多晶硅与少子寿命分布

多晶硅与少子寿命分布
多晶硅与少子寿命分布

多晶硅与少子寿命分布

(河南科技大学材料科学与工程系,洛阳 471000)

摘要:铸造多晶硅目前已经成功取代直拉单晶硅而成为最主要的太阳能电池材料。铸造多晶硅材料中高密度的杂质和结晶学缺陷(如晶界,位错,微缺陷等)是影响其太阳能电池转换效率的重要因素。本文利用傅立叶红外分光光谱仪(FTIR) ,微波光电导衰减仪,红外扫描仪(SIRM),以及光学显微镜(OpticalMicroscopy)等测试手段,对铸造多晶硅中的原生杂质及缺陷以及少子寿命的分布特征进行了系统的研究。主要包括以下三个方面:间隙氧在铸造多晶硅锭中的分布规律;铸造多晶硅中杂质浓度的分布与材料少子寿命的关系;铸造多晶硅中缺陷的研究及其对少子寿命的影响。

关键词:铸造多晶硅;间隙氧;铁;位错;少子寿命

1.引言

1.1多晶硅的生产简介:

硅,1823年发现,为世界上第二最丰富的元素——占地壳四分之一,砂石中含有大量的SiO2,也是玻璃和水泥的主要原料,纯硅则用在电子元件上,譬如启动人造卫星一切仪器的太阳能电池,便用得上它。由于它的一些良好性能和丰富的资源,自一九五三年作为整流二极管元件问世以来,随着硅纯度的不断提高,目前已发展成为电子工业及太阳能产业中应用最广泛的材料。

多晶硅的最终用途主要是用于生产集

成电路、分立器件和太阳能电池片的原料。

硅的物理性质:硅有晶态和无定形两种同素异形体,晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,具有半导体性质,晶态硅的熔点1416±4℃,沸点3145℃,密度2.33 g/cm3,莫氏硬度为7。单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列为单一晶核,晶面取向相同的晶粒,则形成单晶硅,如果当这些晶核长成晶面取向不同的晶粒,则形成多晶硅,多晶硅与单晶硅的差异主要表现在物理性质方面。

一般的半导体器件要求硅的纯度六个9以上,大规模集成电路的要求更高,硅的纯度必须达到九个9。

1.2硅的氯化物:

硅的氯化物主要介绍SiCl4、SiHCl3等,它们和碳的卤化物CF4和CCl4相似,都是四面体的非极性分子,共价化合物,溶沸点都比较低,挥发性也比较大,易于用蒸馏的方法提纯它们。在常温下,纯净的SiCl4、SiHCl3是无色透明的易挥发液体。

SiHCl3还原制备超纯硅的方法,在生产中被广泛的应用和迅速发展。因为它容易制得,解决了原料问题,容易还原呈单质硅,沉积速度快,解决了产量问题,它的沸点低,化学结构的弱极性,使得容易提纯,产品质量高,利用它对金属的稳定性,在生产中常用不锈钢作为材质。但有较大的爆炸危险,因此在操作过程中应保持设备的干燥和管

道的密封性,如果发现微量漏气,而不知道

在什么地方时,可用浸有氨水的棉球接近待查处,若有浓厚白色烟雾就可以断定漏气的地方。

1.3生产工艺:

目前生产多晶硅的方法主要有改良西

门子法——闭环式三氯氢硅氢还原法,硅烷法——硅烷热分解法,流化床法,冶金法,气液沉积法。

1.4改良西门子法介绍:

在1955年西门子公司成功开发了利用

氢气还原三氯硅烷(SiHCl3)在硅芯发热体上沉积硅的工艺技术,并于1957年开始了

工业规模的生产,这就是通常所说的西门子法。在西门子法工艺的基础上,通过增加还原尾气干法回收系统、SiCl4氢化工艺,实现了闭路循环,于是形成了改良西门子法。

改良西门子法的生产流程是利用氯气

和氢气合成HCl(或外购HCl),HCl和冶金硅粉在一定温度下合成SiHCl3,分离精馏提纯后的SiHCl3进入氢还原炉被氢气还原,

通过化学气相沉积反应生产高纯多晶硅。改良西门子法生产多晶硅属于高能耗的产业,其中电力成本约占总成本的70%左右。

SiHCl3还原时一般不生产硅粉,有利于连续操作。该法制备的多晶硅还具有价格比较低、可同时满足直拉和区熔要求的优点。因此是目前生产多晶硅最为成熟、投资风险最小、最容易扩建的工艺,国内外现有的多晶硅厂大多采用此法生产SOG硅与EG硅,所生产

的多晶硅占当今世界总产量的70~80%。2.杂质和缺陷的测试原理2.1铸造多晶硅杂质与缺陷:

铸造多晶硅的有害杂质主要有O,C和Fe;Fe等过度金属及其复合体会在硅的禁带中引入深能级,成为材料中少数载流子的复合中心,从而显著降低少数载流子寿命;而O在铸造多晶硅的生长过程中则可能生成热施主,新施主或氧沉淀,其中氧沉淀则会成为过度金属的吸杂中心。

铸造多晶硅中同时存在着高密度的位

错及晶界等缺陷,Fe和O容易在这些缺陷出沉淀下来使得缺陷处成为影响多晶硅少子

寿命的重灾区。

尽管国际上对铸造多晶硅的杂质和缺

陷已经有较多的研究,但是将杂质和缺陷直接和晶锭的少子寿命分布等结合起来的研

究还很少。

2.2少子寿命测试方法

Semilab(瑟米莱博)微波光电导衰减仪测试少子寿命的原理主要包括激光注入

产生电子-空穴对和微波探测信号的变化这两个过程。

904nm 的激光注入(对于硅,注入深度大约为30um)产生电子-空穴对,导致样品电导率的增加,当撤去外界光注入时,电导率随时间指数衰减,这一趋势间接反映少数载流子的衰减趋势,从而通过微波探测电导率随时间变化的趋势就可以得到少数载流

子的寿命。少子寿命主要反映的是材料重金属沾污及缺陷的情况。

2.3硅锭中铁的测试原理

P型硅中,铁通常与硼结合成铁-硼对,铁-硼对在室温下能稳定存在,但在200℃下热处理或者强光照可以使铁一硼对分解而

形成间隙铁离子和硼离子,由于间隙铁离子和铁-硼对少数载流子复合能力的不同,使

得处理前后少子寿命值出现变化,从而可以建立起间隙铁浓度对应少子寿命值变化之间的关系。

2.4硅锭中O和C浓度的测定

Bruker IFS 66v/S型付立叶红外测量仪:硅晶体对可见光是不透明的,用肉眼看呈金属光泽,然而对红外光有相当好的透明性。一块2mm厚的双面抛光的硅片一般能透过大约60%的红外光。红外光实际上是由不同频率的连续光谱组成的,对于不同频率的红外光,硅片的透过率是不同的,这是因为取决于硅晶格和其中所含杂质种类和浓度,红外光的吸收率是不同的。

2.5铸造多晶硅中位错的测定

铸造多晶硅中的沉淀和位错等缺陷都能在硅晶格中引入局部应力,影响材料的性能,可以利用SIRM(红外扫描仪)探测硅片体内的局部应力分布n 。通常,在SIRM图片中,应力斑点密度对应于缺陷密度,而斑点尺寸对应于沉淀尺寸。

当波长在1.1~1.3μm的红外激光典型波段经一个孔径大约为的透镜后聚集成一束细小的激光探针, 照射到硅片上, 由于硅对于此波段的激光是完全透明的, 激光就会穿透硅片被一个放置在合适位置上的探头所接受到, 激光信号再经收集, 放大, 储存到计算机里, 最终经相应的图象软件在计算机里成像。如果硅片中存在着缺陷或杂质, 这些缺陷或杂质会在硅片引入一定大小的局部应力, 从而导致硅片局部的不均匀, 使得激光经过该位置时产生散射, 从而导致探头所接受到的信号减弱, 在所生成图象的对应位置形成暗像。

3.杂质缺陷的分布对少子寿命分

布的影响分析3.1硅锭的少子寿命分布

图1显示了晶锭的原生少子寿命沿高度方向的分布。

从图中可以看出,硅锭底部和顶部都存在低少子寿命区域,硅锭中间部分少子寿命值较高且分布均匀。在底部低寿命区内存在一个夹层,少子寿命相对周围有所上升。

3.2硅锭氧浓度分布

如图a所示,硅锭中的O浓度范围大致为:0.8 ~7.8×〖10〗^17 〖cm〗^(-3) 。底部区域O浓度最高,O浓度从硅锭底部到顶部呈逐渐降低的趋势。

一般而言,O在硅锭中的分布由其分凝和挥发共同决定。在晶体生长的初始阶段,即硅锭底部处,O的挥发对其浓度和分布影响很大,在晶体生长的后阶段则由分凝来决定硅

中的O浓度及其分布。

3.3硅锭中碳浓度分布

如图b所示,c浓度随硅锭高度增加逐步增大。C在硅中的分凝系数约0.07,图示结果显示了正常的分凝规律。替位c本身不显电学活性,只有在浓度很高(约8 X〖10〗^17 〖cm〗^(-3)。)时,才可能形成碳化硅沉淀并对材料电学性能产生影响。当然,如果c 浓度很高,也有可能促进氧沉淀而影响材料

性能由图2b可知,硅锭中的C浓度最高不超过6 X〖10〗^16 〖cm〗^(-3),因此可以认为在样品晶锭中,c本身并非影响铸造多晶硅材料少子寿命的主要因素。

3.4硅锭中铁浓度分布

底部和顶部Fe浓度明显较高,数量级约为10的15次放,硅块中部Fe浓度分布较为均匀,其浓度低于5 X〖10〗^14 〖cm〗^(-3)。由于Fe的分凝系数远小于1 9 ,所以顶部铁浓度较高可以理解为铁在硅熔体中的正

常分凝所致,但硅锭底部Fe浓度较高则无法用分凝规律来解释。由于Fe在硅中具有较大的固相扩散系数,在硅锭底部凝固完成后的冷却过程中,Fe可能从坩埚或者氮化硅保护层向硅锭底部进行固相扩散。

3.5铸造多晶硅体内SIRM斑点密度沿生长方向的分布

图4显示了硅锭中微缺陷密度随高度变化的关系。

可以看出底部和顶部缺陷密度较高,中部密度较低;另外,底部和中部样品对应的SHIM 图片显示:缺陷的斑点较大,表明其中的缺陷尺寸较顶部偏大。

4.总结

铸造多晶硅材料性质的不均匀分布和热历史差异导致晶锭的少子寿命沿生长方向呈现倒U字型分布规律。头部和顶部少子寿命偏低,中部寿命值较高且分布均匀,其影响因素对应于:

1)硅锭底部样品O和Fe浓度较高、沉淀等

微缺陷密度较大是导致少子寿命偏低的主要原因;

2)硅锭顶部C和Fe浓度较高,微缺陷密度

较大,尤其是高密度的位错与Fe的相互作用导致该区域的少子寿命偏低。由于底部和顶部样品中存在大量的沉淀和结构缺陷,因此难以通过常规的吸杂和钝化工艺来提高其少子寿命;

3)硅锭顶部C和Fe浓度较高,微缺陷密度

较大,尤其是高密度的位错与Fe的相互

作用导致该区域的少子寿命偏低。由于

底部和顶部样品中存在大量的沉淀和结

构缺陷,因此难以通过常规的吸杂和钝

化工艺来提高其少子寿命。

参考文献:

[1]Istratov A A,Buonassisi T,McDonald

R J,et a1.Metal con—tent of

muhicrystalline silicon for solar

cells and its impact on minority

carrier difusionlen【gth[J].J Appl

Phys,2003,94(1O):6552-6559.[2]Yang D,Li L,Ma X,et

a1.Oxygen-related centers in multi

—crystalline silicon[J].Sol Eng

Mater Sol Cells,2000,62(1):37. 42.[3]Hler C,HofsHU,KochW,et

a1.Formationand armihilation of

oxygen donors in malticrystalline

silicon for solar cels

[J].Materials Science and

Engineering,2000,B71(1):3 —16.

[4]席珍强.晶体硅中缺陷和沉淀的红外扫

描仪研究[J].半导体技术,2005,30(7):

18—20.

[5]Zhang X,Yang D,Fan R,et a1.Efect

of iron on oxygen precipitation in

nitrogen—doped Czochralski

silicon[J].J Ap—pl Phys,1998,

84(1O):5502-5505.

[6]Sopor/B L,Jastrzebski L,Tan T.A

comparison of getering in single and

muhicrystalline silicon for solar

cels[A].25PVSCl C,Washington,1996.[7]Hidalgo P,Palais O,Martinuzzi

S.Behaviour of metallic im—

purities at n botmdaries and

dislocation clusters in multic—

rystalline silicon wafers deduced

from contacdess lifetime sear

maps[J].J Phys:Condens Matter,

2004,16(2):1 4.

[8]Palais O,Yakimov E,Martinuzzi

S.Minority carrier lifetime scan

maps applied to iron concentration

mapping in silicon wa—

fers[J].Materials Science and

Engineering,2002,(B91—92):21 一

219.

少子寿命的测量

表面复合对少子寿命测量影响的定量分析 我们测量硅单晶、铸造多晶以及单晶硅片、多晶硅片的少子寿命,都希望得到与真实体寿命b τ相接近的测量值(表观寿命),而不是一个受表面影响很大的表面复合寿命s τ。因为在寿命测量中只有b τ才能真正反映半导体材料的内在质量,而表面复合寿命只能反映样品的表面状态,是随表面状态变化而变化的变数。 通过仪器测量出的寿命值我们一般称为表观寿命,它与样品体寿命及表面复合寿命有如下关系,公式(1)由SEMI MF28-0707给出的计算公式τ0 =S F R τ--11(τ0或b τ表示体寿命)推演出来: S b F τττ111+= (1) 即仪器测量值F τ,它实际上是少子体寿命b τ和表面复合寿命s τ的并联值。 光注入到硅片表面的光生少子向体内扩散,一方面被体内的复合中心(如铁原子)复合,另一方面扩散到非光照面,被该表面的复合中心复合。 光生少子在体内平均存在的时间由体复合中心的多少而决定,这个时间就称为体寿命。如果表面很完美,则表面复合寿命趋于无穷大,那么表观寿命即等于体寿命。 但实际上的表面复合寿命与样品的厚度及表面复合速度有关。 由MF1535-0707中给出s l D l sp diff s 222+=+=πτττ (2)可知,其中: diff τ=D l 22 π——少子从光照区扩散到表面所需的时间 sp τ= 2l s ——少子扩散到表面后,被表面(复合中心、缺陷能级)复合所需要的时间 l ——样品厚度 D ——少子扩散系数,电子扩散系数Dn=33.5cm 2/s ,空穴扩散系数Dp=12.4 cm 2/s

S ——表面复合速度,单位cm/s 硅晶体的表面复合速度随着表面状况在很大范围内变化。如表1所示: 表1 据文献记载,硅抛光面在HF 酸中剥离氧化层后复合速度可低至0.25cm/s ,仔细制备的干氧热氧化表面复合速度可低至1.5-2.5cm/s ,但是要达到这样的表面状态往往不容易,也不稳定,除非表面被钝化液或氧化膜保护。一般良好的抛光面表面复合速度都会达到 104 cm/s ,最容易得到而且比较稳定的是研磨面,因为它的表面复合速度已达到饱和,就像饱和浓度的盐水那样,再加多少盐进去浓度依然不变。 现在很多光伏企业为了方便用切割片直接测量寿命,即切割后的硅片不经清洗、抛光、钝化等减少和稳定表面复合的工艺处理,直接放进寿命测试仪中测量,俗称裸测,这种测量简单、方便、易操作。 为了定量分析表面复合对测量值F τ的影响,我们以最常用厚度为180μm 的P 型硅片为例进行定量分析。因为切割面实质上也是一种研磨面,是金属丝带动浆料研磨的结果,一般切割、研磨面的表面复合速度为S=107cm/s ,但线切割的磨料较细,我们将其表面复合的影响估计的最轻,也应该是S ≥105cm/s 。因为良好的抛光面S ≈104cm/s,我们按照2007版的国际标准MF1535-0707、MF28-0707提供的公式:b τ= S F R τ--1 1 ,其中Rs 是表面复合速率,表面复合寿命S s R 1=τ, 由以上公式即可推演出常用公式:S b F τττ111+= 表面复合寿命s l D l sp diff s 222+=+=πτττ 我们以以下的计算结果来说明,当切割面的表面复合速度为S=105cm/s 时, l =180μm 厚的硅片当它的体寿命由0.1μS 上升到50μS (或更低、更高)时, 我们测出的表观寿命受表面影响的程度,以及真实体寿命b τ与实测值F τ相差多

少数载流子寿命测试

第三章:少数载流子寿命测试 少数载流子寿命是半导体材料的一个重要参数,它在半导体发展之初就已经存在了。早在20世纪50年代,Shockley 和Hall等人就已经报道过有关少数载流子的复合理论[1-4],之后虽然陆续有人研究半导体中少数载流子的寿命,但由于当时测试设备简陋,样品制备困难,尤其对于测试结果无法进行系统地分析。因此对于少数载流子寿命的研究并没有引起广泛关注。直到商业需求的增加,少数载流子寿命的测试才重新引起人们的注意。晶体生产厂家和IC集成电路公司纷纷采用载流子寿命测试来监控生产过程,如半导体硅单晶生产者用载流子寿命来表征直拉硅单晶的质量,并用于研究可能造成质量下降的缺陷。IC集成电路公司也用载流子寿命来表征工艺过程的洁净度,并用于研究造成器件性能下降的原因。此时就要求相应的测试设备是无破坏,无接触,无污染的,而且样品的制备不能十分复杂,由此推动了测试设备的发展。 然而对载流子寿命测试起重要推动作用的,是铁硼对形成和分解的发现[5,6],起初这只是被当作一种有趣的现象,并没有被应用到半导体测试中来。直到Zoth 和Bergholz发现,在掺B半导体中,只要分别测试铁硼对分解前后的少子寿命,就可以知道样品中铁的浓度[7]。由于在现今的晶体生长工艺中,铁作为不锈钢的组成元素,是一种重要的金属沾污,对微电子器件和太阳能电池的危害很严重。通过少数载流子寿命测试,就可以得到半导体中铁沾污的浓度,这无疑是一次重大突破,也是半导体材料参数测试与器件性能表征的完美结合。之后载流子寿命测试设备迅速发展。 目前,少数载流子寿命作为半导体材料的一个重要参数,已作为表征器件性能,太阳能电池效率的重要参考依据。然而由于不同测试设备在光注入量,测试频率,温度等参数上存在差别,测试值往往相差很大,误差范围可能在100%,甚至以上,因此在寿命值的比较中要特别注意。 概括来说,少数载流子寿命的测试及应用经历了一个漫长的发展阶段,理论上,从简单的载流子复合机制到考虑测试结果的影响因素。应用上,从单纯地用少子寿命值作为半导体材料的一个参数,到把测试结果与半导体生产工艺结合起来考虑。测试设备上,从简陋,操作复杂到精密,操作简单,而且对样品无接触,

少子寿命概念

少子寿命是半导体材料和器件的重要参数。它直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义。 少子,即少数载流子,是半导体物理的概念。它相对于多子而言。 半导体材料中有电子和空穴两种载流子。如果在半导体材料中某种载流子占少数,导电中起到次要作用,则称它为少子。如,在 N型半导体中,空穴是少数载流子,电子是多数载流子;在P型半导体中,空穴是多数载流子,电子是少数载流子。 多子和少子的形成:五价元素的原子有五个价电子,当它顶替晶格中的四价硅原子时,每个五价元素原子中的四个价电子与周围四个硅原子以共价键形式相结合,而余下的一个就不受共价键束缚,它在室温时所获得的热能足以便它挣脱原子核的吸引而变成自由电子。出于该电子不是共价键中的价电子,因而不会同时产生空穴。而对于每个五价元素原子,尽管它释放出一个自由电子后变成带一个电子电荷量的正离子,但它束缚在晶格中,不能象载流子那样起导电作用。这样,与本征激发浓度相比,N型半导体中自由电子浓度大大增加了,而空穴因与自由电子相遇而复合的机会增大,其浓度反而更小了。 少子浓度主要由本征激发决定,所以受温度影响较大。 香港永先单晶少子寿命测试仪 >> 单晶少子寿命测试仪 编辑本段产品名称 LT-2单晶少子寿命测试仪 编辑本段产品简介 少数载流子寿命(简称少子寿命)是半导体材料的一项重要参数,它对半导体器件的性能、太阳能电池的效率都有重要的影响.我们采用微波反射光电导衰减法研制了一台半导体材料少子寿命测试仪,本文将对测试仪的实验装置、测试原理及程序计算进行了较详细的介绍,并与国外同类产品的测试进行比较,结果表明本测试仪测试结果准确、重复性高,适合少子寿命的实验室研究和工业在线测试. 技术参数: 测试单晶电阻率范围 >2Ω.cm 少子寿命测试范围 10μS~5000μS 配备光源类型 波长:1.09μm;余辉<1 μS; 闪光频率为:20~30次/秒; 闪光频率为:20~30次/秒; 高频振荡源 用石英谐振器,振荡频率:30MHz 前置放大器 放大倍数约25,频宽2 Hz-1 MHz 仪器测量重复误差 <±20%

少子寿命

在硅的各种加工过程中,硅表面上通常都有离子吸附,它们引起半导体内的表面势垒产生耗尽层或反型层。光照在半导体表面时,能量稍大于半导体禁带宽度的光子,将会把价带中的电子激发到导带,从而形成电子空穴对,并向低密度区扩散。由于表面上存在着耗尽区,其电场将电子-空穴分离,产生表面光电压(SPV )。 理论计算 α-=++1 Φ1()(1)eff P A S V L L (1) 其中对于耗尽层 A =qn 0/KT exp(qV /KT ) 对于反型层 A =qu i 2/KTn O 在小注入条件下寿命值τ与扩散长度L 的关系,即:L = 2 L D τ=,扩散系数D 为已知常数,因此通过扩散长度测量可以立即计算出寿命值。 用SPV 测量扩散长度的方法: (1)恒定表面光电压法,其特点是测量过程中单色光的波长度变化时,表面

光电压恒定不变,可对电阻率为0.1~6Ω·cm 、少子寿命短到20ns 的硅单晶进行测量。一般认为表面光电压(ΔV)是非平衡载流子浓度的函数。根据光照强度Φ与表面光电压△V 的函数关系: )11()(L M V F α+ ?=Φ /(1)S D L M B R +=- (2) 其中,对于给定的样品,M 是一个常数,对于F (△V )在测量过程中,即在改变 光源波长时(吸收系数α随之而和),调节光强Φ,使表面光电压△V 保持不变,于是F (△V )在测量过程中也保持为常数,在数次改变波长(即改变α-1)后, 得到相应的Φ值,即有一组:α-11,Φ1;α-12,Φ2;……α-1n ,Φn 数据,以Φ 为纵标,α-1为横座标,联成一直线,并将直线延长到Φ=0得: 1)L αΦ=0=(1+ (3) 该直线的截距即为要测的扩散长度(样品(或处延层) 的厚度必须大于4倍扩散长度,如果小于扩散长度的一半,则测得的不是在外延层中的扩散长度,而是衬底中的扩散长度), 如图所示: (2)恒定光通量法 即Φeff 是恒定的。根据(1)式 )11)((1 -++=?ΦαL L D S A V eff 扩散长度L 可以Φeff/△V 对α-1的直线图确定 (3)

少子寿命测试判断是否有外延

Abruptness of a-Si:H/c-Si interface revealed by carrier lifetime measurements Stefaan De Wolf and Michio Kondo Citation: Appl. Phys. Lett. 90, 042111 (2007); doi: 10.1063/1.2432297 View online: https://www.360docs.net/doc/7811036851.html,/10.1063/1.2432297 View Table of Contents: https://www.360docs.net/doc/7811036851.html,/resource/1/APPLAB/v90/i4 Published by the AIP Publishing LLC. Additional information on Appl. Phys. Lett. Journal Homepage: https://www.360docs.net/doc/7811036851.html,/ Journal Information: https://www.360docs.net/doc/7811036851.html,/about/about_the_journal Top downloads: https://www.360docs.net/doc/7811036851.html,/features/most_downloaded Information for Authors: https://www.360docs.net/doc/7811036851.html,/authors

Abruptness of a-Si:H/c-Si interface revealed by carrier lifetime measurements Stefaan De Wolf a?and Michio Kondo National Institute of Advanced Industrial Science and Technology(AIST),Central2,1-1-1Umezono, Tsukuba,Ibaraki305-8568,Japan ?Received27September2006;accepted15December2006;published online26January2007? Intrinsic hydrogenated amorphous silicon?lms can yield outstanding electronic surface passivation of crystalline silicon wafers.In this letter the authors con?rm that this is strongly determined by the abruptness of the interface.For completely amorphous?lms the passivation quality improves by annealing at temperatures up to260°C,most likely by?lm relaxation.This is different when an epitaxial layer has been grown at the interface during?lm deposition.Annealing is in such a case detrimental for the passivation.Consequently,the authors argue that annealing followed by carrier lifetime measurements allows determining whether the interface is abrupt.?2007American Institute of Physics.?DOI:10.1063/1.2432297? Hydrogenated amorphous silicon?a-Si:H??lms depos-ited on crystalline silicon?c-Si?surfaces have increasingly attracted attention over the past20years.Initially,it was discovered that abrupt electronic heterojunctions can be cre-ated with such structures.1Soon afterwards applications fol-lowed,including bipolar transistors,2imaging devices,3and solar cells.4For the latter it was recognized that the output parameters bene?t substantially from inserting a few nano-meter thin intrinsic a-Si:H?i??lm between the doped amor-phous emitter and c-Si substrate.For solar cells that feature a similar heterostructure back surface?eld,impressive energy conversion ef?ciencies exceeding21%have been reported.5 The role of the a-Si:H?i?buffer layer has been discussed in literature?see,e.g.,Refs.6–12?:It is known that such?lms can yield outstanding surface passivation for c-Si surfaces,13 but also that growth of an epitaxial interface during a-Si:H?i?deposition is detrimental for heterojunction device performance.12For hot wire chemical vapor deposited ?CVD?a-Si:H,where no ion bombardment takes place, abrupt interfaces have been obtained either by limiting the deposition temperature T depo?Ref.14?or by terminating the c-Si surface with a SiN x monolayer prior to a-Si:H deposition.15The abruptness of the interface,i.e.,whether instant a-Si:H deposition on c-Si occurred without initial epitaxial growth,was in these studies determined either by transmission electron microscopy?TEM??Refs.12,14,and 15?or by?in situ?spectroscopic ellipsometry?SE?,16for which mirror polished surfaces are desirable.To gain know- ledge about the electronic surface passivation properties of these interfaces,the most straightforward technique is by measuring the effective carrier lifetime?eff of the samples. Such measurements are known to be extremely sensitive, allowing for detection of bulk defect densities as low as 109–1011cm?3in a simple,contactless technique at room temperature.17 In this letter,we show that by low temperature?up to 260°C?postdeposition annealing,the surface passivation quality of direct plasma enhanced?PE?CVD a-Si:H?i??lms improves when the a-Si:H/c-Si interface is abrupt.This contrasts with the case when an epitaxial?lm has been grown at the interface,where the surface passivation quality is seen to degrade signi?cantly by a similar annealing treat-ment.Consequently,we argue that annealing followed by carrier lifetime measurements allows accurate determination of the onset of epitaxial growth in an easy-to-use way which is not restricted to polished c-Si surfaces. For the experiments,300?m thick relatively low resistivity??3.0?cm?boron-doped?oat zone?100??FZ?-Si?p?wafers have been used.Both surfaces of the sub-strates were mirror polished to eliminate the in?uence of substrate surface roughness on the passivation properties18 and to allow for SE measurements.For predeposition surface cleaning,the samples were?rst immersed in a ?H2SO4:H2O2??4:1?solution for10min to grow a chemical oxide,which was followed by a rinse in de-ionized water. The oxide was then stripped off in a dilute HF solution?5%?for30s.After this the samples were immediately transferred to the load lock of the deposition system.For?lm deposi-tion,a parallel plate direct PECVD reactor operated at radio frequency?rf??13.56MHz?power was used,in which the samples were mounted at the top electrode.The electrode distance and diameter were respectively20and230mm.An undiluted SiH4?ow of20SCCM?SCCM denotes cubic cen-timeter per minute at STP?was used and the chamber was maintained at low pressure?0.5Torr?.The value for T depo was varied from105to255°C.The rf power absorbed by the plasma was5W.This is the minimal power required to maintain a stable plasma at the given deposition conditions. To evaluate the surface passivation quality,identical?lms of about50nm thick were deposited on both wafer surfaces. After deposition,the samples were consecutively annealed in a vacuum furnace?30min,with annealing temperatures T ann ranging from120to260°C?.In between the annealing steps,the value for?eff of the samples was measured with a Sinton Consulting WCT-100quasi-steady-state photocon-ductance system,19operated in the so-called generalized mode.Since high quality FZ-Si wafers have been used throughout the experiments,the contribution of the bulk to the total recombination expressed by?eff can be neglected.In such a case,the effective surface recombination velocity S eff, which value can be regarded as a direct measure for the passivation quality of the?lms present at the surfaces,may a?Electronic mail:stefaan.dewolf@aist.go.jp APPLIED PHYSICS LETTERS90,042111?2007? 0003-6951/2007/90?4?/042111/3/$23.00?2007American Institute of Physics 90,042111-1

实验一 光电导衰退测量少数载流子的寿命

实验一光电导衰退测量少数载流子的寿命 一、实验目的 1.理解非平衡载流子的注入和复合过程; 2.了解非平衡载流子寿命的测量方法; 3.学会光电导衰退测量少子寿命的实验方法。 二、实验原理 半导体中少数载流子的寿命对双极型器件的电流增益、正向压降和开关速度等起着决定性作用。半导体太阳能电池的换能效率、半导体探测器的探测率和发光二极管的发光效率也和载流子的寿命有关。因此,半导体中少数载流子寿命的测量一直受到广泛的重视。 处于热平衡状态的半导体,在一定的温度下,载流子浓度是一定的,但这种热平衡状态是相对的,有条件的。如果对半导体施加外界作用,破坏了热平衡的条件,这就迫使它处于与热平衡状态相偏离的状态,称为非平衡状态。处于非平衡状态的半导体,其载流子浓度也不再是 n0 和 p0,可以比它们多出一部分。比平衡状态多出来的这部分载流子称为非平衡载流子,有时也称为过剩载流子。要破坏半导体的平衡态,对它施加的外部作用可以是光,也可以是电或是其它的能量传递方式。常用到的方式是电注入,最典型的例子就是 PN 结。用光照使得半导体内部产生非平衡载流子的方法,称为非平衡载流子的光注入,光注入时,非平衡载流子浓度Δn=Δp。 当外部的光注入撤除以后,注入的非平衡载流子并不能一直存在下去,它们要逐渐消失,也是原来激发到导带的电子又回到价带,电了和空穴又成对的消失了。最后,载流子浓度恢复到平衡时的值,半导体又回到平衡态,过剩载流子逐渐消失,这一过程称为非平衡载流子的复合。实验表明,光照停止后,Δp 随时间按指数规律减少。这说明非平衡载流子不是立刻全部消失,而是有一个过程,即它们在导带和价带中有一定的生存时间,有的长些,有的短些。非平衡载流子的平均生存时间称为非平衡载流子的寿命,用t 表示。由于相对于非平衡多数载流子,非平衡少数载流子的影响处于主导的、决定的地位,因而非平衡载流子的寿命通常称为少数载流子寿命。显然 1/t 就表示单位时间内非平衡载流子的复合概率。通常把单位时间单位体积内净复合消失的电子-空穴对数称为非平衡载流子的复合率。很明显,Δp/t 就代表复合率。 以光子能量略大于半导体禁带宽度的光照射样品,在样品中激发产生非平衡电子和空穴。若样品中没有明显的陷阱效应,那么非平衡电子和空穴浓度相等,他们的寿命也就相同。如果所采用的光在半导体中的吸收系数比较小,而且非平衡载流子在样品表面复合掉的部分可以忽略,那么光激发的非平衡载流子在样品内可以看成是均匀分布。假定一束光在一块n型半导体内部均匀的产生非平衡载流子Δn和Δp。在t=0时刻,光照突然停止,Δp 随时间而变化,单位时间内非平衡载流子浓度的减少应为-dΔp(t)/dt,它由复合引起,因此应当等于非平衡载流子的复合率,即

微电子工程学复习题

第一章: 1、电子器件微型化和大规模集成的含义是什么?其具有怎样的实际意义。 答:电子器件微型化主要是指器件的最小尺寸,也就是特征尺寸变小了。大规模集成是指在单个芯片上所继承的电子器件数量越来越多。 电子器件微型化和大规模集成的意义: 1)提高速度和降低功耗只有提高集成度,才能减少电子系统内部的连线和最大限度地减少封装管壳对速度的影响。提高速度和提高集成度是统一的,前者必须通过后者来实现。同时采用低功耗、高速度的电路结构(器件结构) 2)提高成品率与可靠性大规模集成电路内部包含的大量元件都已彼此极其紧密地集成在一块小晶片上,因此不像中、小规模集成电路组成的电子系统那样,由于元件与元件,或电路与电路之间装配不紧密,互连线长且暴露在外,易受外界各种杂散信号的干扰,所以说大规模集成电路提高了系统可靠性。 为了提高为电子器件的成品率,需要在少增加电路芯片面积的前提下尽可能容纳更多的电子元件,也就是采取提高元件密度的集成方法。 3)低成本大规模集成电路制造成本和价格比中、小规模集成电路大幅度下降是因为集成度和劳动生产率的不断提高。 综上所述,大规模和超大规模集成电路的微型化、低成本、高可靠和高频高速四大特点,正是电子设备长期追求的技术指标和经济指标,而这四大特点中后三个特点皆源于微型化的特点。因此这四大特点是统一的、不可分割的。 2、超大规模集成电路面临哪些挑战? 答:首先是大直径的硅材料, 随着集成电路技术的发展,硅单晶直拉生产技术,在单晶尺寸、金属杂质含量、掺杂元素和氧分布的均匀性及结晶缺陷等方面得到了不断的改进。目前,通常使用的硅单晶抛光片的直径已达到300mm,400mm硅单晶片的制造也已经开始。如何控制400mm晶体中点缺陷将是面临的重大挑战。 其次是光刻技术:在微电子制造技术中,最为关键的是用于电路图形生成和复制的光刻技术。更短波长光源、新的透镜材料和更高数字孔径光学系统的加工技术,成为首先需要解决的问题;同时,由于光刻尺寸要小于光源波长,使得移相和光学邻近效应矫正等波前工程技术成为光学光刻的另一项关键技术。 最后是器件工艺。当器件的沟道长度缩小到0.1um时,已开始逼近传统的半导体物理的极限。随之而来的是栅氧化层不断减薄,SiO2作为传统的栅氧化层已经难以保证器件的性能。同时随着半导体器件工艺的特征尺寸不断地缩小,芯片内部的多层内连线工艺也逐渐成为半导体工艺发展的挑战。 3、阐述微电子学概念及其重要性。 答:微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、子系统及系统的电子学分支。 微电子学作为电子学的一门分支学科,主要是研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学。 微电子学是以实现电路和系统的集成为目的的,故实用性极强。微电子学中所实现的电路和系统又称为集成电路和集成系统。 微电子学是信息领域的重要基础学科,在信息领域中,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息载体的科学,构成了信息科学的基石。其发展水平直接影响着整个信息技术的发展。 微电子科学技术是信息技术中的关键之所在,其发展水平和产业规模是一个国家经济实力的重要标志。

可靠性中常用的概率分布

名 称记号概率分布及其定义域、参数 条件 均值 E(X) 方差 D(X) 图形 二 项 分 布 np npq 二项分布:当进行一种试验只有两种可能的结果时,叫成败型试验。在可靠性工程中,二项分布可用来计算部件相同并行工 作冗余系统的成功概率,也适用于计算一次使用系统的成功概率。 返回 可靠性中常用的概率分布 名称记号概率分布及其定义域、参 数条件 均值 E(X) 方差 D(X) 图形 泊松 分布 P(λ) λλ 泊松分布:一个系统,在运行过程中由于负载超出了它所能允许的范围造成失效,在一段运行时间内失效发生的次数X是一 随机变量,当这随机变量有如下特点时,X服从泊松分布。特点1:当时间间隔取得极短时,智能有0个或1个失效发生;特点2:出 现一次失效的概率大小与时间间隔大小成正比,而与从哪个时刻开 始算起无关;特点3:各段时间出现失效与否,是相互独立的。例 如:飞机被击中的炮弹数,大量螺钉中不合格品出现的次数,数字 通讯中传输数字中发生的误码个数等随机变数,就相当近似地服从 泊松分布。

名称记号概率分布及其定义域、参数条件均值 E(X) 方差D(X)图形 超几何分 布 H(n,M,N) 返回 可靠性中常用的概率分布名 称记号概率分布及其定义域、参数条件 均值 E(X) 方差 D(X) 图形 指 数 分 布 e(λ) 指数分布:许多电子产品的寿命分布一般服从指数分布。 有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。 可靠性中常用的概率分布 名称记号概率分布及其定义域、 参数条件 均值E(X)方差D(X)图形

可靠性复习题

第二章 复习提纲 一、设某产品的寿命T 服从指数分布,其失效密度为)0,0()(≥>=-t e t f t λλλ,试计算大于平均寿命的产品百 分比。(8分) 二、某不可修复产品的故障率为,并为常数),0()(>=c ct t λ求其可靠度函数及故障概率密度函数。(10分) 三、一种设备的的寿命T 服从参数为λ的指数分布,假设其平均寿命为3700小时,试求其连续工作300小时和900小时的可靠度各为多少要达到r=的可靠寿命是多少(12分) 四、假设某产品由2×104个电子元器件串联组成,其寿命服从指数分布,如果要求其连续不间断工作3天的可靠度为,试求元器件的平均故障率。(8分) 五、设失效率为偶然失效型的, ???<<≤=) (0)0,()(γλγλλt t t 求其失效分布函数和可靠度函数。(8分) 六、有一寿命服从指数分布的产品,当工作时间等于产品的MTBF 时,有百分之几的产品能正常工作当工作时间等于产品的MTBF 的1/10时,产品的可靠度是多少(8分) 七、某元件维修时间服从指数分布,使用单位要求最大维修时间=1h ,试求MTTR 和中位修复时间。(10) 八、某机件的修复率/134.0=μ小时,试求维修时间为1小时、2小时、10小时的维修度。 九、某机件维修时间服从指数分布,使用单位要求最大维修时间h t 195.0=,试求MTTR 。 十、某种飞机部件的疲劳寿命是威布尔分布类型,已知m=2,?=200小时,试计算该部件在100小时之内的最大失效率和在100小时之内的平均失效率。(10分) 十一、 设某元件的寿命T 服从指数分布,它的平均寿命为2000小时,试求其失效率和使用80小时后的可靠度。 十二、 有失效率为100菲特的集成逻辑电路,试分别计算下列各情况的可靠度(1菲特=10-9 /h ) (1)1个电路,工作1000小时; (2)10个电路串联,工作1000小时; (1)10个电路串联,工作100小时; 十三、 设某元件的寿命T 服从指数分布,它的平均寿命为2000小时,试求其失效率和使用80小时后的可靠度。 十四、 有一电源装置由4个大功率晶体管、12个二极管、24个电阻器和8个电容器组成,部件的MTTF 如下: 大功率晶体管 510小时

2.高频光电导衰减法测量硅单晶少子寿命

实验2 高频光电导衰退法测量硅单晶少子寿命 1. 实验目的 掌握一种测量硅单晶少子寿命的方法。 2. 实验内容 用高频光电导衰退法测量硅单晶棒或单晶片的少子寿命。 3. 实验原理 3.1 直流光电导衰退法 直流光电导衰退法是根据恒定电流作用下半导体样品的光电导随时间衰减的特性来测量少子寿命的。其测试简图见图1 。图中,R 是被测半导体样品的体电阻,E 是直流电源,R C 是测试回路的限流电阻,且选择R R C >>,故可近似认为流过样品的电流I 恒定不变。这样,用示波器记录光照停止后R 两端电压随时间的变化就等同于记录R 随时间的变化,实际上也就是记录半导体中非平衡载流子浓度随时间的衰减的曲线,由此衰减曲线就可以得到单晶材料的少子寿命。 以N 型半导体为例,设样品暗电导率为0σ,光照下的电导率为σ,那么 ()100n q n μσ= ()20σ σσ?+= 式(2)中,σ?为附加光电导率。假设光注入下非平衡载流子浓度为p n ??,,若无明显的陷阱效应,近似有p n ?=?,所以附加光电导(σ?)与非平衡少数载流子浓度(p ?)之间有如下关系 () ()3p n pq μμσ+?=? 在小注入条件下,近似有0σσ≈,故光照条件下电阻率的改变量为 ()4112 0σσσρ?-≈-=?

相应电阻的改变量近似为 ()520 σσ ρs l s l R ?-=?= ? 式中s l ,分别为样品的长度和截面积。将式(1)、(3)代入式(5),得到 ()60 0R n p R n p n ?+??-=?μμμ 式中,n q n R μ00=,它是无光照条件下半导体样品的体电阻。于是,样品体电阻(R )两端电压的改变量为 ()()7000V n p IR n p R I V n p n n p n μμμμμμ+?-=+?-=?=? 把式(7)换一种写法,可以得到光照前后样品两端电压的相对变化与样品中少数载流 子浓度之间的关系 ()80n p n n p V V μμμ+?-=? 式中V 为无光照时直流电流I 在样品上产生的电压降。 由式(8)可以看出,光照后被测样品上电压的相对变化()V V ?与非平衡载流子浓度()p ?成正比,同时也与光注入的注入比()0n p ?成正比。由半导体物理可知,在光照停止以后,半导体中由外部光照产生的非平衡少数载流子,遵循指数衰减规律而复合消失,即 ()90τ t e p p -?=? 式中0p ?为光照停止瞬间少数载流子的浓度, t 为时间,τ为少子寿命。因为p ?在光照停止后是随时间减少的,所以V ?也是随时间减少的。由此可见,当脉冲光照射样品时,从示 波器上观察的电压随时间变化曲线所反应的是,两次脉冲光照间隙光生非平衡载流子衰减的曲线,只要测出该曲线的衰减常数就可以由式(9)得到非平衡少数载流子的寿命τ。 3.2 高频光电导衰退法 高频光电导衰退法测少子寿命的示意图见图2。它主要由光学和电学这两部分组成。光学部分主要是脉冲光源系统。充电到数千伏的电容器经脉冲电源触发放电,为氙气灯提供电源,使其给出余辉时间小于s μ10的光脉冲(1次/秒),再经过光栏、聚光镜、滤光片投射于被测样品表面。这种光源光强度大,频谱丰富,能为硅、锗提供能量高于吸收边的有效激发光(硅的本征吸收边波长为m μ1.1),在样品厚度范围内产生分布均匀的非平衡载流子。但是由于短波强吸收光只在样品表面产生非平衡载流子,并在表面处复合掉,故高阻、中阻单晶要用硅或锗滤光片滤去强吸收短波光,以减小表面效应。对于s μτ10<的样品采

晶硅太阳能电池少子寿命的测试问题

少子寿命的测试问题 鉴于目前 Semilab 少子寿命测试已在中国拥有众多的用户,并得到广大用户的一致认可。现就少子寿命测试中,用户反映的一些问题做出如下说明,供您在工作中参考: 1、Semilabμ-PCD 微波光电导少子寿命的原理微波光电导衰退法(Microwave photoconductivity decay)测试少子寿命,主要包括激光注入产生电子-空穴对和微波探测信号的变化这两个过程。904nm 的激光注入(对于硅,注入深度大约为30um)产生电子-空穴对,导致样品电导率的增加,当撤去外界光注入时,电导率随时间指数衰减,这一趋势间接反映少数载流子的衰减趋势,从而通过微波探测电导率随时间变化的趋势就可以得到少数载流子的寿命。 少子寿命主要反映的是材料重金属沾污及缺陷的情况。 Semilab μ-PCD 符合ASTM 国际标准F 1535 - 00 2、少子寿命测试的几种方法 通常少数载流子寿命是用实验方法测量的,各种测量方法都包括非平衡载流子的注入和检测两个基本方面。最常用的注入方法是光注入和电注入,而检测非平衡载流子的方法很多,如探测电导率的变化,探测微波反射或透射信号的变化等,这样组合就形成了许多寿命测试方法。近30 年来发展了数十种测量寿命的方法,主要有:直流光电导衰退法;高频光电导衰退法;表面光电压法;少子脉冲漂移法;微波光电导衰减法等。 对于不同的测试方法,测试结果可能会有出入,因为不同的注入方法,表面状况的不同,探测和算法等也各不相同。因此,少子寿命测试没有绝对的精度概念,也没有国际认定的标准样片的标准,只有重复性,分辨率的概念。对于同一样品,不同测试方法之间需要作比对试验。但对于同是Semilab 的设备,不论是WT-2000 还是WT-1000,测试结果是一致的。 μ-PCD 法相对于其他方法,有如下特点: (1)无接触、无损伤、快速测试 (2)能够测试较低寿命 (3)能够测试低电阻率的样品(最低可以测0.01ohmcm 的样品) (4)既可以测试硅锭、硅棒,也可以测试硅片,电池 (5)样品没有经过钝化处理就可以直接测试 (6)既可以测试P 型材料,也可以测试N 型材料 (7)对测试样品的厚度没有严格的要求 (8)该方法是最受市场接受的少子寿命测试方法 3、表面处理和钝化的原因 μ-PCD 测试的是少子有效寿命,它受两个因素影响:体寿命和表面寿命。 测试的少子寿命可由下式表示

实验二 光电导衰退测量少数载流子的寿命

实验二光电导衰退测量少数载流子的寿命 实验项目性质:综合实验 所涉及课程:半导体物理、半导体材料 计划学时:2学时 一、实验目的 1.理解非平衡载流子的注入与复合过程; 2.了解非平衡载流子寿命的测量方法; 2.学会光电导衰退测量少子寿命的实验方法。 二、实验原理 半导体中少数载流子的寿命对双极型器件的电流增益、正向压降和开关速度等起着决定性作用。半导体太阳能电池的换能效率、半导体探测器的探测率和发光二极管的发光效率也和载流子的寿命有关。因此,半导体中少数载流子寿命的测量一直受到广泛的重视。 处于热平衡状态的半导体,在一定的温度下,载流子浓度是一定的,但这种热平衡状态是相对的,有条件的。如果对半导体施加外界作用,破坏了热平衡的条件,这就迫使它处于与热平衡状态相偏离的状态,称为非平衡状态。处于非平衡状态的半导体,其载流子浓度也不再是n0和p0,可以比它们多出一部分。比平衡状态多出来的这部分载流子称为非平衡载流子,有时也称为过剩载流子。要破坏半导体的平衡态,对它施加的外部作用可以是光,也可以是电或是其它的能量传递方式。常用到的方式是电注入,最典型的例子就是PN结。用光照使得半导体内部产生非平衡载流子的方法,称为非平衡载流子的光注入,光注入时,非平衡载流子浓度Δn=Δp。 当外部的光注入撤除以后,注入的非平衡载流子并不能一直存在下去,它们要逐渐消失,也是原来激发到导带的电子又回到价带,电了和空穴又成对的消失了。最后,载流子浓度恢复到平衡时的值,半导体又回到平衡态,过剩载流子逐渐消失,这一过程称为非平衡载流子的复合。实验表明,光照停止后,Δp随时间按指数规律减少。这说明非平衡载流子不是立刻全部消失,而是有一个过程,

铸造多晶硅中杂质对少子寿命的影响

铸造多晶硅中杂质对少子寿命的影响 对于太阳电池材料,勺子寿命是衡量材料性能的一个重要参数。多晶硅锭中存在高密度的缺陷和高浓度的杂质(氧、碳以及过渡族金属铁等)。有研究表明,相比于晶界和位错,氧、铁等主要的杂质元素对硅锭中少子寿命的影响更大。 氧是铸造多晶硅材料中最主要的杂质元素之一,间隙氧通常不显电学活性,对少子寿命没有影响。但在晶体生长或热处理时,在不同温度氧会形成热施主、新施主、氧沉淀,氧沉淀会吸引铁等金属元素。另外铁也被认为铸造多晶硅中最常见的有害杂质之一。P型硅中,铁通常与硼结合成铁-硼对,铁一硼对在室温下能稳定存在,但在200℃下热处理或者强光照可以使铁一硼对分解而形成间隙铁离子和硼离子,由于间隙铁离子和铁一硼对少数载流子复合能力的不同,使得处理前后少子寿命值出现变化,从而可以建立起间隙铁浓度对应少子寿命值变化之间的关系。 杂质在铸造多晶硅硅锭中的分布,与该杂质在硅中的分凝系数K有关。在铸造多晶硅锭料由底部向顶部逐渐凝固时,如果杂质的分凝系数K<1,则凝固过程中,固相中的杂质不断地被带到熔体中,出现杂质向底部集中,越接近底部浓度越大,相反,如果分凝系数K>1,则杂质集中在顶部,越接近顶部浓度越大。 氧主要集中在硅锭头部,其浓度呈现从硅锭底部向顶部逐渐降低的趋势。可以认为分凝机制对于氧在熔体硅中的传递和分布起主要作用。间隙铁分布为:头部和尾部浓度较高,中间部分浓度较低,且分布较为均匀。这与仅由分凝机制决定的间隙铁浓度分布,特别是在底部处产生了较大偏离。硅锭底部处出现了较大的间隙铁浓度,由于铁在硅中具有较大的扩散系数,所以这可能是硅锭底部凝固完成后的冷却过程中,铁由坩埚或者氮化硅保护层向其进行固相扩散的结果。事实上硅锭的底部最先开始凝固,通常整个凝固过程将持续数十小时,硅锭底部将有较长时间处于高温状态,因而使得固相扩散的现象有可能发生。固相扩散的程度与凝固后硅锭的冷却速率以及各温度下的铁的扩散系数有关。 从少子寿命的分布图中,可以看出硅锭两端的低寿命区域,对应着过高的间隙铁、氧浓度,因而可以认为高浓度的间隙铁、氧原子形成了有效复合中心,从而导致了硅锭两端低少子寿命区域的出现。

相关文档
最新文档