

副产蒸汽

2.0~

3.9MPa(g)饱和蒸汽

3

粗甲醇

P=0.5MPa(g)、T=40℃、组分∑100.0w%:N 2:0.10、H 2O :14.78

H 2:377ppm 、CO :799ppm 、CO 2:1.43、CH 4:480ppm CH 3OH 83.08、轻组分:0.28、高沸点醇 0.16

(3)催化剂、吸附剂、化学品技术规格 序 号 名 称 规 格 控制组分名称

标 准 备 注 1 C306催化剂 φ5X5 Cu-Zn-Al 2

Na 3PO 4〃12H 2O

纯度>92%

Na 3PO 4

(4) 装置危险性物料主要物性

气气换热器AB 合成塔(管壳式反应器) Ф3400*13000mm 触媒装填量26.4m 3

反应管Ф38*2*6000mm ,共计4513根

水冷器 甲醇分离器

调节减压、

过滤装置

洗醇塔

脱盐水逆向喷洒

汽包 调节减压

序号名称分子量

熔点

(℃)

沸点

(℃)

闪点

(℃)

燃点

(℃)

爆炸极限V% 毒性

程度

火险

分类

爆炸

级组

国家卫生

标准

备注

上限下限

1 H

2 2 -259 -252 400 74.2 4 甲ⅡCT1

2 CH416 -182 -161 540 15 5.

3 甲ⅡAT1

3 CO 28 -205 -191 605 74.2 12.5 Ⅱ乙ⅡAT1

4 CH3OH 32 -98 64.

5 12 473 36.5

6 III 甲B IIAT2 (5)消耗

A 原材料消耗定额及消耗量

序号名称规格单位消耗定额

消耗量

备注每小时每年

1 新鲜气Nm33385 47116 3.77×108连续

B 动力(水、电、汽、气)消耗定额及消耗量

序号名称规格单位消耗定额

消耗量

备注每小时每年

1 循环水0.4MPa(g) 32℃Δt=10℃t 77.91 1074 8592000 连续

2 脱盐水0.3MPa(g) 40℃t 0.14 2 16000 连续

3 锅炉给水 4.15MPa(g) 200℃t 1.33 18.5 148000 连续

4 蒸汽 2.0~3.9MPa(g) 饱和t -1.120 -15.6 -124800 连续

5 蒸汽 3.43MPa(g) 435℃t 0.003

6 3.0 400 间断

6 电380V kW〃h 1.38 19.2 153600 连续

C 催化剂、吸附剂和化学品消耗定额及消耗量

序号名称规格加入设备名称位号

首次装填

量(kg) 备用量

消耗定

消耗量(kg)

备注

每小时每年

1 合成触媒C306 φ5×5 甲醇合成塔D40001 42240 0.190 2.64 21120

2 Na3PO4〃12H2O 纯度>92% 汽包F40001 4.0 150 0.016 0.22 1760 连续

D 三废排放量

序号排放物名称排放点排放

状态

排放情况排放量组成及含量备注连续间断单位正常最大

1 开车还原气放空管气开车短期

排放

Nm3/h 14000

组分V ol%

N2≥90%

其它

H2 CO

去煤气放散装置统

一排放

2 弛放气洗醇塔顶气连续Nm3/h 14000 见4.15.2.2 去转化予热炉和焦

炉燃烧

3

汽包连排污水汽包液连续t/h 1.0 2.0

H2O

Ph值9-11

溶解固形物

<100mg/l

去除氧站

4

汽包间排污水汽包液间断t/h 2.0 3.0

H2O Ph值9-11 溶解固形物<100mg/l

5

废旧触媒 甲醇合成塔 固

两年更换一次

t 42.24 42.24 Cu-Zn-Al 送催化剂厂回收

E 主要节能措施

利用反应热副产蒸汽,回收高位热能5.6x106kcal/h.

利用洗醇塔回收弛放气中的甲醇,减少产品损失,每年可回收甲醇874吨。

七、甲醇精馏

1、流程图 收集所有塔器的排放气到排放槽用软水回收 去转化

循环水上水

地下放空槽 粗甲醇来自罐区 75℃ 0.05Mpa 循环水下水 加压回流 40℃ 粗甲醇来自合成 40℃ 0.5Mpa

5~10%NaOH 溶液 NaOH

低压蒸汽加热 计量泵25kg/h 换热后蒸汽回总管 盐水

用预塔后甲醇泵送入加压精馏塔 CWS

甲醇蒸汽去常压塔再沸器冷凝 65℃ CWR

一部分回流 40℃ 用泵加压 85℃ 0.6Mpa 134℃ 一部分成品甲醇 去罐区 40℃

控制液面使过剩产物 采出杂醇85℃ 0.035Mpa 在134℃去常压塔

成品甲醇 废水107℃0.045Mpa 去罐区 40℃

成品甲醇经粗醇预热器 冷却到40℃去生化处理 甲醇精馏所有排放的污甲醇排到地下槽,经地下槽液下泵送到粗甲醇贮槽。在开车时或事故状态下,经分析精甲醇中间槽内不合格的甲醇通过精甲醇泵送到粗甲醇贮槽,同时甲醇缓冲槽的液位靠从粗甲醇贮槽进出甲醇缓冲槽的甲醇流量来控制。

2、物料平衡

(1)原材料技术规格:

序号 名称 规格

国家标准

备注 1 软水 T=40℃、P=0.5MPa(g)

2 碱 固碱

3

粗甲醇

T=40℃、P=0.5 MPa(g)组成:w % CO 2:1.00 CO:102PPm 、H 2:25PPm 、N 2:102PPm 、CH 4:118PPm CH 3OH:80.20、高沸点醇:0.16、(CH 3)2O: 0.27、H 2O:18.30

(2) 产品技术规格:

序号

名称

规格

国家标准

备注

排放槽

预塔冷凝器II 预塔冷凝器I 预精馏塔

¢1400 H=27000

45块塔盘 预塔回流槽

粗甲醇缓冲槽 流量17664kg/h

粗甲醇预热器

碱液槽 配碱槽 预塔再沸器

保证预精馏塔的

回流比 常压塔冷凝器 加压精馏塔 ¢1600 H=43000 85块塔盘 常压塔

¢2000、H=45000

85块塔盘 塔底用再沸器冷凝热量保持

107℃0.03Mpa 常压塔回流槽 杂醇 贮槽

杂醇冷却器

精甲醇 中间槽 常压塔

再沸器

加压精馏塔 再沸器

维持塔底液

134℃

残液冷却器

加压塔回流槽 精醇冷却器

1 甲醇99.9%(wt) 优等品

2 杂醇组成: w%、CH3OH:40.70、高沸点醇: 21.10、H2O:38.20

(3)车间(装置)危险性物料主要物性表:

序号名称分子量

熔点

(℃)

沸点

(℃)

闪点

(℃)

燃点

(℃)

爆炸极限V% 毒性

程度

火险

分类

爆炸

级组

国家卫生

标准

备注

上限下限

4 CH3OH 32 -98 64.

5 12 473 36.5

6 III 甲B IIAT2 (3)消耗

A 原材料、动力(水、电、汽、气)消耗定额及消耗

序号名称规格使用情况单位

消耗定额

(吨产品)

消耗量(小时)

备注

正常最大

1 冷却水△t=10℃连续t 61.0 850 1020

2 电380V 连续kW 9.8 136 205.0

3 低压蒸汽0.5MPa(g)、T=158℃连续kg 1221 17000 18600

4 仪表空气0.7MPa(g)、露点<-40℃连续Nm3 3.6 50.1 60.1

5 软水0.5MPa(g)、T=40℃连续t 0.04 0.60 2.0

B 三废排放量

本工段内的废气为预精馏塔排出的低沸点的不凝气,废液为常压塔塔底排出的残液。废气去转化工段燃烧,残液经冷却送生化处理。

序号排放物

名称

排放点

排放物

性状

排放情

排放量

组成及含量

国家排放

标准

备注

单位正常最大

1 不凝气排放槽气连续Nm314

2 170 组成v%:CO2:62.64、CO:1.00

H2: 3.42、N2:1.00、CH4:2.04、H2O:5.08 CH3OH:8.59、(CH3)2O:16.22

2 甲醇残液甲醇残

液连续t 3.2 4.0

H2O: 99.6 (wt%)、CH3OH: 0.2(wt%)

高沸点醇: 0.2(wt%)

4.16.9 主要节能措施:

本装置常压塔利用了加压塔的废热,降低了蒸汽的消耗,又减少了冷却水的用量。

八、空分 1、流程图

原料空气 去除灰尘和机械杂质 压力到0.62Mpa 去清洗和预冷

去空压站

0.038Mpa12℃氧气经氧气压缩机去氧气管网

污氮气-181℃ 仪表空气

氮气0.014Mpa 污氮气一部分进蒸汽加热器为分子筛再生气体

70%进主换热器 污氮气 15℃ 30% 0.548Mpa 下段使用冷却过的循环水 0.55Mpa-172℃

循环水回水

0.038Mpa-145℃

2、物料平衡

(1)各装置的用气负荷及用气特点

其主要任务是为甲烷转化装置连续提供气量为5780Nm3/h ,纯度为99.6%的氧气,以及全厂开车吹扫、还原用氮气,供气量为6000Nm3/h ,纯度为99.9%的氮气。(各工段用气量、用气介质及使用方式如下表注: Nm 3/h 系指 0 ℃, 1.013 bar 下的状态,下同。): 介质 用气装置 用气负荷(Nm 3/h )

纯度(体积分率) 压力 MPa(A)

用气特点 氧气 甲烷转化装置 5780 O 2 ≥ 99.6% ≥2.6 连续 氮气

甲醇装置

6000

99.9%

间断

(2)空分设备的选型及主要参数

根据上表所列氧气、氮气的需要量及质量要求,结合甲醇装置连续生产、且同时使用氧气、氮气,用量较大的实际情况,空分设备的设计选型以确保装置运转稳定可靠,操作维护方便为原则,选用代表当今国际上空分技术发展趋势的带增压透平膨胀机的全低压空分设备一套。其技术参数如下: 氧气产量: 5780Nm3/h 、氧气纯度:99.6%O2;氮气产量:6000Nm3/h 、氮气纯度:99.9%N2;空分装置连续运转周期 (两次大加温间隔期) :>二年;装置加温解冻时间:~36 小时;装置启动时间:<36 小时(从膨胀机启动到氧产品达到纯度指标);当空分装置加工空气量在75—105%负荷变化时,空分装置各系统仍能稳定、可靠运行。 (3)水、电、汽消耗指标 序号 名称 规格 单位 使用 情况 消耗量

备注

每小时 每 年 1

循环水

32℃

t

连续

1781

14248000

离心式空气压缩机 由汽轮机驱动

空气过滤器

分子筛纯化器AB 去除水分、CO 2、C 2H 2等杂物

丝网除雾器除去机械水滴 空气 冷却塔

水冷却塔 供空气冷却塔上段使用 增压 风机

水冷 主换 热器 增压透平膨胀机组

-193℃

氧气

-185℃

纯液氮

-175℃

-179℃

液体空气

液空液氮过冷器

2 电380V kw.h 连续159 1272000

3 中压蒸汽 3.43MPa t/h 连续34.9 279200

4 低压蒸汽 1.27MPa t/h 连续 1.7 13600

5 低压蒸汽 1.1MPa t/h 连续 1.0 8000

(4)主要节能措施(采用节能新技术、新工艺、新材料、新设备情况、膨胀功及余热利用情况)

1)采用全低压、全板式的工艺流程和设备,可以取得较低的制氧能耗和较高的氧提取率。

2)空气预冷系统设置水冷塔,充分利用干燥氮气的吸湿性,使冷却水温降低。

3)分子筛纯化空气系统采用活性氧化铝-分子筛双层床结构,大大延长了分子筛的寿命,同时使床层阻力减少。

4)分馏塔上塔采用填料塔,大大降低了塔的阻力。氧提取率进一步提高。

5)透平膨胀机采用增压机制动工艺,从而减少了膨胀空气量,使精馏塔上塔工况稳定。

6)采用先进的DCS计算机控制技术,实现了中控、机旁、就地一体化的控制,可有效地监控整套空分设备的生产过程。成套控制系统具有设计先进可靠、性能价格比高等特点。

7)原料空气过滤器采用自洁式

煤制甲醇工艺设计

煤制甲醇工艺流程化设计 主反应为:C + O 2 → C O + C O 2 + H 2 → C H 3O 副反应为: 1 造气工段 (1)原料:由于甲醇生产工艺成熟,市场竞争激烈,选用合适的原料就成为项目的关键,以天然气和重油为原料合成工艺简单,投资相对较少,得到大多数国家的青睐,但从我国资源背景看,煤炭储量远大于石油、天然气储量,随着石油资源紧缺、油价上涨,在大力发展煤炭洁净利用技术的形势下,应该优先考虑以煤为原料,所以本设计选用煤作原料。 图1-1 甲醇生产工艺示意图 (2)工艺概述:反应器选择流化床,采用水煤浆气化激冷流程。原料煤通过粉碎制成65%的水煤浆与99.6%的高压氧通过烧嘴进入气化炉进行气化反应,产生的粗煤气主要成分为CO ,CO 2,H 2等。 2423CO H CH H O +?+2492483CO H C H OH H O +?+222CO H CO H O +?+

2 净化工段 由于水煤浆气化工序制得粗煤气的水汽比高达1.4可以直接进行CO变换不需加入其他水蒸气,故先进行部分耐硫变换,将CO转化为CO2,变换气与未变换气汇合进入低温甲醇洗工序,脱除H2S和过量的CO2,最终达到合适的碳氢比,得到合成甲醇的新鲜气。 CO反应式: CO+H O=CO+H 222 3 合成工段 合成工段工艺流程图如图1。 合成反应要点在于合成塔反应温度的控制,另外,一般甲醇合成反应10~15Mpa的高压需要高标准的设备,这一项增加了很大的设备投资,在设计时,选择目前先进的林达均温合成塔,操作压力仅5.2MPa,由于这种管壳式塔的催化剂床层温度平稳均匀,反应的转化率很高。在合成工段充分利用自动化控制方法,实行连锁机制,通过控制壳程的中压蒸汽的压力,能及时有效的掌控反应条件,从而确保合成产品的质量。 合成主反应: CO+2H=CH OH 23 主要副反应: CO+3H=CH OH+H O 2232 4 精馏工段 精馏工段工艺流程图见图2。 合成反应的副产主要为醚、酮和多元醇类,本设计要求产品达质量到国家一级标准,因此对精馏工艺的合理设计关系重大,是该设计的重点工作。设计中选用双塔流程,对各物料的进出量和回流比进行了优化,另外,为了进一步提高精甲醇质量,从主塔回流量中采出低沸点物继续进预塔精馏,这一循环流程能有效的提高甲醇的质量。

001合成甲醇工艺流程

、工艺流程 A?联氨工艺流程图: 1.Ф2600煤气炉固定层间歇气化、生产的低氮煤气经集中余热回收,集中洗涤降温除尘去气柜。 2.出气柜的低氮煤气罗茨鼓风机加压后经冷却湿法脱硫静电除焦一部分气体进原压缩机一段、二段加压后,去变换将多余的CO变换为氢气,变换率和气体组成由集散控制,如果原小氮肥厂产品为碳铵经碳化系统脱碳并生产碳酸氢铵,碳化气仍然进原压缩系统 3.4段将气体压缩至5.0MPa 。 3.脱硫后大部分低氮煤气经低压机、脱硫、脱碳除去CO2经低压机将煤气压缩至5.0MPa与碳化气汇合去低压甲醇合成。 4.低压甲醇新鲜气组成H2:69.61%,CO:20.33%,N2:9.01%经低压甲醇合成后生产粗甲醇,放空气组成 H2:72.49%,CO:5.4%,CO2:0.33%,N2:20.12% 经原压缩机,将原料气压缩至30.0Mpa经甲醇化将CO,CO2净化并生产粗甲醇,微量的CO,CO2经甲烷化进行氨的合成。

B·低压甲醇工艺 1.小氮肥目前新建低甲醇工程一般方法是保持原化肥生产工艺路线,新建一套低压甲醇生产线,将低压甲醇的放空气回到合成氨系统。 2.煤气、脱硫、变换等必须二个系统,生产二种煤气(半水煤气和水煤气),操作和管理较复杂。 C·工艺流程特点 1.联氨新工艺流程既保留了原小氮肥厂合成氨工艺流程,又发挥了低压甲醇的优越性,避免了低压甲醇煤气化隋性气体过高,合成循环量较大,放空气量大,能耗较高等缺点。 2.采用固定层气化、低氮煤气脱硫等组成个系统,操作和生产管理方便,气体成份容易调节。 3.醇氨比容量调节,根据市场需求,甲醇生产能力或氨生产能力可以增加或减少便于季节调节。 4.由于生产低氮煤气,煤气炉操作与原小氮肥厂相同,工艺指标和气体组成根据醇氨比进行调节,煤气炉生产效率和煤利用率煤气炉发气量均要比单醇高,目前市场原料煤的价格较高,这对降低甲醇的成本有较大的优越性。 5.小氮肥厂工艺流程不变,原有设备全部可以利用,增加煤气炉设备及改造原湿法脱硫,增加低压甲醇圏、低压机、脱碳等,投资省,建设周期短等优点。 6.在合成高压圈内增加了等高压甲醇甲烷化工艺,甲醇化既作为净化装置又生产了部分甲醇,甲烷化代替了铜洗,使合成气净化度大大提高,延长了合成触媒使用寿命,取消铜洗,保护了环境。 7.联氨工艺与单醇比由于气化系统煤利用率高,低压合成圈循环比小,合成率要求低,没有放空气,投资省,因此甲醇的成本低,经估算二者相差150-200元/吨单醇。

合成气生产甲醇工艺流程

编号:No.20 课题:合成气生产甲醇工艺流程 授课内容:合成气制甲醇工艺流程 知识目标: ? 了解合成气制甲醇过程对原料的要求 ?掌握合成气制甲醇原则工艺流程 能力目标: ?分析和判断合成气组成对反应过程及产品的影响 ?对比高压法与低压法制甲醇的优缺点 思考与练习: ?合成气制甲醇工艺流程有哪些部分构成? ?对比高压法与低压法制甲醇的优缺点 ?合成气生产甲醇对原料有哪些要求?如何满足?

授课班级: 授课时间: 四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个 工序,见图5-1。 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石 油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(出—CO2)/(CO+CO2)=2.1 左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其 含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有 少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则 在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即 使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法 一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方 法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工

生产甲醇的工艺流程

生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个工序 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(H2-CO2)/(CO+CO2)=2.1左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工序需设置在原料气设备之前;其它制原料气方法,则脱硫工序设置在后面。 二是调节原料气的组成,使氢碳比例达到前述甲醇合成的比例要求,其方法有两种。 (1)变换。如果原料气中一氧化碳含量过高(如水煤气、重质油部分氧化气),则采取蒸汽部分转换的方法,使其形成如下变化反应:CO+H2O==H2+CO2。这样增加了有效组分氢气,提高了系统中能的利用效率。若造成CO2多余,也比较容易脱除。 (2)脱碳。如果原料气中二氧化碳含量过多,使氢碳比例过小,可以采用脱碳方法除去部分二氧化碳。脱碳方法一般采用溶液吸收,有物理吸收和化学吸收两种方法。(如:低温甲醇洗)

年产50万吨甲醇合成工艺初步设计

年产50万吨甲醇合成工艺初步设计 摘要 本设计重点讨论了合成方案的选择,首先介绍了国内外甲醇工业的现状、甲醇原料的来源和甲醇本身的性质及用途。其次介绍了合成甲醇的基本原理以、影响合成甲醇的因素、甲醇合成反应速率的影响。在合成方案里面主要介绍了原料路线、不同原料制甲醇的方法、合成甲醇的三种方法、生产规模的选择、改善生产技术来进行节能降耗、引进国外先进的控制技术,进一步提高控制水平,来发展我国甲醇工业及简易的流程图。在工艺条件中,主要介绍了温度、压力、氢与一氧化碳的比例和空间速度。主要设备冷激式绝热反应器和列管式等温反应器介绍。最后进行了简单的物料衡算。 关键词:甲醇,合成塔

一、综述 (一)国内外甲醇工业现状 甲醇是重要的化工原料,应用广泛,主要用于生产甲醛,其消耗量约占甲醇总量的30%~40%;其次作为甲基化剂,生产甲胺、丙烯酸甲酯、甲基丙烯酸甲酯、甲基叔丁基醚、对苯二甲酸二甲酯;甲醇羰基化可生产醋酸、酸酐、甲酸甲酯、碳酸二甲酯等。其次,甲醇低压羰基化生产醋酸,近年来发展很快。随着碳化工的发展,由甲醇出发合成乙二醇、乙醛、乙醇等工艺正在日益受到重视。国内甲醇装置规模普遍较小,且多采用煤头路线,以煤为原料的约占到78%;单位产能投资高,约为国外大型甲醇装置投资的2倍,导致财务费用和折旧费用高,这些都会影响成本。据了解,我国有近200家甲醇生产企业,但其中10万吨/年以上的装置却只占20%,最大的甲醇生产装置产能也就是60万吨/年,其余80%都是10万吨/年以下的装置。根据这样的装置格局,业内普遍估计,目前我国甲醇生产成本大约在1400,1800元/吨(约200美元/吨),一旦出现市场供过于求的局面,国内甲醇价格有可能要下跌到约2000元/吨,甚至更低。这对产能规模小,单位产能投资较高的国内大部分甲醇生产企业来讲会加剧增。 而以中东和中南美洲为代表的国外甲醇装置普遍规模较大。目前国际上最大规模的甲醇装置产能以达到170万吨/年。2008年4月底,沙特甲醇公司170万吨/年的巨型甲醇装置在阿尔朱拜勒投产,使得

甲醇合成的工艺方法介绍

甲醇合成的工艺方法介绍 自1923年开始工业化生产以来,甲醇合成的原料路线经历了很大变化。20世纪50年代以前多以煤和焦碳为原料;50年代以后,以天然气为原料的甲醇生产流程被广泛应用;进入60 年代以来,以重油为原料的甲醇装置有所发展。对于我国,从资源背景来看,煤炭储量远大于石油、天然气储量,随着世界石油资源的紧缺、油价的上涨和我国大力发展煤炭洁净利用技术的背景下,在很长一段时间内煤是我国甲醇生产最重要的原料。下面简要介绍一下甲醇生产的各种方法。按生产原料不同可将甲醇合成方法分为合成气(CO+H2方法和其他原料方法。 一、合成气(CO+H2生产甲醇的方法 以一氧化碳和氢气为原料合成甲醇工艺过程有多种。其发展的历程与新催化剂的应用,以及净化技术的进展是分不开的。甲醇合成是可逆的强放热反应,受热力学和动力学控制,通常在单程反应器中,CO和CO2的单程转化率达不到100%,反应器出口气体中,甲醇含量仅为6~12%,未反应的CO、CO2和H2需与甲醇分离,然后被压缩到反应器中进入一步合成。为了保证反应器出口气体中有较高的甲醇含量,一般采用较高的反应压力。根据采用的压力不同可分为高压法、中压法和低压法三种方法。 1、高压法 即用一氧化碳和氢在高温(340~420℃高压(30.0~50.0MPa下使用锌-铬氧化物作催化剂合成甲醇。用此法生产甲醇已有八十多年的历史,这是八十年代以前世界各国生产甲醇的主要方法。但高压法生产压力过高、动力消耗大,设备复杂、产品质量较差。其工艺流程如图所示。 经压缩后的合成气在活性炭吸附器1中脱除五羰基碳后,同循环气一起送入管式反应器2中,在温度为350℃和压力为30.4MPa下,一氧化碳和氢气通过催化剂层反应生成粗甲醇。含粗甲醇的气体经冷却器冷却后,迅速送入粗甲醇分离器3中分离,未反应的一氧化碳与氢经压缩机压缩循环回管式反应器2。冷凝后的粗甲醇经粗

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

甲醇工艺流程简述

气化 由原料储运系统来的粒度<10mm 的原料煤从煤仓(351V101~301)送出,经煤称重进料机(351M101~301)计量进入磨煤机(351H101~301),来自石灰石粉仓(351V107~307)的石灰石粉也经石灰石粉进料机(351M102~302)计量进入磨煤机。与一定量的工艺水混合磨成一定粒度分布的约58~65%浓度的煤浆。加入石灰石是为了降低灰熔点。煤浆经磨煤机出料槽(351V102~302 )由磨机出料槽泵(351P103~303A/B )输送至煤浆槽(352V001A/B ),再分别经煤浆给料泵(352P101~301A/B)升压至9.6MPa 进入两对对置工艺烧嘴(353Z101~301A~D)。从外管引来的高压氧气,分两股经安全连锁阀后,分四股等量进入两对对置工艺烧嘴。煤浆和氧气在气化炉(353F101~301)内在 6.5MPa,~1400℃条件下发生部分氧化反应生成煤气,反应后的粗煤气和溶渣一起流经气化炉底部的激冷室激冷后,使气体和固渣分开,激冷后的粗煤气再经文丘里洗涤器(354A101~301),旋风分离器(354S101~301)和洗涤塔(354T101~301)三级洗涤除尘后,温度约243℃,压力6.36MPa(G)、水蒸汽/干气约1.49 送后续工序。 熔渣被激冷固化后由激冷室底部破渣机(353H101~301 )破碎后进入锁斗(353V105~305 ),定期排放渣池(353V106~306 ),再由渣池中的捞渣机( 353L101~301 )将粒化渣从渣池中捞出装车外运。含细渣的水由渣池泵(353P102~302A/B/C)送至真空闪蒸罐(354V105~305)。 由洗涤塔(354T101~301)排出的洗涤水经黑水循环泵(354P104~304A/B)分成两路,一路去文丘里洗涤器做为洗涤用水;另一路去气化炉的激冷室做为激冷水。黑水从气化炉,旋风分离器(354S101~301),洗涤塔(354T101~301)底部分别经减压阀进入蒸发热水塔(354T102~302)减压至0.8MPa(G)闪蒸出水中溶解的气体,闪蒸后的黑水进入低压闪蒸罐(354V103~303)经过一次闪蒸后,再进入真空闪蒸罐(354V105~305 )进一步闪蒸,经三级闪蒸后的~79℃黑水自流进入澄清槽(354V008A/B),经澄清槽沉降分离细渣,沉降后的沉降物含固量约8~10%,由澄清槽底部排出,经澄清槽底流泵送至真空过滤机(354S002A/B)过滤,滤液进入磨煤水槽(354V015),经磨煤水泵(354P010A/B)送至磨煤机(351H101~301)做补水;滤饼装车外运。澄清槽上部溢流清液自流至灰水槽(354V009),灰水槽中的灰水经锁斗冲洗水/废水泵(354P008A/B/C)一部分去锁斗冲洗水冷却器(353E102~302)冷却后,送至锁斗冲洗水罐(353V107~307)

合成气生产甲醇工艺流程讲课教案

编号:No.20课题:合成气生产甲醇工艺流程 授课内容:合成气制甲醇工艺流程 知识目标: ●了解合成气制甲醇过程对原料的要求 ●掌握合成气制甲醇原则工艺流程 能力目标: ●分析和判断合成气组成对反应过程及产品的影响 ●对比高压法与低压法制甲醇的优缺点 思考与练习: ●合成气制甲醇工艺流程有哪些部分构成? ●对比高压法与低压法制甲醇的优缺点 ●合成气生产甲醇对原料有哪些要求?如何满足? 授课班级: 授课时间:年月日

四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个工序,见图5-1。 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(H2-CO2)/(CO+CO2)=2.1左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工序需设置在原料气设备之前;其它制原料气方法,则脱硫工序设置在后面。 二是调节原料气的组成,使氢碳比例达到前述甲醇合成的比例要求,其方法有两种。

甲醇工艺流程简述

气化 由原料储运系统来的粒度<10mm的原料煤从煤仓(351V101~301)送出,经煤称重进料机(351M101~301)计量进入磨煤机(351H101~301),来自石灰石粉仓(351V107~307)的石灰石粉也经石灰石粉进料机(351M102~302)计量进入磨煤机。与一定量的工艺水混合磨成一定粒度分布的约58~65%浓度的煤浆。加入石灰石是为了降低灰熔点。煤浆经磨煤机出料槽(351V102~302)由磨机出料槽泵(351P103~303A/B)输送至煤浆槽(352V001A/B),再分别经煤浆给料泵(352P101~301A/B)升压至9.6MPa进入两对对置工艺烧嘴(353Z101~301A~D)。从外管引来的高压氧气,分两股经安全连锁阀后,分四股等量进入两对对置工艺烧嘴。煤浆和氧气在气化炉(353F101~301)内在6.5MPa,~1400℃条件下发生部分氧化反应生成煤气,反应后的粗煤气和溶渣一起流经气化炉底部的激冷室激冷后,使气体和固渣分开,激冷后的粗煤气再经文丘里洗涤器(354A101~301),旋风分离器(354S101~301)和洗涤塔(354T101~301)三级洗涤除尘后,温度约243℃,压力6.36MPa(G)、水蒸汽/干气约1.49送后续工序。 熔渣被激冷固化后由激冷室底部破渣机(353H101~301)破碎后进入锁斗(353V105~305),定期排放渣池(353V106~306),再由渣池中的捞渣机(353L101~301)将粒化渣从渣池中捞出装车外运。含细渣的水由渣池泵(353P102~302A/B/C)送至真空闪蒸罐(354V105~305)。 由洗涤塔(354T101~301)排出的洗涤水经黑水循环泵(354P104~304A/B)分成两路,一路去文丘里洗涤器做为洗涤用水;另一路去气化炉的激冷室做为激冷水。黑水从气化炉,旋风分离器(354S101~301),洗涤塔(354T101~301)底部分别经减压阀进入蒸发热水塔(354T102~302)减压至0.8MPa(G)闪蒸出水中溶解的气体,闪蒸后的黑水进入低压闪蒸罐(354V103~303)经过一次闪蒸后,再进入真空闪蒸罐(354V105~305)进一步闪蒸,经三级闪蒸后的~79℃黑水自流进入澄清槽(354V008A/B),经澄清槽沉降分离细渣,沉降后的沉降物含固量约8~10%,由澄清槽底部排出,经澄清槽底流泵送至真空过滤机(354S002A/B)过滤,滤液进入磨煤水槽(354V015),经磨煤水泵(354P010A/B)送至磨煤机(351H101~301)做补水;滤饼装车外运。澄清槽上部溢流清液自流至灰水槽(354V009),灰水槽中的灰水经锁斗冲洗水/废水泵(354P008A/B/C)一部分去锁斗冲洗水冷却器(353E102~302)冷却后,送至锁斗冲洗水罐(353V107~307)

甲醇工艺流程

甲醇的工艺流程 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇.典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序. 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料.天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行.转化炉设置有辐射室与对流室,在高温,催化剂存在下进行烃类蒸气转化反应.重油部分氧化需在高温气化炉中进行.以固体燃料为原料时,可用间歇气化或连续气化制水煤气.间歇气化法以空气、蒸汽为气化剂,将吹风、制气阶段分开进行,连续气化以氧气、蒸汽为气化剂,过程连续进行. 甲醇生产中所使用的多种催化剂,如天然气与石脑油蒸气转化催化剂、甲醇合成催化剂都易受硫化物毒害而失去活性,必须将硫化物除净.气体脱硫方法可分为两类,一类是干法脱硫,一类是湿法脱硫.干法脱硫设备简单,但由于反应速率较慢,设备比较庞大.湿法脱硫可分为物理吸收法、化学吸收法与直接氧化法三类. 甲醇的合成是在高温、高压、催化剂存在下进行的,是典型的复合气-固相催化反应过程.随着甲醇合成催化剂技术的不断发展,目前总的趋势是由高压向低、中压发展. 粗甲醇中存在水分、高级醇、醚、酮等杂质,需要精制.精制过程包括精馏与化学处理.化学处理主要用碱破坏在精馏过程中难以分离

的杂质,并调节PH.精馏主要是除去易挥发组分,如二甲醚、以及难以挥发的组分,如乙醇高级醇、水等. 甲醇生产的总流程长,工艺复杂,根据不同原料与不同的净化方法可以演变为多种生产流程. 下面简述高压法、中压法、低压法三种方法及区别 高压法 高压工艺流程一般指的是使用锌铬催化剂,在 300—400℃,30MPa高温高压下合成甲醇的过程.自从1923年第一次用这种方法合成甲醇成功后,差不多有50年的时间,世界上合成甲醇生产都沿用这种方法,仅在设计上有某些细节不同,例如甲醇合成塔内移热的方法有冷管型连续换热式和冷激型多段换热式两大类,反应气体流动的方式有轴向和径向或者二者兼有的混合型式,有副产蒸汽和不副产蒸汽的流程等.近几年来,我国开发了25-27MPa压力下在铜基催化剂上合成甲醇的技术,出口气体中甲醇含量4%左右,反应温度230-290℃. 中压法 中压法是在低压法研究基础上进一步发展起来的,由于低压法操作压力低,导致设备体积相当庞大,不利于甲醇生产的大型化.因此发展了压力为10MPa左右的甲醇合成中压法.它能更有效地降低建厂费用和甲醇生产成本.例如ICI公司研究成功了51-2型铜基催化剂,

合成气生产甲醇工艺流程

编号:No.20课题:合成气生产甲醇工艺流程授课内容:合成气制甲醇工艺流程 知识目标: ●了解合成气制甲醇过程对原料的要求 ●掌握合成气制甲醇原则工艺流程 能力目标: ●分析和判断合成气组成对反应过程及产品的影响 ●对比高压法与低压法制甲醇的优缺点 思考与练习: ●合成气制甲醇工艺流程有哪些部分构成? ●对比高压法与低压法制甲醇的优缺点 ●合成气生产甲醇对原料有哪些要求?如何满足? 授课班级: 授课时间:年月日

四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个工序,见图5-1。 或氧、空气 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(H2-CO2)/(CO+CO2)=2.1左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法

甲醇合成原理方法与工艺

甲醇合成原理方法与工艺 图1煤制甲醇流程示意图 煤气经过脱硫、变换,酸性气体脱除等工序后,原料气中的硫化物含量小于0.1mg/m3。进入合成气压缩机,经压缩后的工艺气体进入合成塔,在催化剂作用下合成粗甲醇,并利用其反应热副产3.9MPa中压蒸汽,降温减压后饱和蒸汽送入低压蒸汽管网,同时将粗甲醇送至精馏系统。 一、甲醇合成反应机理 自CO加氢合成甲醇工业化以来,有关合成反应机理一直在不断探索和研究之中。早期认为合成甲醇是通过CO在催化剂表面吸附生成中间产物而合成的,即CO是合成甲醇的原料。但20世纪70年代以后,通过同位素示踪研究,证实合成甲醇中的原子来源于CO2,所以认为CO2是合成甲醇的起始原料。为此,分别提出了CO和CO2合成甲醇的机理反应。但时至今日,有关合成机理尚无定论,有待进一步研究。 为了阐明甲醇合成反应的模式,1987年朱炳辰等对我国C301型铜基催化剂,分别对仅含有CO或CO2或同时含有CO和CO2三种原料气进行了甲醇合成动力学实验测定,三种情况下均可生成甲

醇,试验说明:在一定条件下,CO和CO2均可在铜基催化剂表面加氢生成甲醇。因此基于化学吸附的CO连续加氢而生成甲醇的反应机理被人们普遍接受。 对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程均按下列过程进行: ①扩散——气体自气相扩散到气体一催化剂界面; ②吸附——各种气体组分在催化剂活性表面上进行化学吸附; ③表面吸附——化学吸附的气体,按照不同的动力学假说进行反应形成产物; ④解析——反应产物的脱附; ⑤扩散——反应产物自气体一催化剂界面扩散到气相中去。 甲醇合成反应的速率,是上述五个过程中的每一个过程进行速率的总和,但全过程的速率取决于最慢步骤的完成速率。研究证实,过程①与⑤进行得非常迅速,过程②与④的进行速率较快,而过程③分子在催化剂活性界面的反应速率最慢,因此,整个反应过程的速率取决于表面反应的进行速率。 提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、C02和H2合成甲醇的反应是强放热的体积 缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。 二、甲醇合成的主要反应 (1)甲醇合成主要反应 CH3OH CO+2H CO2CH3OH+H2O 同时CO2和H2发生逆变换反应 CO 2CO+H2O

甲醇精馏工艺流程

甲醇精馏工艺流程 由合成工序闪蒸槽来的粗甲醇在正常情况下直接进入本工序的粗甲醇预热器(E11101)预热至65C后进入预精馏塔(T11101)(在非正常情况下,粗甲醇来自甲醇罐区粗甲醇储槽,经粗甲醇泵加压后进粗甲醇预热器预热。粗甲醇预热器的热源来自常压塔再沸器出来的精甲 醇冷凝液温度。)预精馏塔(T11101)作用是除去溶解在粗甲醇中的气体和沸点低于甲醇的含氧有机物,以及C10以下的烷烃。预精馏塔顶部出来的甲醇蒸汽温度为73.6 C,压力为 0.0448MPa,塔顶出来进入预塔冷凝器I (E11103),塔顶蒸汽中所含的大部分甲醇在第一冷 凝器中被冷凝下来,流入预塔回流槽(V11103)经预塔回流泵(P11102AE)打回流。未冷凝 的少部分甲醇蒸汽,低沸点的组分和不凝气进入塔顶冷凝器H (E11104)继续冷凝,冷凝液 可进入网流槽也可作为杂醇采出,不凝气经排放槽中的脱盐水吸收其中的甲醇后放空排放。用不凝气的排放量控制预精馏塔(T11101)塔顶压力,排放槽吸收液达到一定浓度后作为杂 醇送入杂醇储槽或返回粗甲醇储槽重新精馏。预塔再沸器(E11102)的热源采用0.5MPa的 低压饱和蒸汽。蒸汽冷凝液回冷凝液水槽(V11112)经冷凝水泵(P11110AE)送往动力站循 环使用。为中和粗甲醇中的少量有机酸,在配碱槽中加入定量固体NaOF配置碱溶液储存在 配碱槽(V11101)中。经碱液泵(P11101AE)进入扬碱器(V11110AB再进入预塔回流槽(V11103)经过预塔回流泵(P11102AE)沿预精馏塔(T11101)进料管线加入预塔,控制预塔塔釜溶液PH值为9 —10,预精馏塔(T11101)塔釜维持一定液位,塔釜甲醇溶液经加压塔进料泵 (P11103AE)加压后进入加压塔进料预热器(E11105)预热后的甲醇进入加压塔(T11102)进料口,塔顶出来的甲醇气体温度121 C压力约0.574MPa进过常压塔再沸器(E11107)将 甲醇冷凝下来,冷凝后的甲醇液进入加压塔回流槽(V11111)。回流槽中的甲醇一部分经加 压塔回流泵(P11104AE)后打回流入加压精馏塔(T11102),其余部分经粗甲醇预热器(E11101)与粗甲醇换热降温后再经精甲醇冷却器(E11110)冷却作为产品送往精甲醇中间槽(V11106)。加压塔再沸器的热源采用0.5MPa饱和蒸汽,蒸汽冷凝液回冷凝液水槽(V11112)经P11110AB 冷凝水泵送往动力站循环使用。 常压塔部分:加压精馏塔(T11102)塔釜维持一定液位,甲醇溶液靠自压进入常压精馏 塔(T11103)进料口,从常压精馏塔(T11103)塔顶出来的甲醇蒸汽温度气体温度为66C, 压力为0.008MPa,经常压塔冷凝器(E11108)冷凝,冷凝下来的甲醇进入常压塔回流槽 (V11104), 一部分经常压塔回流泵(P11105AE)打回流进入精馏塔(T11103),其余作为产品进入精甲醇冷却器(E11110)冷却到40C送往精甲醇中间槽(V11106),另有一部分去预塔回流槽(V11103),常压精馏塔(T11103)中上部和下部设有侧线可采出杂醇。降低塔内高沸点物的富集浓度,杂醇经杂醇冷却器(E11109)冷却后送杂醇储槽(V11108)累计一定 量后又杂醇油泵(P11108)抽出卖掉或是去粗甲醇罐区和稀醇水槽(V11113)。从常压塔釜 排出的残液进残液罐(V11107)由残液泵P11107AB加压后去综合污水处理。在开车和事故状态下, 当采出的精甲醇不合格时,由副线改送到粗甲醇储槽重新精馏。

煤制甲醇的工艺流程

煤制甲醇的工艺流程 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环使用。 2)变换 在本工段将气体中的CO部分变换成H2。 本工段的化学反应为变换反应,以下列方程式表示: CO+H2O—→H2+CO2 由气化碳洗塔来的粗水煤气经气液分离器分离掉气体夹带的水分后,进入气体过滤器除去杂质,然后分成两股,一部分(约为54%)进入原料气预热器与变换气换热至305℃左右进入变换炉,与自身携带的水蒸汽在耐硫变换催化剂作用下进行变换反应,出变换炉的高温气体经蒸汽过热器与甲醇合成及变换副产的中压蒸汽换热、过热中压蒸汽,自身温度降低后在原料气预热器与进变换的粗水煤气换热,温度约335℃进入中压蒸汽发生器,副产4.0MPa蒸汽,温度降至270℃之后,进入低压蒸汽发生器温度降至180℃,然后进入脱盐水加热器、水冷却器最终冷却到40℃进入低温甲醇洗

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 煤气化制甲醇工艺流程简述 1)气化 a)煤浆制备 由煤运系统送来的原料煤**t/h(干基)(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。 出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。 煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。 用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。 煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。

甲醇生产工艺流程

甲醇生产工艺流程(10万吨/年工艺!化工二院设计) 本工程以焦炉煤气为原料,选用湿法加干法脱硫,纯氧催化部分氧化转化,低压合成,三塔精馏工艺。 工艺流程简述 湿法脱硫: 首先将来自焦化厂气柜加压站的粗脱硫煤气(H2S:200mg/Nm3)进入本工程脱硫塔,与塔顶喷淋下来的烤胶脱硫液逆流接触洗涤、补雾段除去雾滴后送至焦炉气压缩气柜。 焦炉气压缩: 将来自气柜H2S含量小于20mg/Nm3 、200mmH2O、温度40℃的焦炉气,到一入总油水分离器分离油水,到一段入口缓冲器减压缓冲,进入一段气缸加压至0.23MPa(绝),温度130℃,经一段出口缓冲器减压缓冲,进入一段水冷却器冷却至40℃,一段油水分离器分离油水后,进入二段入口缓冲器减压缓冲,经二段气缸加压至0.491 MPa(绝)温度130℃经二段出口缓冲器减压

缓冲,二段水冷却器冷却至40℃,二段油水分离器分离油水后,进入三段入口缓冲器减压缓冲,经三段气缸加压至11.10 MPa (绝),温度130℃经三段出口缓冲器减压缓冲,三段水冷却器冷却至40℃,三段油水分离器分离油水后,进入四段入口缓冲器减压缓冲,经四段气缸加压至2.5 MPa,温度130℃,经四段出口缓冲器减压缓冲,四段水冷却器冷却至40℃,四段油水分离器分离油水后,送精脱硫转化工段。 转化: 焦炉气来自压缩机的压力2.5MPa,温度40℃的焦炉气经过过滤器(F61201A/B).过滤器分离掉油水与杂质。再经预脱硫槽脱除大部分无机硫后去转化工段焦炉气初预热器预热300℃、压力2.5 MPa。回精脱硫的一级加氢转化器,气体中的有机硫在此进行加氢转化生成无机硫;不饱和烃生成饱和烃。加氢后的气体进入中温脱硫槽(D61203ABC)脱除绝大部分的无机硫;之后再经过二级加氢转化器(D61205)将残余的有机硫进行转化;最后经过中温氧化锌(D61204AB)把关。使出口焦炉气中总硫<0.1pp m后送至转化工序。 精脱硫来的29196Nm3/h焦炉气总硫?0.1ppm和转化废热锅炉自产蒸气14.376t/h混合进入C60602焦炉气预热器〈壳程〉预热3

甲醇合成的工艺流程

甲醇合成的工艺流程: 水煤浆经新型气化炉加压气化制取的水煤气,经净化处理制得总硫含量小于0.1 ppm,氢碳比(H2-CO2)/(CO+CO2) =2.05~2.15的合格合成气。经透平压缩机压缩段5级叶轮加压后,在缸内与甲醇分离器来的循环气(40℃,4.6Mpa)按一定比例混合,经过循环段1级叶轮加压至5.20Mpa后,送入缓冲槽中,获得压力为5.15MPa,温度约为60℃的入塔气。入塔气以每小时528903Nm3的流量进入入塔预热器的壳程,被来自合成塔反应后的出塔热气体加热到225℃后,进入合成塔顶部。 合成塔为立式绝热管壳型反应器。管内装有NC306型低压合成甲醇催化剂。当合成气进入催化剂床层后,在5.10MPa,220~260℃下CO、CO2与H2反应生成甲醇和水,同时还有微量的其它有机杂质生成。合成甲醇的两个反应都是强放热反应,反应释放出的热大部分由合成塔壳侧的沸腾水带走。通过控制汽包压力来控制催化剂层温度及合成塔出口温度。从合成塔出来的热反应气体进入入塔预热器的管程与入塔合成气逆流换热,被冷却到90℃左右,此时有一部分甲醇被冷凝成液体。该气液混合物再经水冷器进一步冷凝,冷却到≤40℃,再进入甲醇分离器分离出粗甲醇。 分离出粗甲醇后的气体,压力约为4.60MPa,温度约为40℃,返回循环段,经加压后循环使用系统。为了防止合成系统中惰性的积累,要连续从系统中排放少量的循环气体:一部分直接排放至精馏工段,另一部分经水洗塔洗涤甲醇后作为弛放气体送往燃气发电管网,整个合成系统的压力由弛放气排放调节阀来控制。 分离出的粗甲醇和水洗塔塔底排出粗甲醇液体,减压至0.4MPa后,进入甲醇膨胀槽,以除去溶解在粗甲醇中大部分气体,然后直接送往甲醇工段或粗甲醇贮槽。 汽包与甲醇合成塔壳侧由二根下水管和六根汽液上升管连接形成一自然循环锅炉,付产4.0MPa中压蒸汽减压至1.3MPa后送入蒸汽管网。汽包用的锅炉给水来自锅炉给水总管,温度为104℃,压力为5.0MPa。来自压缩机的新鲜气,经新鲜气油分与经过循环机油分的循环气在管道中混合,混合后去热交(走管间),与来自废锅的热气(走管内)进行换热,温升140—160℃后分四股气流,主气流分两股分别进入两层间换器,换热温升200℃左右从塔顶进入合成塔进行反应。另两股气流作为冷激气(冷激气既可以独立使用140~160℃的热气也可以独立使用~25℃进热交换热前的冷气或根据工艺要求使用二者的混合气。),分别进入合成塔一,二段,作调温用。反应至240~270℃出合成塔进入废热锅炉回收余热,副产中压蒸气外供。出废锅气体190℃分两股,一股去热交,另一股去软水加热器。从热交和软水加热器出来气体再混合约80℃左右进入并联三个水冷, 冷却至约40℃,去醇分离器分离出粗甲醇产品,粗甲醇进入粗甲醇贮槽解压,闪蒸气去燃气系统。而合成气一小部分放空回收利用,主气流仍进循环机加压,加压后经过循环机油分与新鲜气混合进行下一个循 液相甲醇合成工艺具有技术和经济上的双重优势,在不久的将来会与气相合成工艺在工业上竞争。CO2加氢合成甲醇、甲烷直接合成甲醇是甲醇工业的热点开发技术。近年来,气-液合成法已引起人们的关注,由于甲醇合成为放热反应,从热力学上看,低温有利反应进行,若能找到一种低温下活性很高的催化剂,同时又能及时移走反应热,就能大幅度地提高CO的单程转化率。低温低压催化剂中金属盐乙酸镍、乙酸钯、乙酸钴以及钌、铼等已引起各界的关注,是合成甲醇研究的新热点。 (1)山西丰喜肥业公司临绮分公司的双甲工艺值得借鉴,他们采用原料气中CO、CO2和H2在催化剂和一定温度条件下生成粗甲醇。此工艺类似于合成氨工艺中的联醇生产,但对醇后气指标要求高,不像联醇生产中醇后气的高低,可靠增减铜液循环量来控制。因此要求醇塔的设计要有更高的转化效率和更好的热利用率,设计的醇塔比较大,生产负荷不强,能做到一次开车4~5年不用检修。 (2)传统的甲醇工艺是CO和H2在250-350℃和5-15 MPa下,借助Cu-Zn-Al催化剂气相反应制取,单程转化率仅15%~20% ,需采用产品气体循环,或采用串联反应器以提高产率,并需要采用大的压缩机。近年来,人们一直在着手研究替代均相催化剂用于液相合成甲酶的路线,但在工业上一直没有成功。不久前日本东京科技研究所开发了固相新催化剂,可在液相反应中一次性高转化率生产甲醇。专用催化剂由热稳定的阴离子交换树脂(具有甲氧基功能基团)与铜催化剂组合,反应时,H2和CO在约100-150℃和5 Ma 下通过多相催化剂的甲醇淤浆,CO与甲醇反应生成中间产物甲酸甲酯,它再与H2催化转化成2个甲醇分子,单程转化率可达70%。据称,增加催化剂的Cu成分在100~150℃'和5MPa下,一次性转化率可达98%。不过该成果仍处于基础研究阶段,但新催化剂是减少甲醇合成费用和复杂性的有发展前途的方法。这种催

相关文档
最新文档